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Abstract

We derive strong uniform approximations for the eigenvalues in general La-
guerre and Hermite β-ensembles by showing that the maximal discrepancy be-
tween the suitably scaled eigenvalues and roots of orthogonal polynomials con-
verges almost surely to zero when the dimension converges to infinity. We also
provide estimates of the rate of convergence. In the special case of a normalized
real Wishart matrix W (In, s)/s, where n denotes the dimension and s the de-
grees of freedom, the rate is (log n/s)1/4, if n, s → ∞ with n ≤ s, and the rate is√

log n/n, if n, s → ∞ with n ≤ s ≤ n + K. In the latter case we also show the
a.s. convergence of the �nt� largest eigenvalue of W (In, s)/s to the corresponding
quantile of the Marc̆enko-Pastur law.

AMS Subject Classification: Primary 60F15, 15A52. Secondary 82B10.
Keywords and Phrases: Gaussian ensemble, random matrix, rate of convergence, Weyl’s
inequality, Wishart matrix.

1 Introduction

The study of random matrices has a long history in physics and statistics. Gaussian (or
Hermite) ensembles arise in physics and were identified by Dyson (1962) in terms of their
invariance properties, that is: Gaussian Orthogonal ensembles with real entries (GOE),
Gaussian Unitary ensembles with complex entries (GUE) and Gaussian Symplectic en-
sembles with quaternion entries (GSE). The Wishart (or Laguerre) ensembles appear
in statistics [see Muirhead (1982)] and similarly as in the Gaussian case, matrices with
real, complex and quaternion entries are studied in the literature. Analytic formulas for
the density of the joint distribution of the eigenvalues of such matrices were derived by
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Dyson (1962) for the Hermite case and by Fisher (1939), Hsu (1939) and James (1964)
for the Laguerre case, and by now it is current practice in standard random matrix mod-
els to specify the probability density of the eigenvalues without mentioning the random
matrix explicitly. The numerical type of the matrix elements in these density formulas
appears only as an exponent of a Vandermonde determinant, which is usually denoted
by β and attains the values 1, 2, 4, corresponding to the real, complex or quaternion
case.
The Laguerre ensemble is defined by specifying the density of the joint distribution of
the real eigenvalues as (up to a normalizing constant)

∏
1≤i<j≤n

|λi − λj|β
n∏
i=1

λ
a−(n−1)β

2
−1

i e−
∑n

i=1
λi
2 , (1.1)

where a > (n − 1)β
2
> 0. Properties of random variables with density (1.1) have

been studied by numerous authors mainly for the real (β = 1) and complex (β = 2)
case [see e.g. Marc̆enko and Pastur (1967), Silverstein (1985), Johnstone (2001) among
many others]. Because the function in (1.1) is (up to a constant) the density of the
sample covariance matrix of a normally distributed sample, most asymptotic results
have been transferred to the situation of a not normally distributed sample [see Bai and
Yin (1988a,b, 1993) among others]. Similarly, the density corresponding to the Gaussian
ensemble is proportional to

∏
1≤i<j≤n

|λi − λj|βe−
∑n

i=1

λ2
i
2 , (1.2)

and has been studied extensively in the literature [see Mehta (1967)]. Throughout
this paper we call this ensemble the Hermite-ensemble in order to emphasize the close
connection to the Hermite-polynomials. The formulas (1.1) and (1.2) can obviously be
extended to more general values for the exponent of the Vandermonde determinant, say
β > 0, but it was unknown whether matrix models with such eigenvalue distributions
exist. Recently Dumitriu and Edelmann (2002) introduced a class of random matrices
such that for any β > 0 the joint eigenvalue distribution is given by the densities specified
in (1.1) and (1.2). Their work was motivated by physical considerations, where the
parameter β can be interpreted as inverse temperature and the cases β = 0 and β = ∞
correspond to complete independence and a frozen state, respectively.
The present paper is concerned with the asymptotic behaviour of random eigenvalues
governed by the law with density (1.1) or (1.2) for arbitray β > 0. One reason for
our interest in these asymptotics stems from the study of sample covariance matrices
in statistics. While most work in this context deals with asymptotic properties of the
empirical spectral distribution

F̂n(x) =
1

n

n∑
i=1

I{λi ≤ x}

[see Marc̆enko and Pastur (1967), Bai (1999) or Bai, Miao and Yao (2004) among others]
or the behaviour of the largest eigenvalue [see Silverstein (1985), Tracy and Widom
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(2000), Johnstone (2001)], the purpose of the present paper is to study the asymptotic
properties of each eigenvalue directly. Silverstein (1985) proved almost sure convergence
of the (appropriately scaled) largest and smallest eigenvalue of a Wishart matrix to the
boundary of the support of the Marc̆enko-Pastur law [for a generalization of his results
to arbitrary covariance matrices see Bai and Yin (1993)], but less seems to be known
about the other eigenvalues. In this paper we compare the random (scaled) eigenvalues,
λ1 ≤ λ2 ≤ . . . ≤ λn governed by the law with density proportional to (1.1) or (1.2) with
the roots x1 < x2 < . . . < xn of appropriately scaled Laguerre or Hermite polynomials,
respectively, where the parameter β > 0 is arbitrary (i.e. it is not necessarily equal to 1, 2
or 4). It is well known that there is a close connection between random matrix theory
and the theory of orthogonal polynomials [see e.g. Deift (1998)]. We derive explicit
bounds for the probability

P
{

n
max
i=1

|λi − xi| > ε
}

(1.3)

and establish the almost sure convergence of maxni=1 |λi−xi| with a nearly optimal rate.
Our approach heavily relies on specific matrix models, which were recently introduced
by Dumitriu and Edelman (2002) and yield a joint eigenvalue distribution of the form
(1.1) or (1.2) for any β > 0. Our bounds of the probability (1.3) also allow to derive
convergence results with explicit rates for the eigenvalues of random matrices of a fixed
dimension as β → ∞. The rates thus obtained turn out to be optimal again.
Section 2 deals with the general Laguerre ensemble, while we derive in Section 3 strong
uniform approximations of the eigenvalues of a Wishart matrix W (In, s)/s by roots of

the Laguerre polynomial L
(s−n)
n (sx) with rate (logn/s)1/4, if n, s → ∞ with n ≤ s,

and with rate
√

logn/n, if n, s → ∞ with n ≤ s ≤ n + K, where n denotes the
dimension and s the degrees of freedom tending to infinity. In the latter case we also
show the a.s. convergence of the �nt�th largest eigenvalue of the matrix W (In, s)/s to
the corresponding quantile of the Marc̆enko and Pastur law with rate

√
logn/n. This

generalizes a result of Silverstein (1985), who considered only the smallest and largest
eigenvalue and did not derive the rate of convergence. Finally, in Section 4 we turn
to the general β-Hermite ensemble, while some technical details are presented in the
appendix.

2 Laguerre Ensembles

Recall the definition (1.1) of the β-Laguerre ensemble, where the parameter β varies in
the interval (0,∞). We first study for every fixed dimension n ≥ 2 the maximal distance
between the random eigenvalues λ1, . . . , λn corresponding to a β-Laguerre ensemble
(scaled by 1

2a
) and roots of a suitably scaled Laguerre polynomial. To this end, we make

use of the following random matrix model, which was recently introduced by Dumitriu
and Edelman (2002). Let a, β ∈ R, where β > 0 and

a >
β

2
(n− 1) (2.1)

and define X2a, X2a−β, . . . , X2a−(n−1)β , Yβ, Y2β, . . . , Y(n−1)β as independent random vari-
ables with X2

r ∼ χ2(r), Xr ≥ 0 and Y 2
r ∼ χ2(r), Yr ≥ 0, where χ2(r) denotes a χ-square
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distribution with r degrees of freedom. The scaled Laguerre matrix M = M(n, a, β) is
defined by

M = M(n, a, β) =
1

2a
BBT , (2.2)

with

B =




X2a

Y(n−1)β X2a−β
. . .

. . .

Yβ X2a−(n−1)β


 ∈ R

n×n.

Note that M is tridiagonal and that it was shown by Dumitriu and Edelman (2002) that
the joint density of the eigenvalues of the matrix BBT is proportional to the function de-
fined by (1.1). In the following we denote by λ1 ≤ · · · ≤ λn the (ordered) eigenvalues of

the matrix M . For α > −1, let L
(α)
n (x) denote the nth Laguerre polynomial orthogonal

with respect to the weight xαe−x on the interval (0,∞) and define x1 < · · · < xn as the

(ordered) zeros of the scaled Laguerre polynomial L
((2a/β)−n)
n (2ax/β). Our first result

gives an estimate for the probability that the maximum difference between the eigen-
values of the random matrix and the corresponding roots of the orthogonal polynomial
exceeds a certain bound, say ε > 0.

Theorem 2.1. Let x1 < · · · < xn denote the zeros of the scaled Laguerre polynomial
L

((2a/β)−n)
n (2ax/β) and λ1 ≤ · · · ≤ λn the eigenvalues of the matrix M defined in (2.2).

Then we have for any 0 < ε < 1

P
{

max
1≤j≤n

|λj − xj | > ε
}
≤ 4n

[(
1 +

ε2

25

)
exp

(
− ε2

25

)]a
.

Proof. Note first that the entries of the random tridiagonal matrix M = (Mij)
n
ij=1 are

given by

M11 =
1

2a
X2

2a,

Mii =
1

2a

[
X2

2a−(i−1)β + Y 2
(n+1−i)β

]
, i = 2, . . . , n,

Mi,i+1 = Mi+1,i =
1

2a
X2a−(i−1)βY(n−i)β, i = 1, . . . , n− 1,

and consider the deterministic symmetric tridiagonal matrix Cn = (cij)
n
i,j=1 with entries

cii =
2a + (n+ 2 − 2i)β

2a
,

ci,i+1 = ci+1,i =
1

2a

√
[2a− (i− 1)β] (n− i)β.

Let Cn−1 denote the matrix obtained from Cn by deleting the first column and first row.
Using the recurrence relation for Laguerre polynomials [see Szegö (1975), (5.1.10), page
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101, or Chihara (1978), page 220] one may verify that

det(xIn − Cn) =

(
β

2a

)n

L̂((2a/β)−n+1)
n (2ax/β),

det(xIn−1 − Cn−1) =

(
β

2a

)n−1

L̂
((2a/β)−n+1)
n−1 (2ax/β),

where Ik is the k × k identity matrix and L̂
(α)
k (x) = (−1)kk!L

(α)
k (x) is the kth monic

Laguerre polynomial. Let e1 = (1, 0, . . . , 0)T be the first unit vector in R
n and define

D := Cn − [nβ/(2a)]e1e
T
1 . Then

det(xIn −D) = det(xIn − Cn) +
nβ

2a
det(xIn−1 − Cn−1)

=

(−β
2a

)n

n!
{
L(2a/β−n+1)
n (2ax/β) − L

(2a/β−n+1)
n−1 (2ax/β)

}

=

(−β
2a

)n

n!L(2a/β−n)
n (2ax/β)

[see Szegö (1975), (5.1.13), page 102], which proves that the points x1, . . . , xn are also
the eigenvalues of the matrix D.
From Weyl’s inequalities [Horn and Johnson (1985), Theorem 4.3.1] we therefore obtain

max
1≤j≤n

|λj − xj | ≤ ρ (M −D) , (2.3)

where
ρ(A) = max{|µ| : µ is an eigenvalue of A}

denotes the spectral radius of a matrix A ∈ R
n×n. Let

‖A‖∞ := max
1≤i≤n

n∑
j=1

|aij|.

According to Theorem 5.6.9 in Horn and Johnson (1985),

ρ(A) ≤ ‖A‖∞
for all A ∈ R

n×n, and it therefore follows from (2.3) that

max
1≤j≤n

|λj − xj | ≤ ‖M −D‖∞. (2.4)

With the notation

Zn := max

{
max

0≤i≤n−1

|X2
2a−iβ − (2a− iβ)|

2a
, max
1≤i≤n−1

|Y 2
iβ − iβ|

2a

}
,

we obtain for the elements of the first row of the matrix M −D that
n∑
j=1

∣∣∣{M −D}1j

∣∣∣ =
∣∣∣M11 − (c11 − nβ

2a
)
∣∣∣+ |M12 − c12|

=
1

2a

∣∣X2
2a − 2a

∣∣ +
1

2a

∣∣∣X2aY(n−1)β −
√

2a
√

(n− 1)β
∣∣∣

≤ 2Zn +
{

1 +

√
(n− 1)β

2a

}√
Zn ≤ 2Zn + 2

√
Zn ,
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where we used assumption (2.1) and the inequality

|xy − x y| ≤ |x2 − x2|1/2|y2 − y2|1/2 + |x||y2 − y2|1/2 + |y||x2 − x2|1/2

for x, y, x, y ≥ 0, see Silverstein (1985). Similarly, it follows for the elements in the rows
2, . . . , n of the matrix M −D that

n∑
j=1

∣∣∣{M −D}ij
∣∣∣ ≤ 4Zn + 4

√
Zn, i = 2, . . . , n.

Hence ‖M −D‖∞ ≤ 4Zn + 4
√
Zn, and therefore we obtain from (2.4) that

max
1≤j≤n

|λj − xj | ≤ 4
(
Zn +

√
Zn

)
.

Consequently, for 0 < ε < 1,

P
{

max
1≤j≤n

|λj − xj | > ε
}
≤ P

{
4Zn + 4

√
Zn > ε

}
≤ P

{
5
√
Zn > ε

}
, (2.5)

since 4z ≤ √
z for 0 ≤ z ≤ 1

16
, and 5

√
z > ε for z > 1

16
. It is clear from the definition of

random variable Zn that

P
{
Zn >

ε2

52

}
≤

n−1∑
i=0

P
{ |X2

2a−iβ − (2a− iβ)|
2a

>
ε2

52

}
+

n−1∑
i=1

P
{ |Y 2

iβ − iβ|
2a

>
ε2

52

}
.

For i = 1, . . . , n − 1 we obtain iβ ≤ 2a, by assumption (2.1), and therefore it follows
from Lemma A.1 (v) in the appendix that

P
{ |Y 2

iβ − iβ|
2a

>
ε2

52

}
≤ 2

(
1 +

2aε2

25iβ

)iβ/2
exp

(
−aε

2

25

)
≤ 2

(
1 +

ε2

25

)a
exp

(
−aε

2

25

)
,

where the last inequality uses the fact that the function (1+c/x)x is increasing for x > 0
(c > 0). By a similar argument we have for i = 0, . . . , n− 1,

P
{ |X2

2a−iβ − (2a− iβ)|
2a

>
ε2

25

}
≤ 2

(
1 +

ε2

25

)a
exp

(
−aε

2

25

)
,

which gives

P
{
Zn >

ε2

25

}
≤ 2(2n− 1)

[(
1 +

ε2

25

)
exp

(
− ε2

25

)]a
.

Combining this inequality with (2.5) yields the assertion of the theorem. �

Note that the bound in Theorem 2.1 depends on the parameter β only through the
inequality (2.1). Moreover, if n → ∞ we obtain by assumption (2.1) n/a = O(1)
and P{max1≤j≤n |λj − xj | > ε} converges to zero with an exponential rate. The next
result uses this fact and gives a strong limit theorem for the maximum of the absolute
differences between the eigenvalues of general Laguerre ensembles of size n and roots
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of Laguerre polynomials when n → ∞, where we also allow the parameters a and β to
depend on n.

Theorem 2.2. Let (an) and (βn) be two sequences of parameters such that for every n,

an > βn(n− 1)/2 > 0, and let x
(n)
1 < · · · < x

(n)
n denote the zeros of the scaled Laguerre

polynomial L
((2an/βn) − n)
n (2anx/βn). If

lim
n→∞

an
log n

= ∞ , (2.6)

then the eigenvalues λ
(n)
1 ≤ · · · ≤ λ

(n)
n of the scaled Laguerre matrix M(n, an, βn) defined

in (2.2) satisfy

max
1≤j≤n

∣∣∣λ(n)
j − x

(n)
j

∣∣∣ ≤ (
log n

an

)1/4

S for all n ≥ 2,

where S denotes an a.s. finite random variable. In particular, if

lim inf
n→∞

an
n
> 0, (2.7)

then there exists an a.s. finite random variable S ′ such that

max
1≤j≤n

∣∣∣λ(n)
j − x

(n)
j

∣∣∣ ≤ (
logn

n

)1/4

S ′ for all n ≥ 2.

Proof. For n ≥ 2, set

Rn =
( an

logn

)1/4

max
1≤j≤n

∣∣λ(n)
j − x

(n)
j

∣∣.
We have to show that supnRn is a.s. finite. To this end we first show that if (φn) is any
non-random sequence of positive numbers with φn → ∞, then Rn/φn → 0 a.s. Fix such
a sequence (φn), fix ε > 0 and define

εn = εmin
{
φn,

( an
logn

)1/8}( log n

an

)1/4

, n ≥ 2.

By (2.6), εn → 0. In particular, for n sufficiently large, εn < 1, and so, by Theorem 2.1,

P
{Rn

φn
> ε

}
≤ P

{
max
1≤j≤n

∣∣λ(n)
j − x

(n)
j

∣∣ > εn

}
≤ 4n

[(
1 +

ε2n
52

)
exp

(
−ε

2
n

52

)]an

.

The function ψ(x) = log(1 + x) − x + x2/4 is increasing on the interval (−1, 0] and
decreasing on [0, 1], so that ψ(x) ≤ ψ(0) = 0 for x ∈ (−1, 1]. Thus

(1 + x)e−x ≤ e−x
2/4, x ≤ 1 , (2.8)

7



and it follows that

P
{Rn

φn
> ε

}
≤ 4n exp

(
− ε4nan

4 · 54

)
= 4n1 − ε4 min{φ4

n, (an/ logn)1/2}/2500.

Using condition (2.6) again, we obtain that

∞∑
n=2

P
{Rn

φn
> ε

}
<∞.

Hence, by the lemma of Borel and Cantelli it follows that Rn/φn → 0 a.s.

To complete the proof define
Sn = max

1≤k≤n
Rk

and
S = sup

n≥2
Sn = sup

n≥2
Rn.

Assume that δ := P{S = ∞} > 0. Define a sequence (φn) by

φn = sup
{
φ ≥ 0 : P{Sn ≥ φ} ≥ δ

2

}
.

As (Sn) is increasing, so is (φn). Moreover, the sequence (φn) is unbounded because the
assumption φn ≤ Φ for all n and some constant Φ ∈ R would imply

δ ≤ P
( ∞⋃
n=2

{Sn ≥ Φ + 1}
)
≤ lim sup

n→∞
P{Sn ≥ φn + 1} ≤ δ

2
;

which yields a contradiction. Consequently φn → ∞, and it follows by the first part of
the proof that Rn/φn → 0 a.s. However, this also implies that

Sn/φn → 0 a.s.

To see this fix ω with Rn(ω)/φn → 0. Then there exists a sequence of indices, say
k1(ω) ≤ k2(ω) ≤ . . . , such that for every n, kn(ω) ≤ n and Rkn(ω)(ω) = Sn(ω) . If the
sequence (kn(ω)) is bounded, it is eventually constant, and Sn(ω)/φn = Rkn(ω)(ω)/φn →
0. Otherwise,

Sn(ω)

φn
=
Rkn(ω)(ω)

φkn(ω)

φkn(ω)

φn
≤ Rkn(ω)(ω)

φkn(ω)

→ 0.

Consequently, Sn/φn → 0 a.s. On the other hand, in view of the definition of the
sequence (φn), Sn/φn does not converge to 0 in probability. This contradiction shows
that δ = 0, that is, S <∞ a.s., and completes the proof. �

Remark 2.3. Dumitriu and Edelman (2004) describe a physical model where the
density of the eigenvalues is given by (1.1), the parameter β > 0 is interpreted as
inverse temperature; an increase in temperature (i.e. a smaller value for the parameter
β) yields a larger degree of randomness of the eigenvalues. In contrast to Theorem 2.2
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these authors considered the case where the dimension is fixed and the parameters β
and a = aβ converge to infinity, such that

lim
β→∞

aβ
β

=
1

2
(n− 1 + γ)

for some γ > 0. They proved convergence in probability of the jth eigenvalue λ̄j
of the matrix M/β to the jth root x̄j of the Laguerre polynomial L

(γ−1)
n (x). This

statement can also easily be obtained from Theorem 2.1, which additionally shows that
the corresponding probabilities decrease exponentially.
In Theorem 2.2 we consider the case where the dimension and the parameters may vary.
The general assumption that 2an/βn > n−1 implies that if the sequence of temperatures
(β−1

n ) is bounded, then condition (2.7) in Theorem 2.2 is satisfied. In light of the above
model, it is not surprising that assumptions of this type on the sequences (an) or (βn)
appear in a strong limit theorem. In particular, condition (2.6) is not very restrictive.

The next aim is to improve the rate of convergence established in Theorem 2.2 under a
certain restriction on the parameters an and βn. For this we first prove an extension of
Theorem 2.1.

Theorem 2.4. Let K ≥ 0 and ε ∈ (0, 1), define x1 < · · · < xn as the zeros of the scaled

Laguerre polynomial L
((2a/β)−n)
n (2ax/β) and let λ1 ≤ · · · ≤ λn denote the eigenvalues of

the matrix M defined in (2.2). If

n+K ≥ 2a

β
≥ n− 1 +

1

β
(2.9)

and
aε

β
≥ 2(K + 1), (2.10)

then we have

P
{

max
1≤j≤n

|λj − xj | > ε
}
≤ 6n

{(
1 +

ε

4
√
K + 2

)
exp

(
− ε

4
√
K + 2

)}a
+ 2n exp

{(K + 1)2β

8

}(
1 − ε

4

)(n−1)β

exp
(aε

2

)
.

Proof. Define the matrix D as in the proof of Theorem 2.1, then it follows from (2.4)
that

max
1≤j≤n

|λj − xj | ≤ ‖M −D‖∞.
With the notation

Z(1)
n = max

0≤i≤n−1

|X2
2a−iβ − (2a− iβ)|

2a
,

Z(2)
n = max

1≤i≤n−1

|Y 2
iβ − iβ|

2a
,

Z(3)
n = max

1≤i≤n−1

|X2a−(i−1)βY(n−i)β −
√

[2a− (i− 1)β](n− i)β|
2a

9



we have by a similar argument as given in the proof of Theorem 2.1

‖M −D‖∞ ≤ 4 max{Z(1)
n , Z(2)

n , Z(3)
n },

which implies
max
1≤j≤n

|λj − xj | ≤ 4 max{Z(1)
n , Z(2)

n , Z(3)
n }.

Therefore,

P
{

max
1≤j≤n

|λj − xj | > ε
}
≤ P

{
max{Z(1)

n , Z(2)
n } ≥ ε

4

}
+ P

{
Z(3)
n ≥ ε

4

}
. (2.11)

In what follows, we will use repeatedly that for every fixed c > 0 the function [1+(c/x)]x

is increasing in x > 0 and that the function [1 + (x/c)]ce−x is decreasing in x ≥ 0. If
U2
s ∼ χ2(s) and s ≤ 2a, then it follows from Lemma A.1 (v) in the appendix that

P
{ |U2

s − s|
2a

≥ ε

4

}
≤ 2

(
1 +

aε

2s

)s/2
exp

(
−aε

4

)
≤ 2

(
1 +

ε

4

)a
exp

(
−aε

4

)
≤ 2

{(
1 +

ε

4
√
K + 2

)
exp

(
− ε

4
√
K + 2

)}a
=: p1.

Observing that for i = 1, . . . , n− 1, iβ ≤ 2a, we therefore obtain

P
{

max{Z(1)
n , Z(2)

n } ≥ ε

4

}
≤ (2n− 1)p1. (2.12)

To determine an upper bound of the remaining probability P{Z(3)
n ≥ ε/4} we fix i ∈

{1, . . . , n− 1} and write q = 2a− (i− 1)β, r = (n− i)β. With this notation it follows
that q ≤ 2a, r ≤ 2a, q/r ≥ 1/(K + 2) and r/q ≥ 1/(K + 2) by assumption (2.9). Using
these inequalities and Lemma A.2 a) in the appendix we obtain that

P
{XqYr −√

qr

2a
≥ ε

4

}
≤

(
1 +

aε

2q

√
q

r

)q/2
exp

(
−aε

4

√
q

r

)

+
(
1 +

aε

2r

√
r

q

)r/2
exp

(
−aε

4

√
r

q

)

≤
(
1 +

ε

4

√
q

r

)a
exp

(
−aε

4

√
q

r

)
+
(
1 +

ε

4

√
r

q

)a
exp

(
−aε

4

√
r

q

)
≤ 2

{(
1 +

ε

4
√
K + 2

)
exp

(
− ε

4
√
K + 2

)}a
= p1.

Suppose for the moment that aε/2 ≤ √
qr. Observing that q ≥ r + 1 (in view of

assumption (2.9)) we have by Lemma A.2 b),

P
{√qr −XqYr

2a
≥ ε

4

}
≤
(
1− aε

2
√
qr

)r[ 1√
2

exp
{1

2

(√
q−√

r
)2}

+ 1
]
exp

(aε
2

)
. (2.13)

It follows from the mean-value theorem and assumption (2.9) that

(
√
q −√

r)2 ≤ (q − r)2

4r
≤ β

4

{2a

β
− (n− 1)

}2

≤ β

4
(K + 1)2,

10



and therefore the term in brackets on the right-hand side of (2.13) is bounded by the
expression

2 exp
{
(K + 1)2β/8

}
.

With the notation c1 = q − r = 2a − (n − 1)β and c2 = aε/2 we obtain from the
assumptions (2.9) and (2.10), c1 ≤ (K + 1)β ≤ c2. Moreover, r ≤ (n− 1)β ≤ 2a, and it
therefore follows from Lemma A.3 in the appendix that(

1 − aε

2
√
qr

)r
=
(
1 − c2√

(r + c1)r

)r
≤

(
1 − c2√

2a(n− 1)β

)(n−1)β

≤
(
1 − c2

2a

)(n−1)β

=
(
1 − ε

4

)(n−1)β

.

Hence, we have from (2.13),

P
{√qr −XqYr

2a
≥ ε

4

}
≤ 2 exp

{(K + 1)2β

8

}(
1 − ε

4

)(n−1)β

exp
(aε

2

)
=: p2 ,

in the case aε/2 ≤ √
qr. Because this inequality is trivially true if aε/2 >

√
qr we obtain

P
{
Z(3)
n ≥ ε/4

} ≤ (n− 1)(p1 + p2),

and the assertion of Theorem 2.4 follows from (2.11) and (2.12). �

Theorem 2.5. Let (an), (βn), x
(n)
j and λ

(n)
j be defined as in Theorem 2.2. Suppose that

for some K > 0,

n+K ≥ 2an
βn

≥ (n− 1) +
1

βn
for every n ≥ 2. (2.14)

Then there exists an a.s. finite variable S such that

max
1≤j≤n

∣∣λ(n)
j − x

(n)
j

∣∣ ≤ (
log n

n

)1/2

S for every n ≥ 2.

Proof. Let (φn)
∞
n=2 be an arbitrary sequence of positive numbers with φn → ∞, ε > 0

and define

Rn =
( n

logn

)1/2

max
1≤j≤n

|λ(n)
j − x

(n)
j |,

εn = εmin{φn, n1/4}
( logn

n

)1/2

.

For n sufficiently large, εn < 1 and, by the second inequality in (2.14), anεn/βn ≥
2(K + 1). Hence, by Theorem 2.4 and the first inequality in (2.14),

P
{Rn

φn
> ε

}
≤ 6n

{(
1 +

εn

4
√
K + 2

)
exp

(
− εn

4
√
K + 2

)}an

+ 2n exp
{(K + 1)2βn

8
+

(K + 1)βnεn
4

}{(
1 − εn

4

)
exp

(εn
4

)}(n−1)βn

=: 6c1(n) + 2c2(n),

11



where the last equality defines the functions c1 and c2.
From assumption (2.14) it is easy to see that

(i) βn ≥ 1

K + 1
, (ii) an ≥ n

4(K + 1)
, (2.15)

and the inequalities (2.8) and (2.15) (ii) give

c1(n) ≤ n exp
{
− anε

2
n

43(K + 2)

}
≤ n exp

{
− nε2n

44(K + 1)(K + 2)

}
= O(n−2).

By (2.8) and (2.15) (i) we therefore obtain

c2(n) ≤ n exp

[{
(K + 1)2

8
+

(K + 1)εn
4

− (n− 1)ε2n
43

}
βn

]

≤ n exp

[
(K + 1)

8
+
εn
4
− (n− 1)ε2n

43(K + 1)

]
,

provided that n is so large that the term in braces is negative. It now also follows that
c2(n) = O(n−2), which implies

∞∑
n=2

P
{Rn

φn
> ε

}
<∞.

The lemma of Borel and Cantelli yields that Rn/φn → 0 a.s. for any sequence (φn)
satisfying φn → ∞. Finally, the assertion of Theorem 2.5 is obtained by the same
argument as presented in the second part of the proof of Theorem 2.2. �

3 A brief discussion of Wishart matrices

We now present a brief discussion of the corresponding limit theorems in the important
special case of real Wishart ensembles. To be precise consider for integers n, s with
n ≤ s an n× s matrix Vs whose entries are i.i.d. N(0, 1) random variables and define

1

s
VsV

T
s

as the sample covariance matrix and note that this is a scaled Wishart matrix. Note
also that the first part of the following result does not require that s/n converges.

Theorem 3.1. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of the scaled Wishart matrix
1
s
VsV

T
s and denote by x1 ≤ · · · ≤ xn the zeros of the Laguerre polynomial L

(s−n)
n (sx).

(i) If n→ ∞ and s = s(n) → ∞ such that for every n, n ≤ s(n), then

max
1≤j≤n

|λj − xj | = O([log n/s(n)]
1
4 ) a.s.

12



(ii) If n, s(n) → ∞ such that for every n, n ≤ s(n) ≤ n+K, then

max
1≤j≤n

|λj − xj | = O(
√

logn/n) a.s. (3.1)

Proof. The result follows from Theorem 2.2 and Theorem 2.5 with βn = 1 and an =
s(n)/2. �

Remark 3.2. Soshnikov (2002) considered a general sample covariance matrix without
the assumption of normally distributed errors. If s/n→ γ > 0 he showed for the largest
eigenvalue λn of the sample covariance matrix the estimate

λn ≤ (
√
n+

√
s)2

s
+ O

( log n√
n

)
a.s.

In the case n ≤ s ≤ n+K considered in Theorem 3.1 his estimate reduces to

λn ≤ 4 + O
( log n√

n

)
a.s.

In the Wishart case Theorem 3.1 yields a slightly better estimate, that is

λn ≤ 4 + O
(√ log n

n

)
a.s. ,

which follows by a straightforward calculation from (3.1) and the estimate

zn ≤ 2n+ α− 2 +

√
1 + 4(n− 1)(n+ α− 1) cos2

π

n + 1

for the largest root zn of the Laguerre polynomial L
(α)
n (z) [see Ismail and Li (1992)]. Our

next result generalizes this estimate in two directions. On the one hand it also provides
a lower bound, on the other hand it gives a similar approximation of every eigenvalue
of the Wishart matrix.

Theorem 3.3. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of the scaled Wishart matrix
1
s
VsV

T
s . If n, s(n) → ∞ such that for every n, n ≤ s(n) ≤ n+K, then for any t ∈ [0, 1]∣∣∣λ�nt� − 4 cos2

(xt
2

)∣∣∣ = O(
√

log n/n) a.s. ,

where λ�0� = λ1 and xt is the unique solution of the equation

x− sin x = π(1 − t)

in the interval [0, π]. Moreover, 4 cos2
(
xt

2

)
is the t-quantile of the distribution function

F (z) =
1

2π

∫ z

0

√
4 − u

u
du

13



on the interval [0, 4].

Proof. Without loss of generality we may assume that K = 0 (otherwise we consider
K + 1 subsequences seperately). If t ∈ [0, 1) it follows from Theorem 3.1 that

|λ�nt� − x�nt�| = O(
√

log n/n) a.s.,

where x1 < . . . < xn are the roots of of the Laguerre polynomial L
(0)
n (nx) and we use

the notation λ�0� = λ1, x�0� = x1. On the other hand Theorem 8 in Gatteschi (2002)
and the well known estimate ∣∣∣j�nt�

nt
− π

∣∣∣ = O
(1

n

)
, (3.2)

[see Szegö (1975), p. 15] show that the root x�nt� of the Laguerre polynomial L
(0)
n (nx)

can be approximated as

x�nt� =
4n+ 2

n
un,�nt� +O

(1

n

)
, (3.3)

where un,�nt� = cos2(Un,�nt�/2), Un,�nt� is the unique solution of the equation

x− sin x = π − 4j�nt�
4n+ 2

(3.4)

in the interval (0, π) and j�nt� denotes the �nt�th zero of the Bessel function J0(x) (the
estimate is actually much sharper, but (3.3) will be sufficient for our purposes). The
first assertion of the theorem now follows from (3.3), (3.2) and (3.4). The remaining
statement of the Theorem is easily obtained from the representation

1

2π

∫ 4 cos2(x
2
)

0

√
4 − u

u
du =

π − x+ sin x

π
,

which follows by differentiating both sides with respect to the variable x. Finally, the
remaining case t = 1 is obtained by similar arguments using Theorem 9 in Gatteschi
(2002). �

4 Hermite ensembles

To study Hermite (or Gaussian) ensembles, or more generally, β-Hermite ensembles, we
use the n× n symmetric matrix

Gn =




N1
1√
2
X(n−1)β

1√
2
X(n−1)β N2

1√
2
X(n−2)β

. . .
. . .

. . .
1√
2
X2β Nn−1

1√
2
Xβ

1√
2
Xβ Nn



, (4.1)
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where β > 0, and Xβ, . . . , X(n−1)β , N1, . . . , Nn are independent random variables with
X2
jβ ∼ χ2(jβ), Xjβ ≥ 0 and Nj ∼ N(0, 1). It was shown by Dumitriu and Edelman

(2002) that the joint density of the eigenvalues λ1 ≤ · · · ≤ λn of the matrix Gn is
proportional to the function defined in (1.2). Let Hn denote the nth Hermite polynomial
orthogonal with respect to the weight e−x

2
on R. The following result is an analogue of

Theorem 2.1 for the Hermite ensemble.

Theorem 4.1. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of the matrix (4.1) and let
x1 < · · · < xn denote the zeros of the scaled Hermite polynomial Hn(x/

√
β). Then for

every ε > 0,

P
{

max
1≤j≤n

|λj − xj | ≥ ε
}
≤ 4ne−ε

2/18.

Proof. Define the non-random matrix

Fn =

√
β

2




0
√
n− 1√

n− 1 0
√
n− 2

. . .
. . .

. . .√
2 0 1

1 0


 .

It follows from the recurrence relation of the Hermite polynomials that

det(xIn − Fn) =

(√
β

2

)n

Hn

(
x√
β

)

[see Szegö (1975), page 106]. In other words: the roots x1, . . . , xn of the Hermite poly-
nomial Hn

(
x/

√
β
)

are the eigenvalues of the matrix Fn. A similar argument as given
in the proof of Theorem 2.1 now shows that

max
1≤j≤n

|λj − xj | ≤ ‖Gn − Fn‖∞.

Introducing the random variable

Zn = max
{

max
1≤j≤n−1

∣∣Xjβ −
√
jβ
∣∣

√
2

, max
1≤j≤n

|Nj|
}
,

we have ‖Gn − Fn‖∞ ≤ 3Zn, and it follows that

P
{

max
1≤j≤n

|λj − xj | ≥ ε
}
≤ P

{
Zn ≥ ε

3

}
. (4.2)

By Lemma A.1 (vi) in the appendix we have

P
{∣∣Xjβ −

√
jβ
∣∣

√
2

≥ ε

3

}
≤ 2eψ(

√
jβ), j = 1, . . . , n− 1, (4.3)
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where the function ψ is defined by

ψ(u) = −ε′u− ε′2

2
+ u2 log

(
1 +

ε′

u

)
, ε′ =

√
2

3
ε.

To obtain an upper bound of the probability in (4.3), which does not depend on the
index j, we determine max1≤j≤n−1 ψ(

√
jβ). For this observe first that

ψ′(u) = −2ε′u+ ε′2

u+ ε′
+ 2u log

(
1 +

ε′

u

)
,

and that for every u > 0,

(ε′/u)2

2
=

∫ ε′/u

0

x dx >

∫ ε′/u

0

log(1 + x) dx =
(
1 +

ε′

u

)
log

(
1 +

ε′

u

)
− ε′

u
.

This yields

2u log

(
1 +

ε′

u

)
< 2u

1
2
(ε′/u)2 + (ε′/u)

1 + (ε′/u)
=

2ε′u+ ε′2

u+ ε′
,

and as a consequence ψ′(u) < 0, so that

max
1≤j≤n−1

ψ(
√
jβ) = ψ(

√
β) ≤ ψ(0) = −ε2/9.

Hence, from (4.3),

P
{∣∣Xjβ −

√
jβ
∣∣

√
2

≥ ε

3

}
≤ 2e−ε

2/9, j = 1, . . . , n− 1.

The inequality P {N1 ≥ c} ≤ exp(−c2/2) for c > 0 and Bernoulli’s inequality give

P
{

max
1≤j≤n

|Nj | ≥ ε

3

}
= 1−

[
P
{
− ε

3
< N1 <

ε

3

}]n
≤ 1−

[
1 − 2e−ε

2/18
]n

≤ 2ne−ε
2/18.

It now follows that

P
{
Zn ≥ ε

3

}
≤ 2(n− 1)e−ε

2/9 + 2ne−ε
2/18 ≤ 4ne−ε

2/18,

and an application of (4.2) yields the assertion. �

To investigate the convergence of the eigenvalues of large dimensional β-Hermite ensem-

bles let (βn) be a sequence of positive parameters. For every n ≥ 2, let λ
(n)

1 ≤ · · · ≤ λ
(n)

n

be the eigenvalues of the corresponding scaled Hermite matrix [(2n + 1)βn]
− 1

2Gn, and

let ξ
(n)
1 < · · · < ξ

(n)
n be the zeros of the scaled Hermite polynomial Hn(ξ

√
2n+ 1). Note

that limn→∞ ξ
(n)
n = 1, see Szegö (1975), page 132.

Theorem 4.2. Let λ
(n)

1 ≤ · · · ≤ λ
(n)

n denote the eigenvalues of the matrix [(2n +

1)βn]
− 1

2Gn and let ξ
(n)
1 < · · · < ξ

(n)
n denote the zeros of the polynomial Hn(ξ

√
2n+ 1).

Then there exists an a.s. finite random variable S such that

max
1≤j≤n

|λ(n)

j − ξ
(n)
j | ≤

{ log n

(2n+ 1)βn

}1/2

S for all n ≥ 2.
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Proof. Let (φn) be a sequence of positive numbers with φn → ∞ and let ε > 0. By
Theorem 4.1,

P
{ 1

φn

[(2n+ 1)βn
logn

]1/2

max
1≤j≤n

∣∣λ(n)

j − ξ
(n)
j

∣∣ ≥ ε
}

= P
{

max
1≤j≤n

∣∣λ(n)
j − x

(n)
j

∣∣ ≥ εφn
√

log n
}

≤ 4n1−ε2φ2
n/18 = oε(n

−2),

and an argument similar to that in the second part of the proof of Theorem 2.2 completes
the proof. �

Remark 4.3. Dumitriu and Edelman (2004) showed the following limit assertion for
the eigenvalues λ̃1(β) ≤ · · · ≤ λ̃n(β) of the scaled Hermite matrix β−1/2Gn. For fixed
dimension n and i = 1, . . . , n, as β → ∞,

√
β
[
λ̃i(β) − hi

]
→ N in distribution,

where N ∼ N (0, 1) and h1, . . . , hn are the zeros of the Hermite polynomial Hn(x). Thus
for every net (φβ) with φβ → ∞,

√
β

φβ

[
λ̃i(β) − hi

]
→ 0 in probability.

Theorem 4.1 also yields this (optimal) rate of convergence for the maximum of the
absolute differences: Indeed, we have by Theorem 4.1 for every ε > 0,

P
{√β
φβ

n
max
i=1

|λ̃i(β) − hi| > ε
}
≤ 4n exp

(
−ε

2φ2
β

18

)

and the right hand side of this inequality converges to 0 as β → ∞. We finally note
that a similar comment can be made for the Laguerre ensemble but is omitted for the
sake of brevity [see also Remark 2.3].

We conclude this section giving an analogue of Theorem 3.3.

Theorem 4.4. Let λ
(n)

1 ≤ · · · ≤ λ
(n)

n denote the eigenvalues of the matrix

[(2n+ 1)βn]
− 1

2Gn

and (βn) be a sequence of positive parameters. If n→ ∞, then for any t ∈ [0, 1]

|λ̄(n)
�nt� − xt| = O

(√ log n

nβn

)
a.s.

17



where λ̄
(n)
�0� = λ1 and xt ∈ [−√

2,
√

2] denotes the t-quantile of Wigner’s semi circle law,
that is

1

π

∫ xt

−√
2

√
2 − x2dx = t.

Proof. The proof follows from Theorem 4.2 by similar arguments as presented in the
proof of Theorem 3.3 observing the representations

H2m(x) = (−1)m22mm!L(−1/2)
m (x2)

H2m+1(x) = (−1)m22m+1m!xL(1/2)
m (x2)

for the Hermite polynomials in terms of Laguerre polynomials. �

Appendix
Lemma A.1 collects some basic inequalities for random variables with a χ2(r) and χ(r)
distribution, where r > 0 denotes a real (not necessarily integer) parameter. These
inequalities form the basis for the more intricate inequalities for the distribution of the
product of the random variables χ(q) and χ(r), which will be established in Lemma A.2
below.

Lemma A.1. Let r > 0 and X2
r ∼ χ2(r), Xr ≥ 0. For every δ > 0,

(i) P
{
X2
r ≥ r + δ

} ≤
(
1 +

δ

r

)r/2
e−δ/2,

(ii) P
{
Xr ≥

√
r + δ

} ≤
(
1 +

δ√
r

)r
exp

(
−δ√r − δ2

2

)
,

(iii) P
{
X2
r ≤ r − δ

} ≤
(
1 − δ

r

)r/2
eδ/2, provided δ ≤ r,

(iv) P
{
Xr ≤

√
r − δ

} ≤
(
1 − δ√

r

)r
exp

(
δ
√
r − δ2

2

)
, provided δ ≤ √

r.

Moreover, for every δ > 0,

(v) P
{∣∣X2

r − r
∣∣ ≥ δ

} ≤ 2
(
1 +

δ

r

)r/2
e−δ/2,

(vi) P
{∣∣Xr −

√
r
∣∣ ≥ δ

} ≤ 2
(
1 +

δ√
r

)r
exp

(
−δ√r − δ2

2

)
.

Proof. By Cramér’s Theorem it follows that

P
{
X2
r ≥ r + δ

} ≤ exp {−Λ∗(r + δ)} ,
where the function Λ∗ is given by

Λ∗(x) = sup
t<1/2

[xt− Λ(t)],
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with

Λ(t) = logEetX
2
r = −r

2
log(1 − 2t), t <

1

2
.

For x > 0, the supremum in the definition of Λ∗ is attained at t = (x− r)/(2x), which
yields

Λ∗(x) =
x− r

2
+
r

2
log

r

x
,

exp {−Λ∗(r + δ)} =
(
1 +

δ

r

)r/2
e−δ/2,

thus proving assertion (i). The proof of (iii) is similar and therefore omitted. Inequalities
(ii) and (iv) are immediate consequences of (i) and (iii), respectively.
If δ ≥ r, then inequality (v) follows directly from (i). If δ < r, then

log
1 + (δ/r)

1 − (δ/r)
= 2

∞∑
k=1

1

2k − 1

(
δ

r

)2k−1

> 2
δ

r
,

and we obtain (
1 +

δ

r

)r/2
e−δ/2 >

(
1 − δ

r

)r/2
eδ/2.

Thus if δ < r, (v) follows from (i) and (iii). Finally, inequality (vi) is derived similarly
from (ii) and (iv). �

Lemma A.2. Let q, r > 0 and X2
q ∼ χ2(q), Y 2

r ∼ χ2(r), Xq, Yr ≥ 0.

a) For every δ > 0,

P {XqYr ≥ √
qr + δ} ≤

(
1+

δ√
qr

)q/2
exp

(
−δ

2

√
q

r

)
+
(
1+

δ√
qr

)r/2
exp

(
−δ

2

√
r

q

)
.

b) If the random variables Xq and Yr are independent, q ≥ r + 1, and 0 < δ ≤ √
qr,

then

P {XqYr ≤ √
qr − δ}

≤
(
1 − δ√

qr

)r[√ r

2q
exp

{1

2

(√
q −√

r
)2

+ δ
}

+ exp
(
δ

√
r

q
− δ2

2q

)]
.

Proof. a) We have

P {XqYr ≥ √
qr + δ} = P

{
X2
qY

2
r ≥

(
q + δ

√
q

r

)(
r + δ

√
r

q

)}

≤ P
{
X2
q ≥ q + δ

√
q

r

}
+ P

{
Y 2
r ≥ r + δ

√
r

q

}
,

and Lemma A.1 (i) yields the assertion.
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b) Let 0 < δ <
√
qr. If Xq and Yr are independent, then

P {XqYr ≤ √
qr − δ} =

∫
P {Xqy ≤ √

qr − δ} dP Yr(y)

≤
∫
(
√
r−(δ/

√
q),∞)

P {Xqy ≤ √
qr − δ} dP Yr(y)

+ P
{
Yr ≤

√
r − δ√

q

}
=: p1 + p2, (4.4)

where the last equation defines the probabilities p1 and p2. By Lemma A.1 (iv) we
obtain

p2 ≤
(
1 − δ√

qr

)r
exp

(
δ

√
r

q
− δ2

2q

)
, (4.5)

and Lemma A.1 (iii) yields

p1 =

∫
(
√
r−(δ/

√
q),∞)

P
{
X2
q ≤ q −

[
q − (

√
qr − δ)2

y2

]}
dP Yr(y)

≤
∫
(
√
r−(δ/

√
q),∞)

(
√
qr − δ)q

qq/2yq
exp

[q
2
− (

√
qr − δ)2

2y2

]
dP Yr(y)

=
(
√
qr − δ)qeq/2

qq/22r/2−1Γ(r/2)

∫ ∞

√
r−(δ/

√
q)

yr−q−1 exp
[
−y

2

2
− (

√
qr − δ)2

2y2

]
dy.

As q ≥ r + 1, yr−q+1 is decreasing in y, and it follows that∫ ∞

√
r−(δ/

√
q)

yr−q+1y−2 exp
[
−y

2

2
− (

√
qr − δ)2

2y2

]
dy

≤
(√

r − δ√
q

)r−q+1
∫ ∞

0

y−2 exp
[
−y

2

2
− (

√
qr − δ)2

2y2

]
dy

=
(√

r − δ√
q

)r−q+1
√
π√

2
(√

qr − δ
) exp(δ −√

qr) ,

where the last equation can be obtained from formula (28) in Erdélyi et al. (1954), page
146. Note that Stirling’s formula yields

Γ
(r

2

)
≥

√
2π

(r
2

)(r−1)/2

e−r/2.

Combining the above inequalities, we obtain that

p1 ≤
√

r

2q

(
1 − δ√

qr

)r
exp

{1

2

(√
q −√

r
)2

+ δ
}
,

and the proof follows from (4.4) and (4.5). �
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Lemma A.3. Let c2 > 0 and 0 ≤ c1 ≤ c2. Then the function

g(x) =
(
1 − c2√

(x+ c1)x

)x
,

defined for all x > 0 with
√

(x+ c1)x ≥ c2, is strictly increasing.

Proof. Writing

z =
(
1 − c2√

(x+ c1)x

)−1

> 1,

we obtain

d

dx
log g(x) = − log z +

[
1 − c1

2(x+ c1)

]
(z − 1)

≥ − log z +
(
1 − c2

2
√

(x+ c1)x

)
(z − 1) = − log z +

1

2

(
z − 1

z

)
.

To see that the last expression is positive note that

z log z =

∫ z

1

1 + log t dt <

∫ z

1

t dt =
1

2
(z2 − 1).
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