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1. Introduction

Classical control charts, such as CUSUM, EWMA and the Shewhart

charts, are the most widely used techniques for detecting changes in

parameters of time series models. Due to their simplicity and relative

good efficiency they provide standards for many problems in quality

control, financial time series and signal processing. They have been

extensively examined and extended into many directions, see [18] and

the references cited therein. These basic methods posses a common

feature based on the utilization of a certain averaging scheme of past

observations. The resulting differences of the generalized averages form

the test statistic for the parameter change. Such a strategy allows to

tune the in-control average run length and to accumulate results of

small changes of the controlled process. On the other hand, averag-

ing across the change point yields an substantial delay of its detection.

Furthermore there is an additional reduction in the performance due

to the usage of incorrect parameter estimates in control charts, see [1]

for a recent discussion of this serious issue.

In order to alleviate such shortcomings of the aforementioned classical

methods we propose a new approach for constructing control charts

which does not average past observations and do not require paramet-

ric knowledge of the distribution of the process. In fact, the method

counts how many past data points fell into a rectangular box which

has a properly controlled width and height. The box moves together

with the most recently obtained observation which defines the right-

hand side of the rectangular. We call such a scheme as the Vertical Box

Control Chart (V-Box Chart). Moreover, the front position of the most

recent observation allows to detect jumps of a moderate size without

virtually any delay. Furthermore, unlike in the classical theory, the

V-Box Chart does not require the parametric knowledge of the under-

lying probability distributions. We refer, however, to [5] and [3] for

extensions of control charts to nonparametric cases, being understood

in the sense that no assumptions on the underlying distribution of the

error terms are made.

In this paper we are concerned with the change detection in a function
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which cannot be parametrized. Nevertheless, in our theoretical consid-

erations we shall focus on the change of the step form. The proposed

chart implicitly uses the general concept of vertically weighted regres-

sion (see [10], [11], [16], [12], [17]), but we do not need a general theory

of this notion. We also compare our method to the Shewhart control

chart not only due to its popularity but because it is also a technique

relying on the most recent observations. We refer to [2] for an exten-

sive discussion of the classical control charts. Furthermore in [8], [9],

[13] , [14], [15], [6] various aspects and extensions of the CUSUM and

Shewhart control charts are examined.

The paper is organized as follows. In Section 2 we introduce our verti-

cally weighted control chart and give a detailed description of its usage.

Section 3 examines an important issue of selecting a parameter which

controls the accuracy of the method, i.e., the parameter which can

reduce the probability of false alarm. In Section 4 we establish expo-

nential bounds on the probability of the false alarm and the probability

of not detecting the change. Finally Section 5 reports some simulation

results for the proposed control chart and in particular its performance

relative to the Shewhart chart.

2. Definition of V-Box Control chart

2.1. Model of observations. Let Yi, i = 1, 2, . . . , n be a sequence of

observations such that

(2.1) Yi = mi1q(i) + εi,

where εi’s are unobserved random errors, q > 0 is an unknown change

point, i.e., the discrete time point at which Yi’s change their distribu-

tion function. By definition

1q(i) =

{
0 i < q

1 i ≥ q
,
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mi, i = 1, 2, . . . n is unknown, but it is either nondecreasing or nonin-

creasing sequence of numbers. One may interpret the mi’s as equidis-

tant samples, mi = m(ti), for a hypothetical (unknown) quality char-

acteristic. This interpretation by no means being convenient is not

necessary for validity of the results presented in this paper.

Concerning random errors, we assume that εi are i.i.d. random vari-

ables with a distribution function which is symmetric with respect to

zero. Note that we do not assume the existence of any moments of εi’s.

For simplicity of exposition we assume the existence of a p.d.f. of εi’s,

denoted further by fε, but this assumption can be relaxed.

2.2. Definition of V-Box Control Chart. The proposed method of

detecting change point q is as follows.

Preparations: Assume that a certain number of observations has

been collected. Denote by n the index of the current observa-

tion.

• Choose L > 1, the number of past observations, which

are taken into account when deciding whether an out-of-

control state is reached or not. Define a box of the form

(2.2) B(L, H, n, Yn)
def
= [n − L, n] × [Yn − H, Yn + H ],

where H > 0 is the height of the box.

• Select H > 0 and 0 < θ < 1 in such a way that θL is

the fraction of observations Yn−L, . . ., Yn−1, Yn which are

”typically” in the box [n− L, L]× [Yn −H, Yn + H ], if the

process is in-control state (choice of L, H and θ is discussed

below in more details).

• Collect observations Y1, Y2, . . . , YL and set n = L + 1.

Step 1: Calculate the number bLH(n) of observations among Yn−1,

. . . , Yn−L which fell to box B(L, H, n, Yn). Thus,

bLH(n) = Card{Yn−j ∈ B(L, H, n, Yn), j = 1, 2, . . . L},
where Card denotes the cardinality of a set. Note that Yn is

always in B(L, H, n, Yn) but it is not included in bLH(n).

Step 2: If bLH(n) > θL, then increase n by one and go to Step 1.

Step 3: If bLH(n) ≤ θL, then stop and signal out-of-control state.
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Figure 1. A sketch of performance of V-Box Chart

for an unobserved (hypothetical) quality characteristic

of the underlying process (fat line) and given observa-

tions (fat dots) for parameter values L = 4, θ = 0.5.

Left box: in-control behavior, right box: out-of-control

state is signaled.

Thus, the stopping time has the form

(2.3) N(L, H, θ) = inf
n
{n : bLH(n) ≤ θL},

which is the first time index when a signal is occurring.

The performance of the above proposed chart is schematically shown

in Fig. 1. Intuitive explanation of how the V-Box Chart works is the

following.

(1) If the underlying process is in-control state, then most of the

observations Yj with time indexes j ∈ {n, n − 1, . . . n − L} are

contained in box B(L, H, n, Yn) and an alarm is not signaled,

since condition bLH(n) > θ(L + 1) holds for any reasonable

chosen 0 < θ < 1 and H > 0. A false alarm can be signaled, if

either Yn is an outlier observation and θ is too small or random

errors have relatively large variance and H is chosen too small.

(2) If the process runs out-of-control at time q and the jump m(tq)−
m(tq−1) is relatively large, then the box B(L, H, q, Yq) contains

relatively small number of observations with time indexes j ∈
5



{q, q − 1, . . . q − L}. Thus condition bLH(n) ≤ θ(L + 1) holds

and out-of-control state is signaled. In the most favorite case,

box B(L, H, q, Yq) contains only one observation, namely, Yq.

(3) If it happens that the jump is not detected in time q (due to

unfavorable random pattern of errors εi’s), then the chart can

detect it in later time instants, q + 1, q + 2, . . .. However, if after

q the out-of-control state is constant (m(t) is a step function),

then the chart can detect it not later than q + �θL�, since after

that time the chart treats the state after the jump as ”normal”.

In other words, by increasing L we increase the probability of

detecting jump, if it was not detected immediately.

(4) The long memory L of the chart stabilizes its in-control behav-

ior, but for practical reasons L can not be too large, since the

first L observations are lost for detecting out-of-control states.

A practical way of overcoming the last difficulty is to use smaller L at

the beginning of the observation process and then enlarge it gradually

with time. Nevertheless, for theoretical purposes we will consider the

case L → ∞.

It is worth noting that our V-Box Chart resembles charts for p-charts

for detecting changes in the frequency (see [19] for a recent bibliography

on this subject). Nevertheless, our chart detects changes in the mean

by counting events in a vertically and horizontally wandering box.

3. Selecting θ

Assume that errors have a finite support, εi ∈ [−Z, Z] a.s. for a

certain Z > 0. Assume also that for certain constants 0 < C0 ≤ C1 <

∞ the p.d.f. fε of the error terms fulfils

(3.1) C0 ≤ fε(x) ≤ C1, x ∈ [−Z, Z].

Clearly, C0 ≤ 1/(2Z) and C1 ≥ 1/(2Z).

Denote by P{Yn−j ∈ B(L, H, n, Yn) | InC} the probability that the

(n − j) − th observation is in the box B(L, H, n, Yn), j = 1, 2, . . . L,

assuming that the process was in the in-control state in time instants

n, n − 1, . . . ,n − L, what is denoted by the symbol InC .

The following two lemmas are important for our future considerations.
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Lemma 3.1. Assume 0 < H ≤ 2 Z. Assuming that for fε conditions

(3.1) hold, define p(H, Z) = C2
0 (4HZ − H2). Then, we have for j =

1, 2, . . . , L

(3.2) P{Yn−j ∈ B(L, H, n, Yn) | InC} ≥ p(H, Z).

Furthermore,

(3.3) 0 < p(H, Z) ≤ H

Z
− H2

4Z2
< 1.

The equality in (3.2) is attained for the distribution uniform in [−Z, Z]

and then

(3.4) P{Yn−j ∈ B(L, H, n, Yn) | InC} =
H

Z
− H2

4Z2
.

Proof. Denote by P{Yn−j ∈ B(L, H, n, Yn) | InC, Yn = y} the

probability of finding Yn−j in B(L, H, n, Yn), providing that Yn = y.

Then,

(3.5) P{Yn−j ∈ B(L, H, n, Yn) | InC, Yn = y} =

∫ y+H

y−H

fε(t)dt ≥

C0 [− ((H − y + Z) 1(−H + y − Z)) − (H + y − Z) 1(H + y − Z) +

+ (H − y − Z) 1(−H + y + Z) + (H + y + Z) 1(H + y + Z)]

Denote by F (y, Z, H) the r.h.s. of (3.5). Then,

(3.6) P{Yn−j ∈ B(L, H, n, Yn) | InC} ≥
∫ Z

−Z

F (y, Z, H)fε(y)dy ≥

C0

∫ Z

−Z

F (y, Z, H)dy = C2
0

(
4HZ − H2

)
. •

The case considered in Lemma 3.1 is depicted in Fig. 2 – left box. The

right box in this figure corresponds to the next lemma.

Denote by P{Yq−j ∈ B(L, H, q, Yq) | OutC} the probability that (q −
j) − th observation is in box B(L, H, q, Yq), j = 1, 2, . . . L, assuming

that the process was in the in-control state in time instants q − 1, . . .

,q − L, and in q it changes to the out-of-control state, what is marked

by OutC. The scenario of switching between these states is assumed

to be a · 1q(i).
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Figure 2. A sketch of performance of V-Box chart for

step like change from in-control to out-of-control state.

Dotted lines are boundaries of errors, assuming that their

distribution has a finite support.

Lemma 3.2. Assume 0 < H ≤ Z, H < a and (3.1). Depending on

the jump height a we have for j = 1, 2, . . . , L the following bounds.

A) If |a| > 2 Z + H, then

(3.7) P{Yq−j ∈ B(L, H, q, Yq) | OutC} = 0.

B) If 2 Z − H < |a| ≤ 2 Z + H, then

(3.8) P{Yq−j ∈ B(L, H, q, Yq) | OutC} ≤ C2
1

(−|a| + H + 2 Z)2

2
.

C) If |a| ≤ 2 Z − H, then

(3.9) P{Yq−j ∈ B(L, H, q, Yq) | OutC} ≤ 2 C2
1 H (2 Z − |a|).

Thus, for every a ∈ R we have

(3.10) P{Yq−j ∈ B(L, H, q, Yq) | OutC} ≤ C2
1

(−|a| + H + 2 Z)2

2
.

The equalities in (3.8) and (3.9) are attained for the distribution uni-

form in [−Z, Z] if we set C1 = 1/(2 Z).
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Proof. For the probability P{Yq−j ∈ B(L, H, q, Yq) |OutC, Yq = y},
given Yq = y, we have similar expressions as (3.5), since for j = q −
1, q − 2, . . . the process is still in-control state. Thus,

(3.11) P{Yq−j ∈ B(L, H, q, Yq) |OutC, Yq = y} =

∫ y+H

y−H

fε(t)dt ≤

≤ C1

C0
F (y, Z, H) ,

where F is the same as in the proof of Lemma 3.1 and the unconditional

probability is bounded by

(3.12) P{Yq−j ∈ B(L, H, q, Yq) |OutC} ≤ C2
1

C0

∫ a+Z

a−Z

F (y, Z, H) dy =

C2
1

2

[−4 H (a − 2 Z) − (−a + H + 2 Z)2 1(a − H − 2 Z)

+ (a + H − 2 Z)2 1(a + H − 2 Z)
]
.

¿From (3.12) we obtain:

– P{Yq−j ∈ B(L, H, q, Yq) |OutC} = 0 for a large jump |a| > 2Z + H ,

– inequality (3.8) for a moderate jump 2 Z − H < |a| ≤ 2 Z + H ,

– inequality (3.9) for a small jump |a| ≤ 2 Z − H .

This completes the proof, since (3.10) follows by comparing cases A), B)

and C). Also the last statement can be verified by direct computation.

•
Remark 3.3. The above can be carried for showing the following lower

bound

(3.13) P{Yq−j ∈ B(L, H, q, Yq) | OutC} ≥ C2
0

(−|a| + H + 2 Z)2

2
,

where C0 is the constant defined in (3.1).

Define the following function

(3.14) r(H, Z, a) =




0 if |a| > 2Z + H

2 C2
1 H (2 Z − |a|) if |a| ≤ 2 Z − H

C2
1

2
(−|a| + H + 2 Z)2 in other cases.

Then, the statement of Lemma 3.2 can be rewritten as follows

(3.15) P{Yq−j ∈ B(L, H, q, Yq)|OutC} ≤ r(H, Z, a), j = 1, 2, . . . L .
9



¿From (3.14) it follows that selecting H > 0 sufficiently small one can

force r(H, Z, a) to be close to zero. On the other hand, selecting H

sufficiently close to 2 Z we can force p(H, Z) to be close to 1. Addi-

tionally, one can verify directly that for uniformly distributed εi’s we

have r(H, Z, a) < p(H, Z).

The above considerations justify the following choice of θ

(3.16) r(H, Z, a) < θ < p(H, Z) .

These inequalities are sufficient for theoretical results that are devel-

oped in the next section.

For practical applications it is expedient to give more precise indica-

tions concerning the choice of θ. This is possible if we know the type

of errors distribution. Below, we give such indications for the errors

uniformly distributed in [−Z, Z] for which (3.16) is fulfilled if we take

θ such that

(3.17)
(−|a| + H + 2 Z)2

8 Z2
< θ <

H

Z
− H2

4Z2
.

Introducing the normalized variables h
def
= H/Z and J

def
= |a| /Z, one

can write (3.17) equivalently as

(3.18)
(2 + h − J)2

8
< θ < h − h2

4
.

The area in (h, θ) plane, which are admissible in the sense (3.18) is

plotted in Fig. 3 (left panel) for J = 1.

As one can notice, the admissible area still provides a freedom in

selecting (h, θ). Let us note that the left and the right hand sides

of the inequalities in (3.18) are bounds for p and r, respectively, i.e.,

the bounds for the probability that an observation is in B(L, H, n, Yn)

for in-control and out-of-control states. In order to ensure better dis-

tinguishability of these states it is desirable to have a large difference

between these bounds, since it pushes away also probabilities p and r.

In the r.h.s. panel of Fig. 3 the difference p − r versus h is plotted

for different normalized jump heights J . Existence of h for which this

difference is maximized and its dependence on J are clearly visible.
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Figure 3. Left panel: An example of the area for which

inequalities (3.17) for θ hold for J = 1 .

Right panel: Difference between bounds p(H, Z) −
r(H, Z, a) as a function of h parametrized by J .

4. Bounds on Errors of V-Box chart

Our aim in this section is to derive exponential bounds on the prob-

abilities:

• of signaling out-of-control state when the process is in the in-

control situation,

• of not signaling immediately that the process is out-of-control.

We need the following Chernoff’s bounds (see [4] for the proof), which,

in slightly different notation than in [4], have the form.

Lemma 4.1. A) Let b be a binomial random variable with parameters:

L > 1 – the number of trials and 0 < � < 1 – the success probability in

one trial. Then, for 1 > θ > � > 0,

(4.1) P{b > L θ} ≤ exp

{
−L

[
θ log

θ

�
+ (1 − θ) log

1 − θ

1 − �

]}
≤

≤ exp {−L [� − θ + θ log(θ/�)]} .

B) Let β be a binomial random variable with parameters: L > 1 – the

number of trials and 0 < � < 1 – the success probability in one trial.

Then, for 1 > � > θ > 0,

(4.2) P{β < L θ} ≤ exp

{
−L

[
θ log

θ

�
+ (1 − θ) log

1 − θ

1 − �

]}
≤

≤ exp {−L [� − θ + θ log(θ/�)]} .
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Note that apparent similarity between (4.2), (4.1) follows from the

fact that if β is a binomial r.v. with parameters L and �, then L − β

is a binomial r.v. with parameters L and 1 − �.

4.1. In-control behavior. Consider the probability of false alarm in

n-th step, providing n > L. According to Step 3 of V-Box Chart, this

event occurs if bLH(n) ≤ θ L, provided that the process is in-control

state. Note that bLH(n), being the number of observations captured in

box B(L, H, n, Yn), is a binomial r.v. with the probability of success in

one trial equal to

(4.3) �(L, H)
def
= P{Yn−j ∈ B(L, H, n, Yn) | InC}

and L being the number of trials. In (4.3) we have dropped time

index n, since random variables bLH(n), n = L + 1, L + 2, . . . form a

stationary sequence, provided the the process is in-control state. Thus,

for the probability of false alarm we have

(4.4) P{bLH(n) ≤ θ L | InC} ≤ P{bLH(n) < θ (L + 1) | InC} ≤

exp {−(L + 1) [�(L, H) − θ + θ log(θ/�(L, H))]} ,

where the last inequality follows from part B) of Lemma 4.1. Note that

the assumption 1 > �(L, H) > θ > 0 of this lemma holds, since by

(4.3) and (3.16) we have

(4.5) �(L, H) ≥ p(H, Z) > θ .

Theorem 4.2. Let assumptions of Lemma 3.1 hold and let θ be selected

according to (3.16). Then, for n > L the probability of false alarm in

n-th time instant does not depend on n. This probability is further

denoted by P(θ, L, H) and we have

(4.6)

P(θ, L, H) ≤ exp {−(L + 1) [�(L, H) − θ + θ log(θ/�(L, H))]} .

Furthermore, P(θ, L, H) can be made arbitrarily close to zero by select-

ing L sufficiently large.

Proof. Inequality (4.6) was proved above. To justify the second

statement it suffices to prove that the function in the square brackets in
12



(4.6) is positive. This follows immediately, since this function is equal

to

�(L, H)−θ

(
1 + log

(
�(L, H)

θ
)

))
> �(L, H)+θ

(
−�(L, H)

θ

)
= 0,

where we have used the elementary inequality −(1+log(x)) > −x valid

for x > 0 and x �= 1, substituting in it x = �(L,H)
θ

> 1. •
Corollary 4.3. Under assumptions of Thm. 4.2 the in-control averaged

run length of V-Box Chart, calculated for time instants starting from

n = L + 1, is not smaller than

(4.7) exp {(L + 1) [�(L, H) − θ + θ log(θ/�(L, H))]}
and it can be made arbitrarily large by selecting L large enough.

Proof. Let us shift the origin of the time scale to the point n = L

and let new time index k equals zero for n = L. Denote by Qk the

probability that the false alarm is signaled exactly at time k > 1 and

it was not signaled at time instants k − 1, k − 2, . . . , 1. Let Q(j, j − 1)

be the probability that the alarm was not signaled exactly at time j

conditioned on the event that it also was not signaled at time (j − 1).

Then, Qk depends on the probability of false alarm appearing at time

k and on the probability that it was not signaled at times k − 1, k −
2, . . . , 1, which can be calculated by subsequent conditioning. These

yield

(4.8) Qk = P(θ, L, H)
k−1∏
j=1

Q(j, j − 1), k = 2, 3, . . .

Now, Q(j, j − 1), being the conditional probability, is not smaller than

the unconditional probability that the alarm is not signaled at time

j, which equals to 1 − P(θ, L, H) (see Thm. 4.2). This fact and (4.8)

imply

(4.9) Qk ≥ P(θ, L, H) (1 − P(θ, L, H))k−1 .

The r.h.s. of this inequality is formally the geometric distribution with

parameter P(θ, L, H). The expectation of a random variable with this

distribution equals 1/P(θ, L, H), what finishes the proof by invoking

(4.6). •
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We refer the reader to [7] for the discussion on relationships between a

single alarm probability and the average run length.

4.2. Out-of-control behavior. In the same vain as above one can

analyze the probability of not detecting a jump of the process qual-

ity exactly at time instant q when it occurred. We shall denote this

probability by R(H, Z, a).

Assume that the process runs out-of-control at time q, where q > L.

Then, according to Step 2 of V-Box Chart the alarm is not signaled

immediately if bLH(q) > θ L. Thus,

(4.10) R(H, Z, a) = P{bLH(q) > θ L|OutC} .

bLH is a binomial r.v. with L as the number of trials and

(4.11) �(H, Z, a)
def
= P{Yq−j ∈ B(L, H, q, Yq)|OutC} , j = 1, 2, . . . L

as the probability of ”success” in one trial, where we have used the fact

that P{Yq−j ∈ B(L, H, q, Yq) |OutC} , j = 1, 2, . . . L does not depend

on j. According to (3.15) and (3.16) we have

(4.12) �(H, Z, a) < r(H, Z, a) < θ ,

what allows to apply part A) of Lemma 4.1 for evaluating P{bLH(q) >

θ L|OutC} and we obtain.

Theorem 4.4. Let assumptions of Lemma 3.2 hold and let θ be selected

according to (3.16). Then, for q > L

(4.13) R(H, Z, a) ≤ exp {−L [�(H, Z, a) − θ + θ log(θ/�(H, Z, a))]} .

Furthermore, R(H, Z, a) can be made arbitrarily small by selecting L

large enough.

Proof. We need only to prove that for �(H, Z, a) < θ we have

(4.14) �(H, Z, a) − θ + θ log(θ/�(H, Z, a)) > 0.

This follows from the following elementary considerations in which the

arguments of � are dropped

(4.15) �−θ + θ log(θ/�) = θ
[�

θ
−

(
log

(�

θ

)
+ 1

)]
> θ

[�

θ
− �

θ

]
= 0,
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where we have used the elementary inequality −(log(x) + 1) > −x,

valid for x �= 1 and substituting x = �
θ

< 1. •
Remark 4.5. Let us note that the exponent on the right hand side of

(4.13) is a monotonically increasing function of �(H, Z, a). Therefore,

we can replace �(H, Z, a) by the expression given in Remark 3.3, yield-

ing a simple upper bound for R(H, Z, a).

Remark 4.6. R(H, Z, a) is the probability of the signal has not ap-

peared immediately after the change point. If one wants to evaluate

the joint probability of signaling in a sequence of later time instances,

then one should proceed as in the proof of Thm. 4.2, using the condi-

tioning technique.

Remark 4.7. The main results of this paper have been obtained under

the assumption that the support of errors is compact. This assumption

can be relaxed to the unbounded support case. In fact, if fε(t) is

symmetric around t = 0 and monotonic for t > 0, then Lemma 3.1

takes the following form

P{Yn−j ∈ B(L, H, n, Yn) ≥ 4 H

∫ ∞

0

fε(y + H) · fepsilon(y) dy.

In the case of fε = N(0, σ2) we have

P{Yn−j ∈ B(L, H, n, Yn) ≥ (2/
√

π) · h exp(−h2/4)[1 − Erf(h/2)],

where h = H/σ, while Erf(z) = 2√
π

∫ z

0
e( − t2) dt.

4.3. Further remarks on ARL. In contrast to the Shewhart chart

we do not have simple expressions for the ARL of the V-Box chart.

Whereas the Shewhart chart follows a geometric distribution, the V-

Box chart uses the most recent L data points at each time point. Thus,

the time windows overlap and the sequence of signals is no longer a

sequence of independent Bernoulli trials. In the following we propose

a simple modification of the V-Box design for which simple formulas

for the ARL can be derived.

The basic idea is to apply a modified version of the V-Box chart

only at each L-th data point. The modified version tries to guess

the decision of the V-Box chart but uses only the data located in the
15



current time window. Notice that in most instances when the V-Box

chart gives a signal, the observation corresponding to the position of

the signal is the maximum of the most recent L observations located

in the box. This means, in this case the most recent L data points

before a maximum are checked whether they are located in the box.

We mimic that situation by checking only data points prior to the

maximum. The r-th application of the modified chart occurs at the

time point n = rL, r an integer. Define Xi = Yn−L+i−1, i = 1, . . . , n,

and let X(1) ≤ · · · ≤ X(n) denote the order statistic. Let m∗ be the

position of the maximum, i.e., Xm∗ = X(n) and consider

b∗LH(n) = Card{X(i) ∈ B(L, H, m∗, Xm∗), i = 1, . . . , m∗ − 1}.
We now compare b∗LH(n) at time points n = rL + 1, r ∈ N , with m∗L,

and give a signal, if the proportion of values in the box is less than θ,

i.e.,

R∗ = inf{r − 1 : r ∈ N, b∗LH(rL + 1) ≤ θ · m∗}.
Then, E(R∗) = 1/�∗(L, H) − 1, where

�∗(L, H)
def
= P{b∗LH(L + 1) ≤ θ · m∗|InC} .

Note that R∗ gives a signal if the proportion of data points before the

maximum is less or equal L, and therefore our guess of the run length

of V-Box chart is

N∗ = R∗L + 1.

Clearly, we have the in-control ARL

E(N∗) = L(�∗(L, H)−1 − 1) + 1.

5. Simulations

The Vertical Box Control Chart was compared to the Shewhart

Chart, in which the alarm state is signaled if |Yn| > CS, where CS > 0

is a constant selected in such a way that an in-control average run

length (ARL) is not smaller than selected by the statistician.

As a model of in-control behavior we take N(0, σ), i.e. zero mean

gaussian errors with dispersion σ = 0.25. The change from in-control
16



0.9 1.1 1.2 1.3 1.4 1.5

0.05

0.1

0.15

0.2

0.25

ARL Out -of -Control

Shewart

BoxC

Figure 4. Out-of-control ARL of V-Box chart and the

Shewhart chart as a function of the jump height a.
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Figure 5. Empirical frequency of detecting the jump

with zero delay versus its height a for V-Box and the

Shewhart charts.

to out-of-control scenario was modeled as a simple step function with

height a, which is corrupted by N(0, σ) errors.

Both charts were tuned to in-control average run length (ARL) equal

to 100. This resulted in CS = 0.675 for the Shewhart chart and in

H = 0.675, θ = 0.6, L = 25 for V-Box chart. The charts were tuned

by averaging 104 runs.

Then, both charts were tested for detecting the step jump of height

a > 0 hidden in N(0, σ) noise. The resulting out-of-control ARL are

plotted in Fig. 4. As one can notice, out-of-control ARL of the both

charts is, with the accuracy of simulations, the same for a wide range of
17



jumps heights. On the other hand, Fig. 5 indicates that the frequency

of detecting the jump exactly at the time of its occurrence is visible

larger for V-box chart than for the Shewhart chart.

6. Concluding remarks

In the above, V-box chart was investigated as a chart for detecting

step like changes in the process mean. It is however apparent from

the construction of the chart that it can also be used for monitoring

more general changes of non-parametric nature. One can also expect

that V-box chart is robust against outliers of a moderate size. The

discussion of these aspects is outside the scope of this paper.

Our approach can easily be generalized to smooth counting function,

by replacing statistics bLH(n) with

L∑
j=1

V

(
Yn−j − Yn

H

)

for a general class of window functions V (t). The choice V (t) =

1[−1,1](t) gives the method considered in this paper.
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