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Abstract

In this note we consider several goodness-of-fit tests for model specification in non-
parametric regression models which are based on kernel methods. In order to circumvent
the problem of choosing a bandwidth for the corresponding test statistic we propose to
consider the statistics as stochastic processes indexed with bandwidths proportional to
the asymptotically optimal bandwidth for the estimation of the regression function. We
prove weak convergence of these processes to centered Gaussian processes and suggest to
use functionals of these processes as test statistics for the problem of model specification.
A bootstrap test is proposed to obtain a good approximation of the nominal level. The
results are illustrated by means of a simulation study and the new test is compared with
some of the currently available procedures.

Keywords and Phrases: goodness-of-fit test, weak convergence, nonparametric regression, spec-

ification test, selection of smoothing parameters

1 Introduction

Recently, there has been a considerable interest in the problem of testing for a parametric model

of the conditional mean m(x) = E[ε | X = x] in a nonparametric regression model

Y = m(X) + ε, (1.1)

where Y ∈ R, X ∈ R
d, E[ε|X] = 0 (a.s.) and Var[ε|X = x] = σ2(x) > 0 (a.s.). Sup-

pose we have a sequence of independent observations {(Xi, Yi) | i = 1, . . . , n} coming from
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a population (X, Y ) according to the model (1.1), in which the unknown regression function

m(x) = E(Y |X = x) is assumed to be smooth. Given a parametric function, say g(x; ϑ) for

the conditional mean, the null and alternative hypotheses of a specific parametric form can be

described as

H0 : P{m(X) = g(X; ϑ0)} = 1, for some ϑ0 ∈ Θ, (1.2)

H1 : P{m(X) = g(X; ϑ)} < 1, for any ϑ ∈ Θ, (1.3)

where Θ ⊂ R
p denotes the parameter space. Many authors propose to compare a nonparametric

with a parametric estimate of the regression function m [see e.g. Yatchew (1992), Wooldridge

(1992), González-Manteiga and Cao (1993), Härdle and Mammen (1993), Zheng (1996, 1998a),

Alcalá, Christóbal, González-Manteiga(1999) among many others]. Alternative test statistics

have been proposed by Azzalini and Bowman (1993), Dette (1999), Fan, Zhang and Zhang

(2001) and Fan and Li (2002). The various aspects of the different proposals have been carefully

discussed by Zhang and Dette (2003), who demonstrated that there exist essentially three types

of kernel based test statistics for the problem of testing the parametric form of the conditional

mean in the regression model (1.1). These tests are attractive for practitioners, because of

their easy interpretation and visualization (essentially only two curves have to be compared).

However, goodness-of-fit tests using kernel based methods have been criticized by numerous

authors because of their sensitivity with respect to the choice of a smoothing parameter required

for the nonparametric estimation of the regression function.

In the present paper we provide a partial answer to the problem of choosing an appropriate

bandwidth in these testing procedures by considering the various test statistics based on kernel

methods as stochastic processes indexed by a bandwidth parameter, which is proportional

to the optimal bandwidth for the nonparametric estimation of the regression function. We

prove weak convergence of these processes to Gaussian processes under the null hypothesis

(1.2) and under local alternatives, where the covariance structure depends on the particular

testing procedure under consideration. As test statistic we propose the Kolmogorov-Smirnov

or Cramér-von-Mises functional calculated over a certain range of bandwidths (proportional to

the asymptotically optimal bandwidth) in order to obtain tests based on kernel methods, which

are on the one hand less sensitive with respect to the specification of a bandwidth and on the

other hand very powerful.

The work most similar to the spirit of the present note is the remarkable paper of Horowitz

and Spokoiny (1999) who derived an adaptive rate-optimal test by considering the maximum

of (standardized) test statistics of Härdle and Mammen (1993) calculated over a grid of band-

widths. While the work of theses authors is mainly motivated from a theoretical point of view

(adaption of the test to the unknown smoothness of the alternative, optimal rates uniformly

over Hölder classes), and leaves the problem of bandwidth choice (more precisely, the choice of

the grid over which the maximum has to be taken) at least partially open, the present paper

concentrates directly on the problem of bandwidth choice. In this sense the results of this paper

can be considered as a complement to the work of Horowitz and Spokoiny (1999), whereas the

new limiting stochastic processes obtained in Section 2 and 3 are of their own interest. More-
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over, by considering only bandwidths, which are proportional to the optimal bandwidth for the

nonparametric estimation of the regression function, it is intuitively clear that the resulting

tests have very good power properties.

The concept is carefully described in Section 2, where we mainly discuss the test statistic

introduced by Härdle and Mammen (1993) and used by Horowitz and Spokoiny (1999). The

two other types of test statistics proposed by Zheng (1996) and Dette (1999) [for the latter see

also Fan, Zhang and Zhang (2001) or Fan and Li (2002)] are briefly considered in Section 3,

while Section 4 studies the finite sample properties of a bootstrap version of the new test. In

particular we compare the new test with the test proposed by Horowitz and Spokoiny (1999)

by adapting the approach used by these authors to the situation, where some preliminary

knowledge regarding the smoothness of the regression function is available. This allows to

consider bandwidths proportional to an optimal bandwidth (with respect to an integrated

mean squared error criterion) in the adaptive procedure proposed by these authors and it is

demonstrated that such additional knowledge can improve the power of the test substantially.

2 Testing parametric hypotheses by empirical processes

indexed by bandwidths

A natural measure for the fit of a parametric estimate is a weighted L2-distance between

an estimate of the regression function under the null hypothesis and the alternative [see e.g.

Härdle and Mammen (1993), González-Manteiga and Cao (1993), Weirather (1993) or Alcalá,

Christóbal and González-Manteiga (1999) among many others]. Härdle and Mammen (1993)

picked up an idea of Bickel and Rosenblatt (1973) and proposed the statistic

Tn,h = nhd/2

∫ (
m̂h (x) −Kh,ng(x; ϑ̂)

)2

π (x) dx (2.1)

as a measure for the deviation from the parametric form of the conditional mean, where ϑ̂ is

an estimate under the assumption of the parametric model,

m̂h (x) =

∑n
i=1 Kh (x − Xi)Yi∑n

i=1 Kh (x − Xi)
(2.2)

is the Nadaraya-Watson estimate [here we use the standard notation Kh (x) = h−dK (x/h)].

Throughout this paper K : R
d → R denotes a d-dimensional kernel and we use the same

bandwidth in each coordinate of X for the sake of simplicity. The operator Kh,n in (2.1) is

defined by

Kh,ng ( · ) =

∑n
i=1 Kh ( · − Xi) g (Xi)∑n

i=1 Kh ( · − Xi)
(2.3)

and is used to remove a bias term of the statistic Tn,h [see Härdle and Mammen (1993) or

Bickel and Rosenblatt (1973)]. For the asymptotic inference these authors assumed that with

probability 1 the random variable Xi lies in the d-dimensional cube [0, 1]d and that its marginal
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density f(·) is bounded away from 0. The regression function m and density f are assumed

to be two times continuously differentiable and the conditional variance σ2(·) is continuous.

Moreover, the following conditions should be satisfied throughout this paper:

E[exp(tε)] is bounded in a neighbourhood of 0, (2.4)

g( · ; ϑ̂) − g( · ; ϑ0) = (1/n)

n∑
i=1

〈k ( · ) , l (Xi)〉 εi + op( (n logn)−1/2), (2.5)

where k, � are bounded R
d-valued functions and 〈·, ·〉 denotes the common inner product. Fi-

nally, it is assumed that the kernel in (2.2) and (2.3) is two times continuously differentiable.

Härdle and Mammen (1993) showed that an appropriately standardized version of the statistic

Tn,h is asymptotically normal distributed and proposed a wild bootstrap test for the hypothesis

(1.2). As pointed out by these authors, the testing procedure depends sensitively on the choice

of the smoothing parameter in (2.2) and (2.3), and some care is necessary in the interpretation

of the results of the corresponding test. A natural choice for the smoothing parameter is the

asymptotically optimal bandwidth for the estimation of the regression function with respect

to the integrated mean squared error criterion [see e.g. Fan and Gijbels (1996)]. It is known

that in the present context this quantity is given by h(c) = c · n−1/(d+4), but the constant c is

in general unknown and depends on certain features of the regression-, variance function and

design density.

In this note we propose to consider the statistic Tn,h as function of the constant c in the

asymptotically optimal bandwidth

h(c) = cn−1/(d+4), (2.6)

that is

Tn(c) = Tn,h(c), (2.7)

where the statistic Tn,h is defined in (2.1), c ∈ [c, c̄], and 0 < c < c̄ < ∞ are given constants.

We will prove below that an appropriate centered version of the process (Tn(c))c∈[c,c̄] converges

weakly to a Gaussian process.

Theorem 2.1. If the assumptions stated at the beginning of this section, (2.4), (2.5) are

satisfied, and the function bn(c) is defined by

bn(c) = c−d/2n
d

2(d+4)

∫
K2(u)du

∫
σ2(x)π(x)

f(x)
dx, (2.8)

then the process (Tn(c)−bn(c))c∈[c,c̄] converges weakly to a centered Gaussian process (GHM(c))c∈[c,c̄]

with covariance kernel

kHM(c1, c2) = 2
(c1

c2

)d/2
∫ [∫

K (u)K
(c1

c2
u + z

)
du

]2

dz

∫
σ4 (x)

f 2 (x)
π2(x)dx, (2.9)
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Proof. We only consider the case d = 1 and π(x) ≡ 1, the general case d > 1 and an arbitrary

weight function can be obtained similarly. Following Härdle and Mammen (1993) we have

Tn(c) = Tn,3(c) + bn(c) + op(1), (2.10)

where the statistic Tn,3(c) is defined by

Tn,3(c) =

√
h(c)

n

∫ 1

0

∑
i�=j Kh(c) (Xi − x) Kh(c) (Xj − x) εiεj

f 2 (x)
dx, (2.11)

and the constant bn(c) is given by (2.8). Consequently, the assertion of the theorem can be

established showing that

{Tn,3(c)}c∈[c,c̄] ⇒ (GHM(c))c∈[c,c̄], (2.12)

where the symbol ⇒ denotes weak convergence in the Skorohod space D([c, c̄]). For this purpose

we define

Wijn(c) =


√

h(c)

n

∫ 1

0

Kh(c) (Xi − x) Kh(c) (Xj − x)

f 2 (x)
dx εiεj if i 	= j,

0 else,

(2.13)

introduce the notation hj = h(cj) (j = 1, 2) and obtain for the asymptotic covariance

Cov (Tn,3 (c1) , Tn,3 (c2)) = 2n(n − 1) E [Wijn (c1) · Wijn (c2)]

= 2 E
[√

h1h2

∫
Kh1 (x − Xi) Kh1 (x − Xj)

f 2 (x)
dx

×
∫

Kh2 (y − Xi)Kh2 (y − Xj)

f 2 (y)
dy ε2

i ε
2
j

]
= 2
√

h1h2

∫ ∫ ∫ ∫
1

h2
2

K (u)K (v)K
(

h1

h2
u + y−x

h2

)
K
(

h1

h2
v + y−x

h2

)
f 2 (x) f 2 (y)

×σ2 (x − h1u) σ2 (x − h1v) f (x − h1u) f (x − h1v) du dv dx dy

= 2
√

r

∫ [∫
K (u)K (ru + z) du

]2

dz ·
∫

σ4 (x)

f 2 (x)
dx + o (1) ,

where we used the continuity of the conditional variance and the notation r = c1/c2. This

proves the representation of the covariance kernel in Theorem 2.1 (for the case π(x) ≡ 1 and

d = 1).

For a proof of the claimed weak convergence in (2.12) we show convergence of the finite dimen-

sional distributions and that there exists an M ∈ R such that

E
[|Tn,3 (c1) − Tn,3 (c2)|2|Tn,3 (c2) − Tn,3 (c3)|2

] ≤ M (c1 − c3)
2 ∀ c1 ≤ c2 ≤ c3 (2.14)

[see Billingsley (1968), Theorem 15.6]. The convergence of the finite dimensional distributions

follows along the lines of Härdle and Mammen (1993) using the Cramér-Wold device and is
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omitted for the sake of brevity. For a proof of the estimate (2.14) we write

Tn,3 (c1) − Tn,3 (c2) =
∑
i�=j

aij , (2.15)

Tn,3 (c2) − Tn,3 (c3) =
∑
i�=j

bij ,

with hj = h(cj) (j = 1, 2, 3),

aij :=
(√h1

n

∫ 1

0

Kh1 (Xi − x) Kh1 (Xj − x)

f 2 (x)
dx −

√
h2

n

∫ 1

0

Kh2 (Xi − x) Kh2 (Xj − x)

f 2 (x)
dx
)
εiεj,

bij :=
(√h2

n

∫ 1

0

Kh2 (Xi − x) Kh2 (Xj − x)

f 2 (x)
dx −

√
h3

n

∫ 1

0

Kh3 (Xi − x) Kh3 (Xj − x)

f 2 (x)
dx
)
εiεj,

and a straightforward calculation shows

kn(c1, c2, c3) = E
[|Tn,3 (c1) − Tn,3 (c2)|2|Tn,3 (c2) − Tn,3 (c3)|2

]
= E

∑
i�=j

aij

∑
i′ �=j′

ai′j′
∑
k �=l

bkl

∑
k′ �=l′

bk′l′

= 8 E
∑
�=

a2
ijb

2
kl + 8 E

∑
�=

aijbijaklbkl + o(1) (2.16)

= 8
∑
i�=j

E
[
a2

ij

]∑
k �=l

E
[
b2
kl

]
+ 8
∑
i�=j

E [aijbij ]
∑
k �=l

E [aklbkl] + o(1)

= 8
∑
i�=j

E
[
a2

ij

]∑
k �=l

E
[
b2
kl

]
+ 8

(∑
i�=j

E [aijbij ]

)2

+ o(1)

uniformly with respect to c1, c2, c3, where the symbol
∑
�=

means the summation over only all

pairwise different indices. Now it is easy to see that

An = 2
∑
i�=j

E
[
a2

ij

]
= 2n(n − 1) E

[
a2

12

]
(2.17)

= 2n(n − 1) E

{
h1

n2

(∫ 1

0

Kh1 (X1 − x) Kh1 (X2 − x)

f 2 (x)
dx

)2

ε2
1ε

2
2

− 2
√

h1h2

n2

(∫ 1

0

Kh1 (X1 − x) Kh1 (X2 − x)

f 2 (x)
dx

×
∫ 1

0

Kh2 (X1 − y)Kh2 (X2 − y)

f 2 (y)
dy

)
ε2
1ε

2
2

+
h2

n2

(∫ 1

0

Kh2 (X1 − x) Kh2 (X2 − x)

f 2 (x)
dx

)2

ε2
1ε

2
2

}

= 2Var (Tn,3 (c1)) − 2 Cov (Tn,3 (c1) , Tn,3 (c2)) ,
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and similarly

Bn = 2
∑
k �=l

E
[
b2
kl

]
= 2Var (Tn,3 (c2)) − 2 Cov (Tn,3 (c2) , Tn,3 (c3)) . (2.18)

For the remaining term we obtain by the same arguments

cn = 2
∑
i�=j

E [aijbij ] = 2n(n − 1) E [a12b12]

= 2n(n − 1) E

{√
h1h2

n2

(∫ 1

0

Kh1 (X1 − x) Kh1 (X2 − x)

f 2 (x)
dx

×
∫ 1

0

Kh2 (X1 − y)Kh2 (X2 − y)

f 2 (y)
dy

)
ε2
1ε

2
2

−
√

h1h3

n2

∫ 1

0

Kh1 (X1 − x) Kh1 (X2 − x)

f 2 (x)
dx

∫ 1

0

Kh3 (X1 − y)Kh3 (X2 − y)

f 2 (y)
dyε2

1ε
2
2

− h2

n2

(∫ 1

0

Kh2 (X1 − x) Kh2 (X2 − x)

f 2 (x)
dx

)2

ε2
1ε

2
2

+

√
h2h3

n2

∫ 1

0

Kh2 (X1 − x) Kh2 (X2 − x)

f 2 (x)
dx

∫ 1

0

Kh3 (X1 − y)Kh3 (X2 − y)

f 2 (y)
dyε2

1ε
2
2

}
,

which yields

Cn = 2c2
n = 2 [Cov (Tn,3 (c1) , Tn,3 (c2)) − Cov (Tn,3 (c1) , Tn,3 (c3)) (2.19)

−Var (Tn,3 (c2)) + Cov (Tn,3 (c2) , Tn,3 (c3))]
2 .

Now the same arguments as given at the beginning of this proof show

Cov (Tn,3 (ci) , Tn,3 (cj)) ≤ kHM (ci, cj) (1 + o(1)) (2.20)

uniformly with respect to ci, cj, and it follows (using the differentiability of the kernel kHM)

that

AnBn ≤ C1|c1 − c2||c2 − c3| ≤ C1|c1 − c3|2
(2.21)

Cn ≤ C2|c1 − c3|2

for some constants C1, C2 > 0. This completes the proof of the estimate (2.14) and the weak

convergence in (2.12) follows directly from Theorem 15.6 in Billingsley (1968). Finally, the

assertion of Theorem 2.1 follows from the decomposition (2.10).

�

Example 2.2. The covariance kernel kHM in Theorem 2.1 depends on the kernel K used in

the nonparametric regression estimate. For example, if d = 1 and K(u) = 1√
2π

e−u2/2 is the

Gaussian kernel we obtain by a straightforward but tedious calculation

kHM(c1, c2) =

√
c1c2

π(c2
1 + c2

2)

∫
σ4 (x)

f 2 (x)
π2(x)dx. (2.22)
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If K(u) = 1
2
I[−1,1](u) is the rectangular kernel, it follows that for c1 ≥ c2

kHM(c1, c2) =

√
c2

c1
(1 − c2

3c1
)

∫
σ4(x)

f 2(x)
π2(x)dx (2.23)

while for the Epanechnikov kernel K(u) = 3
4
(1 − u2)I[−1,1](u) we obtain

kHM(c1, c2) =

√
c2

c1

{
6

5
− 3

5

(c2

c1

)2

+
2

7

(c2

c1

)3

− 1

55

(c2

c1

)5
}∫

σ4(x)

f 2(x)
π2(x)dx. (2.24)

The remaining cases c1 ≤ c2 are obtained by symmetry.

Remark 2.3. If local alternatives of the form

m(x) = g(x; ϑ0) + c−
d
4 n− d+8

4(d+4) r(x)

for some fixed ϑ0 ∈ Θ are considered, the assertion of Theorem 2.1 is still correct, where the

centered Gaussian process GHM has to be replaced by a Gaussian process with mean∫
r2(x)π(x)dx

and the same covariance kernel kHM. This follows by a careful inspection of the proof of the

decomposition (2.10) [see also Härdle and Mammen (1993) for more details].

A closely related test statistic was considered by Horowitz and Spokoiny (1999), who derived an

adaptive rate-optimal test by considering the maximum of a studentized version of the statistic

Tn,h, calculated on a grid of bandwidths. In contrast to our work these authors did not assume

knowledge about the smoothness of the regression function and (as a consequence) did not use

bandwidths proportional to the optimal bandwidth, which allows to consider a process indexed

by bandwidths. In the notation of the present paper the statistic discussed by these authors is

asymptotically first order equivalent to the statistic

T̃n,h =
Tn,h − bh

v
, (2.25)

where the bias bh and the variance v2 are defined by

bh = h−d/2

∫
K2(u)du

∫
σ2(x)π(x)

f(x)
dx (2.26)

v2 = 2

∫
(K ∗ K)2(u)du

∫
σ4(x)

f 2(x)
π2(x)dx, (2.27)

respectively, and K ∗ K denotes the convolution of K with itself. For bandwidths of the form

h(c) = cn−1/(d+4) we obtain the following corollary from Theorem 2.1.
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Corollary 2.4. If the assumptions of Theorem 2.1 are satisfied and T̃n(c) = T̃n,h(c) denotes the

statistic T̃n,h defined in (2.25) for the bandwidth h = h(c) = cn−1/(d+4), then

(T̃n(c))c∈[c,c̄] ⇒ (G̃(c))c∈[c,c̄],

where G̃ denotes a centered Gaussian process with covariance kernel

kHS(c1, c2) =

(
c1
c2

)d/2 ∫ [∫
K(u)K( c1

c2
u + z)du

]2
dz∫

(K ∗ K)2(u)du
.

3 Related processes

In this section we briefly discuss two related processes corresponding to kernel based methods,

which have been recently proposed in the literature for testing the parametric form of the

conditional mean. For the sake of brevity we restrict ourselves to the case d = 1 and π(x) ≡ 1,

but similar results for the case d > 1 and general weight functions are readily available. Zheng

(1996) proposed to reject the null hypothesis (1.2) for large values of the statistic

Vn =

√
h

n − 1

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
Xi − Xj

h

)
eiej, (3.1)

where

ei = Yi − g(Xi; ϑ̂) (i = 1, . . . , n) (3.2)

denote the residuals based on the parametric fit. Note that it is heuristically clear that Vn

attains large values if the hypothesis (1.2) is not satisfied. For example, if the least squares

technique is used for the estimation of the parameter ϑ, Vn is a consistent estimate of

E[(Yi − g(Xi; ϑ0))E[Yi − g(Xi; ϑ0) | Xi]], (3.3)

[see e.g. Zhang and Dette (2003)] where

ϑ0 := arg min
ϑ∈Θ

E[(Y − g(X; ϑ))2], (3.4)

and the expression in (3.3) vanishes if and only if the null hypothesis (1.2) is satisfied. A rather

different approach for testing the parametric form of the conditional mean was proposed by

Dette (1999) which is based on the difference of variance estimators under the null hypothesis

and alternative [see also Fan, Zhang and Zhang (2001) or Fan and Li (2002) who used a similar

method]. This author suggested to reject the null hypothesis for large values of the statistic

Un = n
√

h(σ̂2
H0

− σ̂2
H1

), (3.5)

where σ̂2
H0

is the common estimate of the variance under the null hypothesis (1.2), i.e.

σ̂2
H0

=
1

n − p

n∑
j=1

e2
j , (3.6)
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and σ̂2
H1

is the variance estimator based on the sum of squared residuals from a nonparametric

fit with the Nadaraya-Watson estimate [see Hall and Marron (1990) or Dette (1999) for more

details]. For least squares estimation it was shown by Dette (1999) that the statistic Un is a

consistent estimate of E[(m(X) − g(X; ϑ0))
2] and similar properties can be derived for other

types of estimators. The following theorem gives the analogue of Theorem 2.1 for processes

based on Vn and Un. The proof is very similar to the proof of Theorem 2.1 and omitted for the

sake of brevity.

Theorem 3.1. Let Vn(c) and Un(c) denote the statistics Vn and Un defined in (3.1) and (3.5),

respectively, with the bandwidth h(c) = cn−1/5. If the assumptions of Theorem 2.1 are satisfied,

then under the null hypothesis (1.2) we have

(Vn(c))c∈[c,c̄] ⇒ (GZ(c))c∈[c,c̄]

(Un(c) − bD(c))c∈[c,c̄] ⇒ (GD(c))c∈[c,c̄]

where (GZ(c))c∈[c,c̄] and (GD(x))c∈[c,c̄] are centered Gaussian processes with covariance kernels

kZ(c1, c2) = 2

√
c1

c2

∫
K (u) K

(
c1

c2

u

)
du

∫
σ4 (x) f 2 (x) dx, (3.7)

kD(c1, c2) = 2

√
c1

c2

∫
σ4 (v) dv

∫
[2K (u) − K ∗ K (u)]

×
[
2K

(
c1

c2
u

)
− c1

c2

∫
K

(
c1

c2
(u − z)

)
K

(
c1

c2
z

)
dz

]
du, (3.8)

respectively, and the bias term bD(c) is defined by

bD(c) = −c9/2n1/10

4

(∫
u2K(u)du

)2

·
∫ 1

0

{
(mf)(2)(u) − mf (2)(u)

} du

f(u)
(3.9)

−n1/10

c1/2

(
2K(0) −

∫
K2(u)du

)(∫ 1

0

σ2(t)(f(t) − 1)dt
)

Example 3.2. For the Gaussian kernel K(u) = 1√
2π

e−u2/2 the covariance kernels corresponding

to the Gaussian processes (GZ(c))c∈[c,c̄] and (GD(c))c∈[c,c̄] are given by

kZ(c1, c2) =

√
2c1c2

π (c2
1 + c2

2)

∫
σ4(x)f 2(x)dx,

(3.10)

kD(c1, c2) =

(4√2 + 1
)√ c1c2

π (c2
1 + c2

2)
− 2

√
c1c2

π
(
c2
1 +

c22
2

) − 2

√
c1c2

π
(

c21
2

+ c2
2

)

∫

σ4(x)dx,
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respectively. For the rectangular kernel K(u) = 1
2
I[−1,1](u) we obtain

kZ(c1, c2) =

√
c1

c2

∫
σ4(x)f 2(x)dx (c1 ≤ c2)

(3.11)

kD(c1, c2) =


√

c1
c2

{
1
6

c1
c2
− 2 c1

c2
+ 1

2

(
c1
c2

)2

+ 3
}∫

σ4(x)dx if c1
c2

∈ [1, 2]√
c1
c2

{
1
6

c1
c2

+ 1
}∫

σ4(x)dx if c1
c2

≥ 2

(3.12)

(the other case is obtained by symmetry).

4 Finite sample comparison

In this section we briefly investigate the finite sample performance of tests based on functionals

of the stochastic processes discussed in Section 3. In principle all processes considered in this

section will yield a test for the parametric form of the conditional mean in the nonparametric

regression model and for the sake of comparison (with the results of Horowitz and Spokoiny

(1999)) and brevity we restrict ourselves to a version of the process T̃n(c) considered in Corollary

2.4. To be precise, we write the statistic Tn,h considered in (2.1) as a quadratic form, i.e.

Tn,h =

n∑
i,j=1

aij(h)(Yj − g(Xj; ϑ̂))(Yi − g(Xi; ϑ̂)),

and consider the estimates of the bias

b̂h =

n∑
i=1

aii(h)σ̂2
i , (4.1)

and variance

v̂2
h = 2

n∑
i,j=1

a2
ij(h)σ̂2

i σ̂
2
j , (4.2)

where σ̂2
i denotes an estimate of the conditional variance at the point Xi (i = 1, . . . , n). For

bandwidths of the form (2.6) we investigate the stochastic process

T̄n(c) =
Tn,h(c) − b̂h(c)

v̂h(c)
, (4.3)

which was also discussed by Horowitz and Spokoiny (1999) and is asymptotically first order

equivalent to the process considered in Corollary 2.4 under appropriate assumptions on the

variance estimates. Therefore it is easy to see that this process converges weakly to the process
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(G̃(c))c∈[c,c̄] defined in Corollary 2.4 and the null hypothesis should be rejected for large values

of a functional of |T̄n(c)| such as

TKS = max
c∈[c,c̄]

|T̄n(c)| or TCM =

∫ c̄

c

T̄ 2
n(c)dc. (4.4)

For the sake of comparison with the work of Horowitz and Spokoiny (1999) we consider the

Kolmogorov-Smirnov-statistic (4.4) in a homoscedastic regression model. These authors rec-

ommend a bootstrap procedure, which is also used in the present simulation study, where the

conditional variances in (4.1) and (4.2) are estimated by the difference estimate of Rice (1984).

To be precise, we generated data from the parametric model

Y ∗
i = g(Xi; ϑ̂) + ε∗i (4.5)

where ε∗1, . . . , ε
∗
n are i.i.d. with a N (0, σ̂2

H0
) law and ϑ̂ is the least squares estimate from the

original sample. The bootstrap statistic T ∗
KS is calculated from (1.2) with the data Y ∗

1 , . . . , Y ∗
n

and the null hypothesis is rejected at level α ∈ (0, 1) if TKS is larger than the corresponding

quantile of the bootstrap distribution.

Note that the essential difference of the method proposed in this paper to the work of Horowitz

and Spokoiny (1999) is the specific choice of smoothing parameters proportional to the asymp-

totically optimal bandwidth. This allows us to consider the statistic T̄n(c) as a stochastic

process of the parameter c, which converges weakly in the Skorohod space D([c, c̄]). In our

simulation we replace the bandwidth (2.6) by

h(c) = c ·
( σ̂2

H0

n

)1/(d+4)

; c ∈ [c, c̄] (4.6)

in order to reflect different standard deviations in the errors. For the range [c, c̄] (over which

the stochastic process has to be considered) we choose the interval

[c, c̄] = [1, 9], (4.7)

which covers a rather broad area of bandwidths.

Example 4.1. Our first example gives a comparison with the results of Horowitz and Spokoiny

(1999) and demonstrates the advantages of choosing bandwidths proportional to the asymptotic

optimal bandwidth. These authors investigated the model

Yi = 1 + Xi + α
{5

τ
ϕ
(Xi

τ

)}
+ εi i = 1, . . . , n, (4.8)

where ϕ denotes the density of the standard normal distribution, τ = 1
4

or τ = 1, Xi is a

univariate random variable sampled from a N (0, 25) distribution, which is truncated at the 5th

and 95th percentile. Three distributions were considered for the errors, that is

εi ∼ N (0, 4), (4.9)

εi ∼ I{B = 1}N (0, 1.56) + I{B = 0}N (0, 25), (4.10)

εi ∼ 2
√

6
G − γ

π
, (4.11)
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where B denotes a Bernoulli random variable with parameter 0.9, G is a Gumbel distribution

with distribution function F (x) = exp(− exp(−x)); x ∈ R and γ denotes Euler’s constant.

Note that the variance of the error is (approximately) 4 in all cases under consideration. The

parameter α indicates the null hypothesis (α = 0) and alternatives (α = 1, τ = 0.25; α = 1, τ =

1).

Horowitz and Spokoiny (1999) used a preliminary simulation study to determine the bandwidth

h such that the power of Härdle and Mammen’s (1993) test becomes maximal and obtained

h = 3.5. For their test they therefore used a grid of bandwidths h ∈ {2.5, 3.0, . . . , 4.5} and cal-

culated the maximin of T̄n,h on this grid. The critical values for the corresponding test statistic

are obtained by the bootstrap method described in the previous paragraph. Obviously, this

choice of the grid is only possible in a simulation study, because in practice the alternative is

unknown. The test statistic T̄n(c) uses bandwidths proportional to the asymptotically opti-

mal bandwidth for the estimation of the regression function over a certain range of c and is

therefore less sensitive with respect to the specification of a range for the bandwidths. The

results for the simulated power based on 250 simulation runs in the situation considered by

Horowitz and Spokoiny (1999) are depicted in Table 4.1. Comparing these results with the

corresponding values obtained by Horowitz and Spokoiny (1999) we observe that the test based

on the Kolmogorov-Smirnov statistic of the empirical process indexed with bandwidths yields

significantly larger rejection probabilities. We note that this improvement is obtained by as-

suming additional knowledge about the smoothness of the regression function, which allows to

consider an empirical process indexed by (asymptotically) optimal bandwidths. On the other

hand the procedure proposed by Horowitz and Spokoiny (1999) leaves the problem of choosing

the grid for the different bandwidths at least partially open.

n α = 0 α = 1, τ = 1 α = 1, τ = 0.25

20 % 10 % 5 % 2.5 % 20 % 10 % 5 % 2.5 % 20 % 10 % 5 % 2.5 % error

.195 .098 .047 .028 .989 .957 .931 .898 1.000 1.000 1.000 1.000 (4.9)

250 .181 .092 .043 .020 1.000 .996 .952 .894 1.000 1.000 1.000 1.000 (4.10)

.196 .104 .052 .021 .980 .956 .946 .898 1.000 1.000 1.000 1.000 (4.11)

Table 4.1: Rejection probabilities of the bootstrap test based on the statistic TKS defined in

(4.4). The regression model is given by (4.8) with α = 0 corresponding to the null hypothesis

and three error distributions are considered.

Example 4.2. In our second example we compare the new test based on the empirical process

indexed by (asymptotically) optimal bandwidths with the test proposed by Dette (1999) [see

also Fan, Zhang and Zhang (2001) and Fan and Li (2002) for a similar proposal]. In his Example

4.1 Dette (1999) considered the model

Yi = 5Xi + aX2
i + εi , i = 1, . . . n (4.12)
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where X follows a uniform distribution on the interval [0, 1], ε has a centered normal distribution

with variance σ2 > 0. The case a = 0 corresponds to the null hypothesis (straightline through

the origin) and two alternatives are considered. In Table 4.2 we display the level and power of

the new bootstrap test for sample sizes n = 50 and n = 100 with a 2.5%, 5%, 10% and 20%

level. These results are based on 1000 simulation runs and for the 5% level directly comparable

with the values of Table 1 in Dette (1999).

n 50 100

σ2 a 20% 10% 5% 2.5% 20% 10% 5% 2.5%

0 .216 .117 .061 .034 .187 .095 .056 .030

1 1 .296 .190 .114 .066 .355 .237 .150 .091

2 .530 .381 .264 .171 .696 .554 .442 .329

0 .193 .107 .055 .024 .214 .105 .058 .037

2 1 .254 .145 .081 .045 .306 .195 .127 .072

2 .365 .229 .145 .089 .485 .350 .248 .169

0 .184 .092 .039 .024 .200 .106 .061 .023

3 1 .210 .120 .058 .024 .266 .147 .091 .061

2 .302 .182 .118 .071 .428 .296 .208 .116

Table 4.2: Rejection probabilities of the bootstrap test based on the statistic TKS defined in

(4.4). The regression model is given by (4.12) and the case a = 0 corresponds to the null

hypothesis of a straightline through the origin.

We observe a good approximation of the nominal level (a = 0), while the power increases with an

increasing parameter a and decreases with an increasing variance σ2. Comparing the power (for

the nominal level of 5%) with the corresponding results of Table 1 in Dette (1999) we observe

substantial improvements. For example, in the case a = 2 the new test has approximately 50%

more power than the test proposed by Dette (1999), and the superiority in the other cases is

very similar.

5 Conclusion

In this paper a method is proposed to choose the bandwidth for goodness-of-fit tests for model

specification in nonparametric regression models which are based on kernel methods. The

main idea is to consider the corresponding test statistic as a stochastic process indexed by a

bandwidth proportional to the asymptotically optimal bandwidth for the estimation of the re-

gression function. Weak convergence of the corresponding process is established, which allows

to consider Kolmogorov-Smirnov or Cramér von Mises type statistics of the corresponding pro-

cesses. On the one hand this approach leads to a procedure which is less sensitive with respect
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to the choice of a smoothing parameter, on the other hand the methodology usually increases

the power of the kernel based methods because optimal bandwidths for regression estimation

are used. The finite sample properties of a bootstrap version of the corresponding test are

investigated by means of a small simulation study and compared with some of the currently

available procedures. It is observed empirically that the new method yields significantly larger

power in the considered examples.

Although the present paper deals with the specific problem of testing for the parametric form

of regression function, the basic methodology is broadly applicable to all goodness-of-fit testing

problems, where kernel based methods are involved. This includes such important problems

of testing for additivity [see e.g. Gozalo and Linton (2001)], testing for omitted variables and

semiparametric functional forms [see e.g. Fan and Li (1996)] or for symmetry of the error

distribution [see Ahmad and Li (1997) or Zheng (1998b)].
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