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Abstract

The behavior of selection methods used in
evolutionary algorithms that operate in un-
certain environments is investigated in the
framework of parametric two{armed bandit
problems. Asymptotically optimal selection
strategies are based on the sequential proba-
bility ratio test which is proved to perform up
to four times better than analogous strategies
based on the optimal �xed size sample test. A
variant of local binary tournament selection
in a spatially structured population is shown
to behave like a sequential test provided that
the population size is optimally adjusted.

1 Introduction

John Holland (1975) used the so{called two{armed
bandit problem as a formal model to derive general
guidelines for the design of genetic algorithms that
operate in uncertain environments. These uncertain-
ties may appear in various situations: Assume that
we have to control some physical system but do not
completely know its law of motion. All we know is
that there is a �nite (say) number of alternatives |
each of them being true with some probability. Conse-
quently, the performance of each control strategy is a
random variable and we are seeking for a control strat-
egy with maximum expected performance. In case of
static function optimization uncertainties arise when-
ever the objective function value is stochastically per-
turbed. If these perturbations are additive with zero
mean it is desirable to choose that admissible point
whose associated random objective function value has
maximum mean.

An obvious (but not necessarily optimal) method to
identify the random variable with maximum mean is
based on the following fact: Let X1; : : : ; Xn be inde-
pendent and identically distributed random variables
with �nite mean � and variance �2. Then the mean
and variance of the average �Xn are E[ �Xn ] = � and

V[ �Xn ] = �2=n. Thus, the more samples are drawn
the smaller is the uncertainty about the true mean. If
we would draw in�nitely many samples we would get
the true value (zero variance). In practice, however,
only a �nite number of samples can be drawn so that
this procedure is not immune from errors. Assume
that at most N < 1 trials can be drawn in total.
The question is: How many trials should be allocated
to each random variable to gather information about
their (unknown) means before selecting the random
variable with suspected maximum mean? Since this
decision may be wrong with some probability (which
decreases as the number of trials increase) there must
exist a strategy that minimizes the sum of expected
information costs and decision losses.

A general formal model to analyze the situation above
is a version of the two{armed bandit problem (or k{
armed in general). Suppose we are faced with a gam-
bling machine equipped with two handles (i.e., the
two{armed bandit). Each time we put a coin into the
slot we may pull one arm which leads to a random
payo� according to some probability distribution. Let
the random payo� be represented by the two indepen-
dent random variables X and Y . Our goal is to maxi-
mize the expected payo� under the constraint that our
budget is restricted to N < 1 coins. Thus, we need
a strategy that quickly and reliably identi�es the ran-
dom variable with higher (or smaller) mean in order
to allocate the remaining trials to the suspected supe-
rior arm. Unfortunately, quickness and reliability are
con
icting objectives so that some compromise must
be sought for. This multi{criteria optimization prob-
lem can be mapped into a single{criteria problem if we
accept that information costs and decision losses can
be measured in the same scale. If so, the sum of infor-
mation costs and decision losses represents the overall
loss to be minimized.

In the general problem formulation given above we
are confronted with a nonparametric bandit problem.
Although this situation is the more realistic one in
practice, we shall consider parametric bandit problems
here. It is assumed that we know the probability (den-



sity) functions f0 and f1 of both random variables, but
we do not know which density is associated with which
random variable. Thus, initially we have

Pf (fx = f0; fy = f1) g = Pf (fx = f1; fy = f0) g =
1

2
:

Cherno� (1959) remarks that optimal strategies for
such bandit problems are di�cult to characterize
whereas asymptotically optimal results ought to be
easily available. His approach was as follows: With-
out loss of generality let f0 be the density with largest
mean. Choose one arm arbitrarily, X say, and pull it
repeatedly. The realizations of the random variables
serve as input to a statistical procedure to test the hy-
pothesis H0 : fx = f0 versus hypothesis H1 : fx = f1.
If the statistical test suggest rejecting hypothesis H0

then the remaining trials will be allocated to arm Y ,
otherwise we stay at arm X for the remaining trials.
In fact, building on Cherno�'s results Kiefer and Sacks
(1963) proved that this two{staged strategy is asymp-
totically optimal, provided that we are using the `op-
timal' statistical test.

The quality of a statistical test depends on three
parameters: The sample size n and the two error
probabilities � = Pf reject H0 jH0 trueg and � =
Pf accept H0 jH0 falseg. Since the minimization of all
three quantities yields con
icting goals, two parame-
ters must be �xed while the third one is minimized.
Under the scenario to test a simple hypothesis against
another simple hypothesis optimal tests are known.
Neyman and Pearson (1933) have developed a method
to construct statistical tests such that the error prob-
ability � is minimized for given � and sample size n.
Another type of optimality is associated with the se-
quential probability ratio test (SPRT) developed by
Abraham Wald (1945). This test is of sequential na-
ture and it minimizes the expected number of samples
for given � and � regardless which hypothesis is actu-
ally true (the optimality is shown in Wald and Wol-
fowitz 1948).

Since the SPRT will be the method of choice here, it
will be brie
y presented in section 2 before we sketch
the analysis for a single player in section 3. In section 4
the scenario is changed in that we use the SPRT in case
of paired observations and compare its performance
with �xed sample size tests of Holland (1975) and of
Neyman/Pearson type. Section 5 is devoted to the sit-
uation in which the feedback of the gambling machine
is not the realized outcome of both arms but merely
which arm was better. Note that this type of ranking
information is processed by tournament selection rules
in evolutionary algorithms. This is the theme of sec-
tion 6 where evolutionary selection methods are inter-
preted as an ingredient of a sequential statistical test.
First, we investigate a population of two individuals
whose �tness is represented by the outcome of the ran-
dom payo� received from the two{armed bandit. As
might have been expected, the performance is tremen-

dously bad because of the missing individual memory.
Then it is shown in case of a spatially structured pop-
ulation with a local tournament selection rule how a
population can be used to store information. More-
over, the optimal population size (depending on N and
the distribution of the random variables) is calculated
numerically.

2 The Sequential Probability Ratio

Test in a Nutshell

The sequential probability ratio test (SPRT) can be
used to test a simple hypothesis versus another simple
hypothesis. Let f0 and f1 be two probability density
functions (or their discrete analogue) that are com-
pletely known. Suppose that the probability density
function (p.d.f.) fx of random variable X is either f0
or f1. Then the SPRT to test

H0 : fx = f0 versus H1 : fx = f1

is de�ned as follows: Choose constants 0 < A < 1 <
B <1 and de�ne

�n =
nY
i=1

f1(Xi)

f0(Xi)
:

Let T = minfn 2 IN : �n =2 (A;B)g be the random
time at which the sequence �n leaves the open interval
(A;B) for the �rst time. Stop sampling at time T and
reject H0 if �T � B, and accept H0 if �T � A. This
test errs with the probabilities

� = Pf�T � B jH0 trueg = Pf reject H0 jH0 trueg
and

� = Pf�T � A jH1 trueg = Pf reject H1 jH1 trueg.
Remark: For the sake of brevity, probabilities and ex-
pectations conditioned by the event that Hi is true
will be indexed by the subscript i. For example,
� = P1f�T � A g.
The error probabilities are connected with the con-
stants A and B via the fundamental inequalities

� � A (1� �) and (1)

� � (1� �)=B (2)

that fail to be equalities only because (in general) �T
does not hit the boundaries A and B exactly. If we
agree that the excess over the boundary can be ne-
glected we may set A = �=(1��), B = �=(1��), and
the inequalities for the expected stopping times below
would turn to equalities as well:

E0[T ] � 1

�0

�
� log

1� �

�
+ (1� �) log

�

1� �

�
(3)

E1[T ] � 1

�1

�
� log

�

1� �
+ (1� �) log

1� �

�

�
(4)



where

�i =

1Z
�1

log

�
f1(x)

f0(x)

�
fi(x) dx = Ei

�
log

f1(X)

f0(X)

�

for i = 0; 1 with �0 < 0 < �1. The constants �i
can be interpreted as the Kullback{Leibler information
numbers I0 = ��0 > 0 and I1 = �1 > 0 which serve
as a measure of the hardness of distinguishing between
both p.d.f.s if hypothesis Hi is true: The smaller is Ii,
the more di�cult is the problem. These constants will
play an important role in subsequent sections.

3 Decisions Based on Observations

from a Single Arm

Let X and Y denote the random variables associated
with the random rewards of the two{armed bandit. If
we draw random variable X its p.d.f. may be either
f0 or f1 with the same probability. Without loss of
generality let �0 > �1 with �i =

R
x fi(x) dx.

Use the SPRT to test H0 : fx = f0 versus H1 : fx = f1.
After the test has stopped at random time T it has
drawn T random variables with p.d.f. fx. If the test
accepts the hypothesisH0 the remainingN�T random
variables are drawn with p.d.f. fx, otherwise with p.d.f.
fy. Thus, the random reward is

R =
TX
i=1

Xi + 1
fH0 acceptedg

N�TX
i=1

Xi

+ 1fH0 rejectedg

N�TX
i=1

Yi

provided that T � N . Consequently, the test will be
stopped at step minfT;Ng.
In the sequel we shall make use of the fact that the
expectation of a sum of T independent and identically
distributed random variablesXi, where T is a stopping
time depending on the outcomes ofXi until T , is equal
to the product E[T ] �E[X1 ] (see e.g. Gut 1988, p. 22).

Let H0 be true. Then the expected reward is

E0[R ] = n0 �0 + (1� �) (N � n0)�0 + � (N � n0)�1
= n0 �0 + (N � n0) [ (1� �)�0 + ��1]

where E0[X ] = �0, E0[Y ] = �1, n0 = E0[T ] and
E0[ 1fH0rejectedg ] = P0fH0 rejected g = �. If H1 is
true the expected reward is

E1[R ] = n1 �1 + � (N � n1)�1 + (1 � �) (N � n1)�0

= n1 �1 + (N � n1) [ (1� �)�0 + � �1]

where E1[X ] = �1, E1[Y ] = �0, n1 = E1[T ] and
E1[ 1fH0acceptedg ] = P1fH0 accepted g = �. Since
each hypothesis is equally likely the expected reward

is given by

E[R ] = PfH0 true gE0[R ] + PfH1 true gE1[R ]

= N �0 � �

�
�+ �

2
N � �

2
n0 +

1� �

2
n1

�

where � = �0 � �1 > 0. Since N �0 is the maximum
reward under perfect information the expected loss of
this method is

E[L ] = �

�
�+ �

2
N � �

2
n0 +

1� �

2
n1

�
: (5)

Under the assumption that the excess over the bound-
aries A or B can be neglected we may take inequalities
(3) and (4) like equalities that can be inserted into
equation (5). Partial di�erentiation with respect to
� and � leads to the necessary optimality conditions.
An analytic solution of the resulting system of nonlin-
ear equations seems hopeless, but it is clear that the
optimal error probabilities �� and �� will nonlinearly
depend on the constants �0, �1, and N . If the p.d.f.s
f0 and f1 are normal densities the constants �i are

�0 = �1

2

�
(�0 � �1)2

�2
1

+
�2
0

�2
1

� log
�2
0

�2
1

� 1

�
;

�1 =
1

2

�
(�0 � �1)2

�2
0

+
�2
1

�2
0

� log
�2
1

�2
0

� 1

�
:

Since x�1 � logx the equations above reveal that dif-
ferent variances facilitate the discrimination between
the densities.

The scenario considered so far is tailored to a single
player1. In evolutionary algorithms, however, a popu-
lation of players/individuals is gambling in parallel. In
the simplest case the population will consist of two in-
dividuals. Therefore it is reasonable to begin the anal-
ysis with strategies which must make decisions based
on paired observations.

4 Decisions Based on Paired

Observations

Suppose that there are two identical2 gambling ma-
chines and two players each having N=2 coins. The
players aim at maximizing the joint expected payo�.
Their strategy is that the �rst player pulls armX while
the other player pulls arm Y at the other bandit until
they agree which arm is better. Then both will choose
the suspected better arm at each bandit for the re-
maining trials. Thus, both players are observing the
sequence of pairs (Xi; Yi) until they make a decision

1For small N the same scenario was analyzed in
Macready and Wolpert (1996), who derived optimal strate-
gies for N = 1 and N = 2 in case of Gaussian random
variables.

2Two{armed bandits are identical if the have the same
assignment of random variables to arms.



about the suspected better arm. The situation can be
equivalently described as follows:

Let D = X � Y so that E[D ] = E[X ] � E[Y ] and
V[D ] = V[X ] + V[Y ]. Thus, no matter which p.d.f.
is associated with which random variable, the variance
of D is �2 = �2

0
+ �2

1
. The expectation of D, however,

may be either �0 = �0��1 > 0 or �1 = �1��0 = ��0.
If the pairs (�i; �i) completely specify the distributions
of the random variables, it is equivalent to saying that
the p.d.f. of random variable D is

~fi(x) =

Z 1

�1

fi(z) f1�i(z � x) dz

where i is either 0 or 1 with the same probability. As
a consequence, the players' decision to prefer a speci�c
arm may be based on testing hypothesis H0 : fD = ~f0
versus H1 : fD = ~f1. If H0 is rejected they will choose
arm Y at both bandits, otherwise arm X. Provided
that they use an optimal statistical test and that N is
su�ciently large, their strategy should be asymptoti-
cally optimal.

4.1 Optimal Fixed Size Sample Test

After n paired samples the observation costs are n �
no matter which hypothesis is true. To determine the
decision loss two subcases must be considered: If H0 is
true the test errs with probability � and N �2n trials
are allocated to the wrong arm. Thus, the decision loss
is � (N � 2n) �. Similarly, if H1 is true the decision
loss is � (N � 2n) �. Since each event is equally likely
the entire expected loss is

E[L ] = �

�
n + (N � 2n)

�+ �

2

�
: (6)

Suppose that X and Y are continuous random vari-
ables with fx 6= fy and support IR. Then ~f0 6= ~f1 and
both p.d.f.s have support IR as well. We like to test
the hypothesis H0 : fD = ~f0 against H1 : fD = ~f1.
For given n and � > 0 the optimal Neyman{Pearson
test runs as follows: Let

�n(D1; : : : ; Dn) =
nY
i=1

~f1(Di)
~f0(Di)

(7)

and reject H0 if �n(D1; : : : ; Dn) > �, otherwise accept
H0, where � is the solution of the equation

Pf�n � � jH0 trueg = 1� � :

This test minimizes the error probability � for given
� > 0 and sample size n <1. Moreover, it is guaran-
teed that � < 1� �.

Suppose that f0 and f1 are p.d.f.s of normally dis-
tributed random variables with distributionN (�i; �

2

i
),

so that ~f0 and ~f1 are the densities of normal random

variables with known means �0 > �1 and common
known variance �2 > 0. Then (7) becomes

�n(D1; : : : ; Dn) = exp

 
��0 � �1

�2

nX
i=1

Di + n
�2
0
� �2

1

2 �2

!
:

Notice that Sn =
P

n

i=1
Di � N (n �0; n �2) if hypoth-

esis H0 is true, and Sn � N (n �1; n �2) otherwise. To
determine � we have to solve the equation

P0f�n � � g = P0

�
Sn �

n (�2
0
� �2

1
)� 2 �2 log �

2 (�0 � �1)

�

= �

�
n (�0 � �1)2 + 2 �2 log �

2 (�0 � �1) �
p
n

�

= �

�
log �


n
+

n

2

�
!
= 1� � :

where 
n = (�0��1)
p
n=� and �(�) denotes the distri-

bution function of the standard normal random vari-
able. It follows that

log �


n
+

n

2
!

= u� := ��1(1� �)

and �nally

� = exp

�

n u� �


2
n

2

�
: (8)

The test rejects hypothesis H0 if �n(D1; : : : ; Dn) > �
which is equivalent to the condition

�Dn � �0 � u� �=
p
n (9)

where �Dn = Sn=n is the average of D1; : : : ; Dn. Tak-
ing into account equation (8) the error probability of
the second kind can be easily obtained via

� = P1f�n � � g = P1fSn � n �0 � u� �
p
n g

= �(u� � 
n) : (10)

Let L(n; �) denote the expected loss for given n 2 IN
and � 2 (0; 1). Owing to equations (6) and (10) we
obtain

L(n; �) = �

�
n+ (N � 2n)

�+�(u� � 
n)

2

�
:

Thus, the task to determine the minimal expected loss
requires the solution of a mixed{integer optimization
problem. Partial di�erentiation with respect to � leads
to the necessary condition

@

@ �
�(��1(1� �)� 
n)

!

= �1 :

Let �0(x) = '(x). Since

@

@ �
�(��1(1� �)� 
n) = �'(�

�1(1� �)� 
n)

'(��1(1� �))

= � exp

�
2 
n u� � 
2n

2

�



the necessary condition reduces to u� = 
n=2 which
may be equivalently expressed as


n = 2u� ; (11)

� = 1� �(
n=2) ; (12)

n = 4��2(1� �)=
2
1
: (13)

Insertion of equation (11) into the condition that the
test rejects H0 equation (9) becomes

�Dn � �0 � u� �=
p
n = (�0 + �1)=2 :

Since �0 = ��1 the optimal �xed size sample test re-
jects H0 if �Dn � 0, or if �Xn � �Yn since �Dn = �Xn� �Yn.
Notice that this is exactly the test proposed in Holland
(1975), pp. 83{85.

It remains to determine the optimal sample size n�.
Insertion of equation (11) into the equation (10) yields
� = �. Taking into account equation (12) and noting
that 
2

1
=2 = � = (�0 � �1)2=(2 �2) the expected loss

can be rewritten to L(n) = � [n+(N �2n) �(�cpn) ]
where c2 = �=2. Di�erentiation with respect to n leads
to the necessary condition

2�(c n1=2)� 1

c n1=2'(c n1=2)

!

=
N

2n
� 1 : (14)

Suppose that cN is small. Consequently, c n1=2 is even
much smaller and a series expansion of the l.h.s. of the
equation above yields 2 + 2n c2=3 = N=(2n) � 1 and
�nally

n� =
6N

(182 + 48 c2N )1=2 + 18
! N

6

as c! 0, or equivalently, as �! 0. Since n� increases
as c decreases the optimally adjusted test never uses
more than N=6 paired trials until the �nal decision
is being made. But notice that �� = �� ! 1=2 as
n� ! N=6.

To investigate the general dependence of n� from c
(or �) and N a normalization of the constants and
variables is useful. Let ~n = c2 n and K = N� where
c2 = �=2. The optimality criterion (14) changes to

4 ~n

�
2�(~n1=2) � 1

~n1=2'(~n1=2)
+ 1

�
!

= K (15)

Evidently, the root ~n� of equation (15) only depends on
the constant K. For large K the root is approximately
located at

~n� � 2 log

�
K

4 logK

�
(16)

and for small K at

~n� � 3K

(182 + 24K)1=2 + 18
: (17)

The approximations given in equations (16) and (17)
are quite accurate for K > 103 resp. K < 1. Never-
theless, a comparison with the results for the SPRT
given in the next subsection will be based on the exact
values.

4.2 Optimal Sequential Test

If we use the sequential probability ratio test in lieu of
the optimal test with �xed sample size, the expected
loss can be derived as follows: If hypothesis H0 is true
the test stops on average after n0 steps. Thus, the
observation costs are n0 �. Since the test errs with
probability � the decision loss is � (N � n0) �. Simi-
larly, if H1 is true the observation costs are n1 � and
the decision loss is � (N � n1) �. Since each event is
equally likely the entire expected loss is

L(�; �) = �

�
n0 + n1

2
+
�+ �

2
N � �n0 � � n1

�
:

Since � := �1 = ��0 = (�0 � �1)2=(2 �2) and each
hypothesis is equally likely nothing can be gained from
choosing di�erent error probabilities. Thus, we may
set � = � and the expected loss becomes

L(�) = � [n+ � (N � 2n) ]

where n = n0 = n1. Assuming that the excess over the
boundaries A or B is neglectable, we may take inequal-
ities (3) and (4) like equalities so that the expected loss
is given by

L(�) = �

�
�N +

(1� 2�)2

�
log

�
1

�
� 1

��
: (18)

Di�erentiation with respect to � leads to the necessary
condition

N�
!
=

(1� 2�)2

� (1� �)
+ 4 (1� 2�) log

�
1

�
� 1

�
: (19)

If � ! 0 for �xed N the optimal error probability ��

converges monotonically increasing to 1=2. Now as-
sume that N � ��1. In this case � must be small and
we may choose � = 1=(N� � 4 log(N�) + 3) to ob-
tain an asymptotical solution of the optimality equa-
tion (19). This approximation is quite accurate for
K = N� � 102.

The appropriate quantity to compare the SPRT with
the �xed size sample test (FSST) is the ratio of ex-
pected losses in dependence from K. Figure 1 reveals
that the FSST and SPRT perform equally well (or bad)
for small K, but as soon as K increases the FSST is
beaten by the SPRT. It can be shown that the ratio
converges monotonically increasing to 4 as K ! 1.
As a consequence, the claim (Holland 1975, p. 84) that
the paired sampling strategy with the optimal FSST
leads (asymptotically) to the minimal expected loss is
untenable.

5 Decisions Based on Ranks

In the precedent section the players used statistical
tests basing on the actual realizations of the random
variables. Here, we shall investigate the situation if
the feedback from the gambling machine reduces to



Figure 1: Ratio of minimal losses between �xed size sample
test (FSST) and sequential probability ratio test (SPRT).
The squares indicate the results from simulations with the
SPRT.

the indication which of the two arms was better. The
payo�s, however, are still the realizations of the ran-
dom variables which is not observable by the play-
ers until the N th trial has been done. Without any
doubt, the task to maximize the total reward must be
more di�cult than the task considered previously. No-
tice that this scenario re
ects the situation of using a
(binary) tournament selection method in evolutionary
algorithms. The question is: What are the additional
costs of the loss of information?

Let X and Y be the random variables that are not
directly observable by the players. When the play-
ers pull arm X at the �rst and arm Y at the second
bandit, each bandit returns a 0 or 1, where a 1 in-
dicates which bandit has realized the smaller payo�.
Since the ranking of the outcomes of two continuous
random variables is unique, it su�ces to observe the
sequence of zeros and ones associated with the �rst
bandit. Thus, the players observe the random indica-
tor variable Z = 1fX<Y g of the event fX < Y g.
Let p = PfZ = 1 g, p0 = PfZ = 1 j�x < �yg > 1=2
and suppose that the players know the value of p0. As
a consequence, they may use a statistical procedure
to test the hypothesis H0 : p = p0 against hypothesis
H1 : p = p1 = 1 � p0. If H0 is rejected they will
choose armX at both bandits for the remaining trials,
otherwise arm Y . The SPRT for this task runs as
follows:

Since P0fZ = k g = pk
0
(1� p0)1�k and P1fZ = k g =

(1� p0)k p
1�k
0

the likelihood ratio function is

�n =
nY
i=1

(1� p0)Zi p
1�Zi
0

pZi
0
(1 � p0)1�Zi

=

�
p0

1� p0

�n�2Sn

where Sn =
P

n

i=1
Zi. As in the previous section, noth-

ing can be gained from choosing di�erent error prob-
abilities. Thus, we may set � = � and 1=A = B =
�=(1� �). The expected stopping time is

n = E0[T ] = E1[T ] =
1� 2�

�
log

1� �

�

where
� = (2 p0 � 1) log

p0

1� p0
: (20)

Notice that the expected loss and the optimality cri-
terion are identical to equations (18) and (19), respec-
tively. Only the values for the Kullback{Leibler infor-
mation numbers are di�erent. Suppose that X and Y
are normal random variables as in the previous section.
In this case we obtain

p0 = �

�
�0 � �1

(�2
0
+ �2

1
)1=2

�
= �

 r
~�

2

!
>

1

2

where ~� denotes the Kullback{Leibler information
number of the previous section. A closer look at equa-
tion (20) reveals that � = �(~�) is a function of ~� and
that

~�

�(~�)
!
�

4 as ~�!1;
�=2 as ~�! 0:

Figure 2 shows the general behavior of the ratio above.
Thus, the additional information costs for a prescribed
error probability � consists of 57 % up to 300 % more
paired observations.

Figure 2: Comparison of Kullback{Leibler information
numbers.

6 Evolutionary Decisions Based on

Ranking Information

Now we are in the position to compare the quality
of selection methods used in evolutionary algorithms



with the optimalmethods by interpreting the selection
procedures as an ingredient of a statistical test. The
scenario is as follows:

An individual is of type x if it pulls arm X, and of
type y if it pulls arm Y . Random variation operators
like mutation or crossover are not considered at the
moment. The population is initialized by distribut-
ing the types x and y uniformly among the individu-
als. Therefore, the population size � must be an even
number. In each generation each individual pulls the
arm associated with its type and the outcome of the
random variable is the �tness of the individual. Then
some selection method is used to form the population
of the next generation. The population is said to be
converged if all individuals are of the same type. The
objective is to maximize the cumulated �tness values
within N < 1 pulls in total. Thus, the maximum
number of trials must be a multiple of the population
size.

The simplest case is given for a population of two in-
dividuals. Initially, we have one individual of type x
and one individual of type y. As soon as the selection
methods produces an identical population at random
time T , the population is converged and the remaining
trials are allocated to the same arm. Since the selec-
tion methods' behavior only depend on the outcome
of the random variables and not on the type of the
individuals, we can assume w.l.o.g. that �x > �y. Un-
til the population is converged the expected loss is � n
where � = �x� �y and n = E[T ]. If the population is
converged to type y the selection procedure has com-
mitted an error with probability � and N � 2n trials
are allocated to the inferior arm. Thus, the expected
loss is L = � [n+ � (N � 2n)].

In order to determine the values for � and n, we shall
use a �nite Markov chain model. For � = 2 indi-
viduals the Markov chain can attain the three states
S 2 f0; 1; 2g, where S denotes the number of indi-
viduals of type x. Thus, the Markov chain will be
absorbed by the states 0 and 2 (identical populations)
and it starts at state 1. Let q be the probability to
transition from state 1 to state 0, p the probability to
transition from state 1 to 2, and r = 1 � p � q the
probability to stay at state 1. Then the expected time
until absorption is E[T ] = 1=(p+ q) while the absorp-
tion probabilities are PfST = 0 jS0 = 1g = q=(p + q)
and PfST = 2 jS0 = 1g = p=(p + q). Evidently, the
error probability is � = PfST = 0 jS0 = 1g.
In the sequel we shall consider tournament selection
rules. Let " = PfX > Y g > 1=2. If we employ binary
tournament selection without replacement the selec-
tion procedure picks out both individuals and chooses
the individual with higher �tness. This process is
repeated once to obtain a complete new population.
Therefore we obtain p = ", r = 0, and q = 1� ". As a
result, the expected loss is L = � [ (1� ")N + 2 "� 1 ].

In case of binary tournament selection with replace-
ment the selection procedure draws two individuals at
random, so that it is possible to draw the same in-
dividual twice. We obtain p = "2, r = 2 " (1 � "),
q = (1� ")2, and �nally

L = �
(1� ")2 (1� 2 "+ 2 "2)3N + 2 "� 1

(1� 2 "+ 2 "2)2

which is less than the loss of binary tournament selec-
tion without replacement for N � 6 and " 2 (1=2; 1),
but tremendously worse than the optimal methods.

The reason for the unsatisfactory behavior stems from
the fact, that the transition probabilities (p; q; r) and
hence the error probability � as well as the expected
stopping time n depends only on " and not on the max-
imum sample size N . We could achieve such a depen-
dence if the maximum sample size N (and ") become
control parameters of the selection procedure. In case
of selection methods based on ranking information, the
optimal procedure would be the SPRT considered in
the previous section.

But there is another way to improve the situation. No-
tice that the SPRT may be interpreted as follows: The
individuals pull di�erent arms and store the number of
competitions won. As soon as one individual has won a
certain prescribed number of competitions (depending
on N ) it is considered superior to the other individual
which will not have a chance to reproduce again. In
evolutionary algorithms the functionality of a memory
is not provided by the individuals but by the popula-
tion itself. Thus, we have to increase the population
size �. To keep the analysis simple, we shall consider
a population arranged in a spatial structure. Suppose
that the individuals are placed at the nodes of a de-
generated undirected graph (i.e., a bi{directional list).
Each individual can compete only with those individ-
uals which are its direct neighbors. With probability
1=2 it will compete with its left or right neighbor. Ini-
tially, the �rst �=2 individuals from left to right are of
type x and the rest of type y. The Markov chain de-
scribing the evolution of the population has �+1 states
S 2 f0; : : : ; �g. Again, state S denotes the number of
x's in the population, so that S0 = �=2 = m. The
Markov chain changes its state if an individual of type
x is replaced by an individual of type y or vice versa.
Due to our special initialization of the population such
an event only happens once during each generation.
Thus, the probability that the number of x's will be
incremented is p, the probability of a decrement is q
and the probability to keep the status quo is r. Here,
p = "=2, r = 1=2, and q = (1 � ")=2. Since p > q this
Markov chain is nothing more than a random walk
with drift. The absorption probability to state 0 (i.e.,
the error probability) is

�m = PfST = 0 jS0 = mg = 1

am + 1



(a = p=q) while the expected absorption time is

n(m) = E[T jS0 = m ] =
m

p� q
� a

m � 1

am + 1
:

The total number of pulls at the inferior arms depends
on the random number of times Vi, that the Markov
chain is in state i = 1; : : : ; � � 1. The expectation of
Vi is

E[Vi jS0 = m ] =

8>>>><
>>>>:

ai � 1

(am + 1) (p � q)
, if i = 1; : : : ;m

am � ai�m

(am + 1) (p � q)
, otherwise.

At position i there are (�� i) pulls at the inferior arm.
This happens E[Vi jS0 = m ] times on average. Thus,
the average total number of pulls at the inferior arm
until absorption is

Wm =
��1X
i=1

E[Vi jS0 = m ] (� � i) =

m

2 (p� q)

�
a+ 1

a� 1

am � 1

am + 1
+m

am � 3

am + 1

�
so that the expected loss is

L(m) = � [Wm + �m (N � 2mn(m)) ]

Since � = 2m we can control the error probability �m
and all other quantities by the choice of the population
size. It is clear that the optimal population size �� will
depend on the di�erence p � q, the ratio a = p=q and
the maximum sample number N .

Figure 3 shows a comparison of the di�erent selection
strategies by the ratio of the loss of each method with
loss of the optimal SPRT. Since the maximum sample
size was kept �xed at N = 106 the Kullback{Leibler in-
formation number ~� of section 4 ranges between 10�10

and 100. Two points deserve special attention: First,
the SPRT based on ranking information leads to a bet-
ter strategy than using the FSST based on the p.d.f.s of
the di�erences of both random variables. Second, the
optimal population size is remarkably small (�� = 84)
even for the di�cult problems with ~� = 10�8. One
might conjecture that the performance of the local
tournament methods improves under random initial-
ization. The analysis of this case, however, is consid-
erably more complicated than the initialization con-
sidered here.

7 Conclusions

Holland's claim that the �xed size sample test leads
to an asymptotically optimal strategy was falsi�ed.
A strategy using the sequential probability ratio test
performs up to four times better. Local tournament
selection methods in evolutionary algorithms may be
interpreted as an ingredient of a sequential statistical
test. Their performance is acceptable well provided
that the population size is optimally adjusted.

Figure 3: Ratios of losses of the �xed size sample test
(FSST), sequential probability ratio test (SPRT) based on
ranking information, and local binary tournament selec-
tion with the optimal SPRT. The dashed line indicates the
optimal population size.
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