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Abstract. Today, large collections of digital music plays are available.
These audio data are time series which need to be indexed and classi-
fied for diverse applications. Indexing and classification differs from time
series analysis, in that it generalises several series, whereas time series
analysis handles just one series a time. The classification of audio data
cannot use similarity measures defined on the raw data, e.g. using time
warping, or generalise the shape of the series. The appropriate similar-
ity or generalisation for audio data requires feature extraction before
classification can successfully be applied to the transformed data. Meth-
ods for extracting features that allow to classify audio data have been
developed. However, the development of appropriate feature extraction
methods is a tedious effort, particularly because every new classification
task requires to tailor the feature set anew. Hence, we consider the con-
struction of feature extraction methods from elementary operators itself
a first learning step. We use a genetic programming approach. After the
feature extraction, a second process learns a classifier from the trans-
formed data. The practical use of the methods is shown by two types of
experiments: classification of genres and classification according to user
preferences.

1 Introduction

Since music has become distributed via the internet and is stored in digital form,
there is a need for the management and retrieval of audio data. How can we index
large numbers of audio records? How can we structure music databases according
to genre(e.g., classic, pop, hip hop) or occasions(e.g., dinner, party, wedding)?
How can a system automatically recommend users music records which they
might like? Information retrieval has started several efforts to automatic indexing
[11] and retrieval (e.g., querying by humming [2]). For classification, machine
learning encounters a new challenge of scalability, when confronted with music
data:

— Music databases store millions of records.
— Given a sampling rate of 44100 Hz, a three minute music record has the
length of about 8 - 105 values.



Moreover, current approaches to time series indexing and similarity measures
rely on a more or less fixed time scale [7,8]. Music plays, however, differ consid-
erably in length. More general, time series similarity is determined with respect
to some (flexible and generalized) shape of curves [18,6]. However, the shape
of the audio curve does not express the crucial aspect for classifying genres or
preferences. The i-th value of a favourite song has no correspondence to the
i-th value of another favourite, even if relaxed to the (i & n)-th value. The deci-
sive features for classification have to be extracted from the original data. Some
approaches extract features from music in form of Midi data, i.e. a transcrip-
tion according to the 12 tone system [13] 1. This allows to include background
knowledge from music theory. The data are given, however, in the form of —
possibly compressed — waves records, the audio data. Hence, feature extraction
from audio data has become a hot topic recently [12,19, 3, 16]. Several special-
ized extraction methods have shown their performance on some task and data
set. It is now hard to find the appropriate feature set for a new task and data set.
In particular, different classification tasks ask for different feature sets. It is not
very likely that a feature set delivering excellent performance on the separation
of classical and popular music works well for the separation of techno and hip
hop music, too. Classifying music according to user preferences even aggravates
the problem. If there were a concise set of feature extraction methods, one could
adopt the wrapper approach [10] in order to select the subset of features which is
well suited for the given classification task. However, such a concise set does not
exist and if it would, it would be extremely large. Therefore, we propose another
procedure. Given some elementary operators, genetic programming constructs
methods which are (nested) sequences of operators.

In this paper, we illustrate some operators and how they are combined to
become extraction methods in Section 2. Section 3 describes the genetic program-
ming approach to learning the feature extraction methods. The search within the
universe of methods is guided by a fitness function. Here, we embed a classifica-
tion learner: the better the learning result using the transformed data, the higher
the fitness of the feature set (i.e., the extraction method). Genetic programming
puts together the building blocks of feature extraction operators according to the
targeted classification task and data set. It outputs a feature extraction method.
Applying the method to the given audio data delivers a transformed data set,
i.e., the examples rewritten by the corresponding feature set. This becomes the
input to a second learning step, namely classifier learning. Figure 1 shows the
overall process with the two learning steps, one using genetic programming, the
other using the support vector machine mySVM [15] for classifier learning.

The approach is tested on the learning tasks of genre classification and user
preferences (Section 4).

! For an overview, see [14].
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Fig. 1. The overall process of automatic feature construction for classification

2 Operators and methods for feature extraction

Audio data are time series, where the y-axis is the current amplitude correspond-
ing to a loudspeaker’s membrane and the x-axis corresponds to the time. They
are univariate, finite, and equidistant. We may generalize the type of series which
we want to investigate to value series. Each element z; of the series consists of
two components. The first is the index component, which indicates a position on
a straight line (e.g., time). The second component is a m-dimensional vector of
values which is an element of the value space.

Definition 1 (Value series) A value series is a mapping z : IN — R x IC™
where we write x,, instead of x(n) and (x;)icq1,...ny for a series of length n.

This general definition covers time series as well as their transformations. All
the methods under consideration here refer to value series. They are not only
applicable to audio data, but to value series in general. All that is required is
the definiton of a scalar product for the space.

We structure the set of elementary operators as follows:

Basis transformations map the data from the given vector space into another
space, e.g. frequency space, function space, phase space. The most popular
transformation is the Fouries analysis.

Filters transform elements of a given series to another location within the same
space. Moving average or exponential smoothing are examples of filters.
Mark-up of intervals corresponds to the mark-up of text fragments in that it

annotates segments within a value series.

Generalized windowing is required by many methods for feature extraction.
We separate the windowing from the functions applicable to values within
the windows.

Functions calculate a single value for a value series. Typical examples are av-
erage, variance, and standard deviation.

Let us give some examples of the operators. Since the group of mark-up
operators is newly introduced, a definition is given.
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Fig. 2. The process of finding intervals in a series (a), first in the value dimension (b),
then projected on the index dimension (c), delivering (d).

Definition 2 (Mark-up) A mark-up M : S — C assigns a characteristic C to
a segment S.

Definition 3 (Interval) An interval I : S — C is a mark-up within one di-
mension. The segment S = (d,s,e) is given by the dimension d, the starting
point s, and the end point e. The characteristic E = (t, 0) indicates a type t and
a density o.

Operators finding intervals in the value dimension of a value series can be com-
bined with the mark-up of intervals in the time (i.e. indexing) dimension. For
instance, whenever a interval change in the value dimension has been found, the
current interval in the index dimension is closed and a new one is started. Figure
2 illustrates this combination.

Many known operators on times series involve windowing. Separating the
notion of windows over the index dimension from the functions applied to the

values within the window segment allows to construct many operators of the
kind.

Definition 4 (Windowing) Given the series (T;)ic{1,....n}, @ transformation
is called windowing, if it shifts a window of width w using a step size of s and
calculates in each window the function F':

Yj = F((mi)ie{jﬁ,...,j-s—&-w})
All y; together form again a series (y;)jcq1,....(n—w)/s+1}-
Definition 5 (General windowing) A windowing which performs an arbi-

trary number of transformations in addition to the function F is called a general
windowing.



The function F' summarizes values within a window and thus prevents general
windowing from enlarging the data set too much. Since the size of audio data
is already rather large, it is necessary to consider carefully the number of data
points which is handled more than once. The overlap of a general windowing
with step size s and width w is defined as g = w/s. Only for windowings with
overlap ¢ = 1 the function can be omitted. Such a windowing only performs
transformations for each windows and is called piecewise filtering. Combining
general windowing with the mark-up of intervals allows to consider each interval
being a window. This results in an adaptive window width w and no overlap. Of
course, this speeds up processing considerably.

The elementary operators can be combined so that methods of feature extrac-
tion are expressed. For audio data, the spectral flatness measure or the spectral
crest factor can be expressed as an arithmetic combination of simple functions
[5]. The mel-frequency cepstral coefficients can be constructed as a general win-
dowing, where the frequency spectrum of the window is calculated, its logarithm
is determined, a psychoacoustic filtering is performed, and the inverse Fourier
transformation is applied to the result. Figure 3 shows how the operators for
feature extraction are put together to form the cepstral coefficients. From these
coefficients additional features can be extracted. It is seen how easily new, sim-
ilar methods can be generated, e.g., replacing the frequency spectrum and its
logarithm by the gradient of a regression line.
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Fig. 3. Constructing the cepstral method from elementary extraction operators

3 Automatic construction of method trees

The elementary operators described above are combined in order to construct
methods that extract features for classification tasks. Figure 3 already showed
how elementary operators can be used for the reconstruction of known complex
feature extraction methods. In addition, an example of a similar method com-
bining different elements was given. There are many complex feature extraction
methods which can be built using the operators. For instance, the general win-
dowing may apply a Fourier transformation so that the peaks of the transformed



can be related with windows in time:

Yj = MaXindex (FT({xi}ie{j-s7...,j-s+w})))

The result is a value series, where the value of y; denotes the highest frequency
for each window. From this series, the average and variance is built, yielding a
good feature for the separation of techno and pop music — the variance is greater
in pop music.
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Fig. 4. Automatic feature extraction using genetic programming.

It is rather cumbersome to find such combinations that perform well for a
classification task. We are looking for chains of method applications. Moreover,
there might be some windowing within which such chains are applied. This
search space is too large to be inspected manually. Hence, genetic programming
is applied in order to look for the best combination of methods [4]. The result is
a complex method. Its use for the classifier learning will be shown in Section 4.

In order to structure the huge search space, we may separate functions, chains
of method applications, and general windowing, where a chain of method appli-
cations is applied to each window.

Definition 6 (Chain) A chain consists of an arbitrary number of transforma-
tions and a function at the end.

A function is a chain with no transformations. It has the length 1. A longer
chain consists of some transformations followed by a function. In any case, a
chain delivers one value.

Definition 7 (Method tree) A method tree is a general windowing whose chil-
dren build a chain. If the chain entails a windowing, this becomes the root of a
new, embedded method tree.
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Fig.5. A method tree for feature extraction built of elementary methods. Dashed
arrows show the data flow, solid lines define the tree structure.

The methods which are performed on each window can be seen as children of
the windowing operator. Together they output a value series. The tree structure
emerges from the nesting of windowing operators.

An example of a method tree is shown in Figure 5, where the root identifies
the element within the search space. Its four children are exponential smoothing,
a filtering, another method tree consisting of the chain just described (Fourier
transformation with peaks applied to windows), and the average of the peaks.
This last child returns the desired features.

Before the genetic programming approach is technically described, Figure 4
presents the process of automatically extracting features for a given classification
task and data set. The picture details on the first box of Figure 1 above which
shows the overall process. The search space within which the best method tree is
to be found is called the universe of method trees. A population is a set of method
trees. The navigation within the universe of method trees is a cycle of selecting
a population, applying the method trees to the raw data, evaluating the fitness
of the population, and enhancing the fittest method trees further to become
a new population. This cycle corresponds to the standard process of genetic
programming. What differs from the standard is that method trees instead of
binary vectors form the search space, that the search space is structured, and
that the fitness evaluation is not merely a function but the result of running
another learning algorithm.

Genetic programming constructs finite automata. Here, method trees are to
be constructed. They are represented by XML expressions. Figure 6 shows the
representation of the method tree from Figure 5. The YALE system executes
such trees and takes care of the syntactic well-formedness.

The restriction that chains are concluded by a function implies a level-wise
structure of all possible method trees. The lowest level 1 entails only functions.
These are chains of length 1. The next level, 2, covers chains with a concluding
function. Levels 3 and above entail windowing. Method trees are constructed
according to their levels. The level-wise growing means small changes to a current
method tree. On the one hand, this reduces the probability of missing the optimal



<operator name="Root" class="ValueSeriesPreprocessing">
<operator name="Chain 1" class="OperatorChain">
<operator name="ExpSm" class="ExponentialSmoothing" />
<operator name="Filter" class="FilterTransformation" />
<operator name="Windowing" class="Windowing">
<parameter key="overlap" value="2"/>
<operator name="Chain 2" class="OperatorChain">
<operator name="FFT" class="FastFourierTransform" />
<operator name="MaxIndex" class="MaxIndexPoint" />
</operator>
</operator>
<operator name="Avg" class="AverageFunction" />
</operator>
</operator>

Fig. 6. XML method tree representation for YALE.

method tree. On the other hand, it may slow down the search, if the fitness of
the lower levels does not distinguish between good and bad method trees.

The operations of genetic programming are mutation and crossover. By ran-
dom, mutations insert a new method, delete a method, or replace a method by
one of the same class, i.e. by a function or transformation. Crossover replaces a
sub-tree from one method tree by a sub-tree from another method tree, regard-
ing the well-formedness conditions. That means, that the roots of the sub-trees
must be of the same type of methods.

For selection purposes, the fitness of all method trees is expressed by a roulette
wheel, i.e. fitness proportional parts of a wheel’s 360 degrees. The larger the
portion, the more likely it becomes that the particular individual is selected
for the next generation or crossover. Since method trees serve classification in
the end, the quality of classification is the ultimate criterion of fitness. Each
individual method tree is applied to the raw data. This method application
returns a transformed data set, which is used by classifier learning. A k-fold
cross validation is executed. The mean accuracy, recall, and/or precision of the
result becomes the fitness value of the applied feature construction method tree.

4 Classification using learned method trees

Automatic feature construction aims at good results of a second learning step
which uses the features, namely classifier learning. Remember Figure 1 from the
introduction, where genetic programming were shown to deliver the input to
classifier learning. Now, we describe the second step, namely classifier learning.
Feature construction is already guided by the classification task in that cross-
validated learning determines the fitness of method trees (individuals of genetic
programming). Now, also feature selection is performed by a simple evolutionary
method, namely the (1+1)EA [1]. Again, the classification task decides upon



Classic/pop Techno/pop Hiphop/pop

Accuracy 100% 92,89% 82, 33%
Precision 100% 94, 00% 84, 15%
Recall 100% 92,64% 78, 44%
Error 0% 7,11% 17,62%

Table 1. Classification of genres

the fitness. The feature set is built using a subset of the training data. The
selected method trees are then applied to all the training data. The support
vector machine mySVM is applied to these rewritten data and learns a classifier.

4.1 Classifying genres

Since results are published for the genre classification task, we have applied our
approach to this task, too. Note, however, that no published benchmark data
sets exist. Hence, the comparison can only show that feature construction and
selection leads to similar performance as achieved by other approaches. For the
classification of genres, three data sets have been built.

— Classic/pop: 100 pieces for each class were available in Ogg Vorbis format.

— Techno/pop: 80 songs for each class from a large variety of artists were
available in Ogg Vorbis format.

— Hiphop/pop: 105 songs for each class from few records were available in MP3
format with a coding of 128 kbits/s.

The classification tasks are of increasing difficulty. Using mySVM with a linear
kernel, the performance was determined by a 10-fold cross validation and is
shown in Table 1. Concerning classic vs. pop, 93% accuracy, and concerning
hiphop vs. pop, 66% accuracy has been published [16,17].

41 features have been constructed for all genre classification tasks. For the
distinction between classic and pop, 21 features have been selected for mySVM
by the evolutionary approach. Most runs selected features referring to the phase
space (angle and variance). For the separation of techno and pop, 18 features
were selected for mySVM, the most frequently selected ones being the filtering of
those positions in the index dimension, where the curve crosses the zero line. For
the classification into hiphop and pop, 22 features were selected with the mere
volume being the most frequently selected feature. It starts with the length of
the songs. Experiments with naive Bayes and k-NN did not change the picture:
an accuracy of about 75% can easily be achieved, increasing the performance
further demands better features.

4.2 User preferences

Recommendations of songs to possible customers are currently based on the cor-
relation of records, user who bought record A frequently also bought record B.



User; Users; Userz Usery
Accuracy 95,19% 92, 14% 90, 56% 84, 55%
Precision 92,70% 98, 33% 90, 83% 85,87%
Recall  99,00% 84,67% 93,00% 83, 74%
Error 4,81% 7,86% 9,44% 15,45%
Table 2. Classification according to user preferences

This collaborative filtering approach ignores the content of the music. A high cor-
relation is only achieved within genres, because the preferences traversing a type
of music are less frequent. The combination of favourite songs into a set is a very
individual and rare classification. It is not a generalization of many instances.
Therefore, the classification of user preferences beyond genres is a challenging
task, where for each user the feature set has to be learned. Of course, sometimes
a user is interested only in pieces of a particular genre. This does not decrease
the difficulty of the classification task. In contrast, if positive and negative ex-
amples stem from the same genre, it is hard to construct distinguishing features.
Genre characteristics might dominate the user-specific features. As has been seen
in the difficulty of the data set for hiphop vs. pop, sampling from few records
also increases the difficulty of learning. Hence, four learning tasks of increasing
difficulty have been investigated.

Four users brought 50 to 80 pieces of their favourite music ranging through
diverse genres. They also selected the same number of negative examples. User
1 selected positive examples from rock music with a dominating electric guitar.
User 2 selected positive as well as negative examples from jazz music. User 3
selected music from classic over latin and soul to rock and jazz. User 4 selected
pieces from different genres but only from few records. Using a 10-fold cross
validation, mySVM was applied to the constructed and selected features, one
feature set per learning task (user). Table 2 shows the results.

The excellent learning result for a set of positive instances which are all from
a certain style of music corresponds to our expectation (user 1). The expectation
that learning performance would decrease if positive and negative examples are
taken from the same genre is not supported (user 2). Surprisingly well is the
learning result for a broad variety of genres among the favourites (user 3). The
(negative) effect of sampling from few records can be seen clearly (user 4). Ap-
plying the learned decision function to a database of records allowed the users to
assess the recommendations. They were found very reasonable. No particularly
disliked music was recommended, but unknown plays and those, which could
have been selected as the top 50.

Of course, this method of user preference recognition is just the first step.
There are several ways to improve the results. For instance, users could indicate
those examples that must be classified correctly, because the person feels that
it is an essential expression of his taste. Weighting examples as a further cost
function for learning has been investigated in [9]. An open question is how to
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circumvent or at least decrease the required number of negative examples, since
users don’t like to go through long play lists in order to gather negative examples.

5 Conclusion

In this paper, a genetic programming approach to learning feature extraction for
a certain data set and classification task has been presented. Using elementary
operators as building blocks, method trees are learned under the guidance of
the performance of a classification learner. The crucial question is whether the
covered methods and their automatic construction are tractable, feasible, and
deliver good classification results in the end. Two types of classifier learning
tasks have been tried in order to answer this question: classifying genres and
user preferences. The experiments showed encouraging results.

Further work should investigate the real-time classification according to user
preferences. Genre classification can be done in real-time, because an appropri-
ate feature set can be learned in advance. In contrast, a real-time classification
of the preferences of diverse users does not allow to build-up the feature sets be-
forehand. Recommendation systems address different users, so that they cannot
adjust to a particular one. Real-time recommendation would require automatic
feature construction while the user classifies some examples.

Finally, an electronic DJ would be a challenging system to develop. In ad-
dition to the classification of single music plays, appropriate sequences of plays
would then need to be taken into account. Do the methods deliver features which
are well suited for sequence learning, as well?
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