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11.1 Introduction

NP-hard problems are often tackled using the relaxation method approach. The
idea of this approach is to add or remove conditions to or from the original
problem in such a way that the solution space is enlarged. The hope is that
the new solution space will be more smooth in the sense that it allows a more
e�cient, i.e., polynomial-time, computation of the optimum.

One possibility of applying this method lies in computing upper or lower bounds
within a branch-and-bound approach. Let us assume that we are dealing with a
maximization problem. Since the modi�ed solution space contains the original
solution space as a subset, the optimal solution to the relaxed problem is an
upper bound to the optimum of the original problem.

Known examples for problems which can be treated in this way include the
Knapsack problem. Given n objects with size cj and value tj , we want to
�ll a knapsack such that its value is maximized. This is an NP-hard problem,
but if we are allowed to take fractional parts of the objects, then we can solve
the problem in polynomial time, using a greedy algorithm. The greedy solution
provides us with an upper bound for the original Knapsack problem.

One can also try to apply some transformation (often called \rounding") to
a solution of the relaxed problem in order to obtain a good solution for the
original problem. The quality of the so obtained solution can then be estimated
by comparing it with the upper bound provided by the relaxed solution. There
are cases, like \totally unimodular" linear programs, where relaxations even yield
the optimal solutions, as is the case with the weighted matching problem.

The relaxation method can also be combined with semide�nite programs. Semi-
de�nite programming is a generalization of linear programming. It has been
studied for quite some time. For example, it is known that semide�nite programs
can be solved in polynomial time. The attention of algorithm designers has
turned to semide�nite programming only recently. This is due to a paper by

� This article will appear as a chapter of a book on the PCP theorem and approxi-
mation algorithms in the Springer-Verlag. References to chapters within this report
refer to chapters within that book.
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Goemans and Williamson [GW95], where for several NP-hard problems e�cient
approximation algorithms based on semide�nite programming were presented.
One of these problems is MaxCut, where the set of vertices of a given graph
has to be partitioned into two parts such that the number of edges between the
parts is maximized. (For a de�nition of the other problems considered in this
chapter, see the end of this introduction.) Goemans and Williamson describe a
randomized polynomial-time algorithm that computes a cut of size at least 0.878
times the size of the maximum cut.

The idea is to �rst formulate the MaxCut-problem as an integer quadratic
program. The relaxation considers not only integer variables as possible candi-
dates for the solution, but n-dimensional unit vectors. By this relaxation, the
solution space becomes much larger, but the resulting problem can be solved in
polynomial time with the help of semide�nite programming. From the solution
obtained in this way, an integer solution can be constructed by randomly select-
ing a hyperplane and identifying the vectors with either 1 or �1, depending on
which side of the plane they are. It can be shown that the integer solution so
obtained has an expectation for the objective function which is at least 0.878
times the relaxed solution. Thus, Goemans and Williamson have provided a
randomized 1=0:878 � 1.139-approximation algorithm for MaxCut, improving
upon the previously best approximation ratio of 2. In the conference version of
their paper, they also sketched how this method might be derandomized into a
deterministic algorithm. However, their derandomization contains a 
aw, which
is reported in the journal version of that paper. A correct but complex deran-
domization procedure has been given by Mahajan and Ramesh [MR95a].

It should be noted that (unless P=NP) there can be no polynomial-time ap-
proximation algorithm with an approximation ratio of 1+" for arbitrarily small
", since the by now famous PCP-theorem has as one of its consequences that
there is a constant "0 > 0 such that computing 1+"0-approximations for Max-

Cut is NP-hard. In fact, this constant has recently been made more explicit
by H�astad in [H�as97] who showed that (for all " > 0) already computing a
(17=16�")-approximation is NP-hard.

The article by Goemans andWilliamson has started a series of research activities.
Several authors have studied the question whether semide�nite programming can
also be applied to other graph problems or, more general, classes of problems.
The papers by Karger, Motwani and Sudan [KMS94], Klein and Lu [KL96] as
well as Bacik and Mahajan [BM95] go into this direction. Karlo� investigates
in [Kar96] whether the estimations in [GW95] are sharp and also shows that
additional linear constraints can not lead to better approximation ratios.

The essence of all these papers is that semide�nite programming is a very versa-
tile and powerful tool. BesidesMaxCut, it has been applied to obtain better ap-
proximation algorithms for several other important NP-hard problems. Among
these are the problems MaxSat, MaxkSat, MaxEkSat (especially for k = 2)
andMaxDiCut. In the following table, the approximation ratios � obtained in
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[GW95] are listed. The table also lists 1=�, since that value is more commonly
used in that paper and its successors.

Problem 1=� �

MaxDiCut 0.796 1.257
Max2Sat 0.878 1.139
MaxSat 0.755 1.324
MaxSat 0.758 1.319

(In this chapter, the approximation ratios are rounded to three decimal digits.)

The �rst of the twoMaxSat-algorithms was given in the conference version and
the second one in the �nal version. Before, the best known approximation ratio
forMaxDiCut was 4 [PY91]. ForMaxE2Sat, a 1:334-approximation algorithm
was known [Yan92, GW94].

Tuning the approach of semide�nite programming, several authors studied im-
provements of the approximation algorithms for these problems. At present,
polynomial-time algorithms with the following approximation ratios are known:

Problem 1=� � Reference
MaxDiCut 0.859 1.165 Feige/Goemans [FG95]
MaxE2Sat 0.931 1.075 Feige/Goemans [FG95]
MaxSat 0.765 1.307 Asano/Ono/Hirata [AOH96]
MaxSat 0.767 1.304 Asano/Hori/Ono/Hirata [AHOH96]
MaxSat 0.770 1.299 Asano [Asa97]

We will discuss some of the improvements in this chapter. However, our emphasis
will be on methods rather than on results. I.e., we will not present the very last
improvement on the approximation of these problems. Instead, we present the
basic methods and techniques which are needed. More precisely, we will look at
�ve basic methods used in the approximation algorithms for MaxDiCut and
MaxSat:

1. The modeling of asymmetric problems such asMaxDiCut andMaxE2Sat.

2. A method for handling long clauses in MaxSat instances.

3. Combining di�erent approximation algorithms forMaxEkSat yields better
approximations for MaxSat.

4. Adding linear restrictions to the semide�nite program can improve the ap-
proximation ratio for MaxDiCut and MaxSat. However, there are no lin-
ear restrictions which improve the MaxCut approximation from [GW95].

5. Nonuniform rounding of the solution of the semide�nite program is a way to
take advantage of the modeling of asymmetric problems. This improves the
approximation ratio. The ratio is further improved if nonuniform rounding
is combined with method 4.
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Note that there are several other approaches for the approximation ofMaxCut

and MaxSat. For example, in Chapter 12, the \smooth integer programming"
technique is described, which can be used if the instances are dense. For addi-
tional references on semide�nite programming and combinatorial optimization,
we refer to [Ali95, VB96, Goe97].

Our survey will be organized as follows: First, we describe the mathematical
tools necessary to understand the method of semide�nite programming (Sec-
tions 11.2{11.4). Since algorithms for solving semide�nite programs are rather
involved, we only give a sketch of the so-called interior-point method. We de-
scribe a \classical" approximation ofMaxCut, which is not based on semide�-
nite programming (Section 11.5.1).We then show how Goemans and Williamson
applied semide�nite programming to obtain better approximation algorithms
forMaxCut (Section 11.5.2) and analyze the quality of their algorithm. In Sec-
tion 11.6 we describe the modeling of the asymmetric problemsMaxDiCut and
MaxE2Sat. A method for modeling long clauses in a semide�nite program is
described in Section 11.7.1. We review some classical approaches for MaxSat

and explain how di�erent MaxSat algorithms can be combined in order to im-
prove the approximation ratio (Section 11.7.2). Section 11.8 describes the e�ect
of additional constraints and of a nonuniform rounding technique.

We give a formal de�nition of the problems considered in this chapter.

MaxCut

Instance: Given an undirected graph G = (V;E).
Problem: Find a partition V = V1[V2 such that the number of edges between

V1 and V2 is maximized.

We will assume that V = f1; : : : ; ng.

MaxDiCut

Instance: Given a directed graph G = (V;E).
Problem: Find a subset S � V such that the number of edges (i; j) 2 E with

tail i in S and head j in S is maximal.

MaxSat

Instance: Given a Boolean formula � in conjunctive normal form.
Problem: Find a variable assignment which satis�es the maximal number of

clauses in �.

MaxkSat, k 2 N
Instance: Given a Boolean formula� in conjunctive normal formwith at most k

literals in each clause.
Problem: Find a variable assignment which satis�es the maximal number of

clauses in �.
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MaxEkSat, k 2 N
Instance: Given a Boolean formula� in conjunctive normal formwith exactly k

literals in each clause.
Problem: Find a variable assignment which satis�es the maximal number of

clauses in �.

The variables of the Boolean formula are denoted by x1; : : : ; xn, the clauses are
C1; : : : ; Cm. Note that each algorithm for MaxkSat is also an algorithm for
MaxEkSat. An important special case is k = 2.

Sometimes, weighted versions of these problems are considered.

weighted MaxCut

Instance: Given an undirected graph G = (V;E) and positive edge weights.
Problem: Find a partition V = V1 [ V2 such that the sum of the weights of

edges between V1 and V2 is maximized.

weighted MaxDiCut

Instance: Given a directed graph G = (V;E) and nonnegative edge weights.
Problem: Find a subset S � V such that the total weight of the edges (i; j) 2 E

with tail i in S and head j in S is maximal.

weighted MaxSat

Instance: Given a Boolean formula � = C1 ^ : : : ^ Cm in conjunctive normal
form and nonnegative clause weights.

Problem: Find a variable assignment for � which maximizes the total weight
of the satis�ed clauses.

All results mentioned in this chapter hold for the unweighted and for the weighted
version of the problem. The approximation ratio for the weighted version is the
same as for the corresponding unweighted version. Since the modi�cation of the
arguments is straightforward, we restrict ourselves to the unweighted problems.

11.2 Basics from Matrix Theory

In this section, we will recall a few de�nitions and basic properties from Ma-
trix Theory. The reader interested in more details and proofs may consult, e.g.,
[GvL86]. Throughout this chapter, we assume that the entries of a matrix are
real numbers.

An n � m matrix is called square i� n = m. A matrix A such that A = AT

is called symmetric. A matrix A such that ATA is a diagonal matrix is called
orthogonal. It is orthonormal if in addition ATA = Id, i.e., AT = A�1.
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De�nition 11.1. An eigenvector of a matrix A is a vector x 6= 0 such that there
exists a � 2 C with A � x = � � x. The corresponding � is called an eigenvalue.
The trace of a matrix is the sum of the diagonal elements of the matrix.

It is known that the trace is equal to the sum of the eigenvalues of A and the
determinant is equal to the product of the eigenvalues.

Note that zero is an eigenvalue of a matrix if and only if the matrix does not
have full rank.

Another characterization of eigenvalues is as follows:

Lemma 11.2. The eigenvalues of matrix A are the roots of the polynomial

det(A � � � Id), where � is the free variable and Id is the identity matrix.

It is known that if A is a symmetric matrix, then it possesses n real eigenvalues
(which are not necessarily distinct). For such an n � n- matrix, the canonical
numbering of its n eigenvalues is �1 > �2 > : : : > �n. The number of times that
a value appears as an eigenvalue is also called its multiplicity.

De�nition 11.3. The inner product of two matrices is de�ned by

A �B :=
X
i;j

Ai;j �Bi;j = trace(AT �B):

Theorem 11.4 (Rayleigh-Ritz). If A is a symmetric matrix, then

�1(A) = max
jjxjj=1

xT �A � x and �n(A) = min
jjxjj=1

xT �A � x:

Semide�niteness

Having recalled some of the basic matrix notions and lemmata, let us now turn
to the de�nitions of de�niteness.

De�nition 11.5. A square matrix A is called

positive semide�nite if xT �A � x > 0
positive de�nite if xT �A � x > 0

�
for all x 2 Rn n f0g

In this chapter, we will abbreviate \positive semide�nite" also by \PSD."

As a corollary of Theorem 11.4, we obtain that a symmetric matrix is PSD if
and only if its smallest eigenvalue �n > 0.
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Examples of PSD matrices. It should be noted that it is not su�cient for a
matrix to contain only positive entries to make it PSD. Consider the following
two matrices

A :=

�
1 4
4 1

�
B :=

�
1 �1

�1 4

�
:

The matrix A is not PSD. This can be seen by observing that (1;�1) � A �
(1;�1)T = �6. The eigenvalues of A are 5 and �3. On the other hand, the
symmetric matrix B with negative entries is PSD. The eigenvalues of B are
approximately 4:30 and 0:697.

For a diagonal matrix, the eigenvalues are equal to the entries on the diagonal.
Thus, a diagonal matrix is PSD if and only if all of its entries are nonnegative.

Also by the de�nition, it follows that whenever B and C are matrices, then the
matrix

A =

�
B 0

0 C

�

is PSD if and only if B and C are PSD. This means that requiring some matrices
A1; : : : ; Ar to be PSD, is equivalent to requiring one particular matrix to be PSD.

Also, the following property holds: IfA is PSD, then the k�k-submatrix obtained
from A by eliminating rows and columns k + 1 to n is also PSD.

As a �nal example, consider the symmetric matrix0
BB@

1 a : : : a

a 1 : : : a

. . . . . . . . . . . . .
a a : : : 1

1
CCA

with ones on the diagonal and an a everywhere else. A simple calculation reveals
that its eigenvalues are 1 + a � (n � 1) (with multiplicity 1) and 1 � a (with
multiplicity n� 1). Hence, the matrix is PSD for all �1=(n� 1) 6 a 6 1.

Further properties. In most places in this chapter, we will only be concerned
with matrices A which are symmetric. For symmetric matrices, we have the
following lemma:

Lemma 11.6. Let A be an n� n symmetric matrix. The following are equiva-

lent:

{ A is PSD.

{ All eigenvalues of A are nonnegative.

{ There is an n � n-matrix B such that A = BT �B.
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Note that given a symmetric PSD matrix A, the decomposition A = BT � B is
not unique, since the scalar product of vectors is invariant under rotation, so
any rotation of (the vectors given by) matrix B yields another decomposition.
As a consequence, we can always choose B to be an upper triangular matrix in
the decomposition.

Goemans-Williamson's approximation algorithm uses a subroutine which com-
putes the \(incomplete) Cholesky decomposition" of a given PSD symmetric
matrix A. The output of the subroutine is a matrix B such that A = BT � B.
This decomposition can be performed in time O(n3), see e.g. [GvL86].
As an example, consider the following Cholesky decomposition:

A =

�
1 �1

�1 4

�
=

�
1 0

�1
p
3

�
�
�

1 �1
0

p
3

�

Remark 11.7. The problem of deciding whether a given square matrix A is
PSD can be reduced to the same problem for a symmetric matrix A0. Namely,
de�ne A0 to be the symmetric matrix such that A0

i;j :=
1
2
� (Ai;j +Aj;i). Since

xT �A � x =
X
i;j

Ai;j � xi � xj ;

it holds that xT �A0 � x = xT �A � x and A0 is PSD if and only if A is PSD.

11.3 Semide�nite Programming

One problem for a beginner in semide�nite programming is that in many papers,
semide�nite programs are de�ned di�erently. Nevertheless, as one should expect,
most of those de�nitions turn out to be equivalent. Here is one of those possible
de�nitions:

De�nition 11.8. A semide�nite program is of the following form. We are look-

ing for a solution in the real variables x1; : : : ; xm. Given a vector c 2 R
m, we

want to minimize (or maximize) c �x. The feasible solution space from which we

are allowed to take the x-vectors is described by a symmetric matrix SP which

as its entries contains linear functions in the xi-variables. Namely, an x-vector

is feasible i� the matrix SP becomes PSD if we plug the components of x into

the corresponding positions.

Here is an example of a semide�nite program:

maximize x1 + x2 + x3

such that

0
@ 1 x1 � 1 2x1 + x2 � 1

x1 � 1 �x1 x2 + 3
2x1 + x2 � 1 x2 + 3 0

1
A is PSD.
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Again, by Remark 11.7, when we are modeling some problem, we need not
restrict ourselves to symmetric matrices only.

The matrix that we obtain by plugging into SP the values of vector x will also
sometimes be written as SP(x).

Given an " and a semide�nite program which has some �nite, polynomially
bounded solution, the program can be solved in polynomial time, up to an error
term of ". In general, an error term cannot be avoided since the optimal solution
to a semide�nite program can contain irrational numbers.

Semide�nite programming is a generalization of linear programming. This can
be seen as follows. Let the linear inequalities of the linear program be of the
form a1x1+ : : :+amxm+ b > 0. Given r linear inequalities INi > 0, (1 6 i 6 r),
we can de�ne the matrix SP for the semide�nite program to be of the following
diagonal form: 0

BB@
IN1 0 � � � 0
0 IN2 � � � 0
� � � � � � � � � � � �
0 0 � � � INr

1
CCA

Since a diagonal matrix is PSD if and only if all of its entries are nonnegative, we
have that the feasible solution spaces for the linear program and the semide�nite
program are equal. Hence, linear programming can be seen as the special case
of semide�nite programming where the given symmetric matrix SP is restricted
to be diagonal.

The feasible solution space which is de�ned by a semide�nite program is convex.
This can be seen as follows:

Given two feasible vectors x and y and its corresponding matrices SP(x) and
SP(y), all vectors \between" x and y are also feasible, i.e., for all 0 6 � 6 1,

SP ((1 � �)x+ �y) = (1 � �)SP(x) + �SP(y)

is also PSD, as can easily be seen: For all v,

vT � SP((1� �)x+ �y) � v = vT � (1� �) � SP(x) � v + vT � � � SP(y) � v > 0:

This means that the feasible solution space which we can describe with the help
of a semide�nite program is a convex space. As a consequence, we are not able
to express a condition like \x > 1 or x 6 �1" in one dimension.

For a beginner, it is hard to get a feeling for what can and what cannot be
formulated as a semide�nite program. One of the reasons is that - contrary to
linear programs - it makes a big di�erence whether an inequality is of the type
\6" or \>", as we shall soon see.

In the following, we show that a large class of quadratic constraints can be
expressed in semide�nite programs.
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11.3.1 Quadratically constrained quadratic programming

Quadratically constrained quadratic programming can be solved using semidef-
inite programming, as we shall see now. Nevertheless, Vandenberghe and Boyd
[VB96] state that as far as e�ciency in the algorithms is concerned, one should
better use interior-point methods particularly designed for this type of problems.
A quadratically constrained quadratic program can be written as

minimize f0(x)

such that fi(x) 6 0; i = 1; : : : ; L

where the fi are convex quadratic functions fi(x) = (Aix + bi)T (Aix + bi) �
cTi x� di. The corresponding semide�nite program looks as follows:

minimize t

such that

�
I A0x+ b0

(A0x+ b0)T cTo x+ d0 + t

�
is PSD and

8i :
�

I Aix+ bi
(Aix+ bi)T cTi x+ di

�
is PSD.

As we have seen earlier, the AND-condition of matrices being PSD can easily be
translated into a semide�nite program.

As an example, consider the following problem in two dimensions:

minimize �x+ y

2
(11.1)

such that y > x2 and y 6
x

3
+
1

2

The space of feasible solutions consists of all points located \between" the
parabola and the straight line shown in Figure 11.1. We leave it as an exer-
cise to the reader to compute the optimal solution (Exercise 11.2).

0

0.2

0.4

0.6

0.8

1.0

-1 -0.5 0.5 1
x

Fig. 11.1. Graphical representation of the program (11.1).
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Since the feasible space is convex, we are not able to express a condition like
y 6 x2 in a semide�nite program. This shows that one has to be careful with
the direction of the inequalities, in contrast to linear programs.

As another example, consider the symmetric 2� 2-matrix�
a b

b c

�
:

This matrix is PSD if and only if a > 0; c > 0, and b2 6 ac. Consequently,�
x1 2
2 x2

�

allows us to describe the feasible solution space x1 � x2 > 4; x1 > 0.

Finally, we remark that in some papers, a semide�nite program is de�ned by

minimize C �X such that Ai �X = bi (1 6 i 6 m) and X is PSD

where X;C;Ai are all symmetric matrices. In fact, this is the dual (see Sec-
tion 11.4) of the de�nition we gave.

11.3.2 Eigenvalues, Graph Theory and Semide�nite Programming

There are interesting connections between eigenvalues and graph theory, let us
for example state without proof the \Fundamental Theorem of Algebraic Graph
Theory" (see, e.g., [MR95b, p. 144]).

Theorem 11.9. Let G = (V;E) be an undirected (multi)graph with n vertices

and maximum degree �. Then, under the canonical numbering of its eigenvalues

�i for the adjacency matrix A(G), the following holds:

1. If G is connected, then �2 < �1.

2. For 1 6 i 6 n; j�ij 6 �.

3. � is an eigenvalue if and only if G is regular.

4. G is bipartite if and only if for every eigenvalue � there is an eigenvalue ��
of the same multiplicity.

5. Suppose that G is connected. Then, G is bipartite if and only if ��1 is an

eigenvalue.
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Another connection is described by the so-called Lov�asz number. Given an ad-
jacency matrix A, we obtain the matrix A0 by changing A as follows: Put 1's on
the main diagonal, and replace every 0 at a position (i; j) by the variable xi;j.

The Lov�asz number of a graph is de�ned by

�(G) = min
x2Rn

�1(A
0(x))

The Lov�asz number of a graph can be used to obtain an upper bound for the
maximum clique-size !(G) in a graph G, namely: !(G) 6 �(G):

We sketch the proof of this property: Without loss of generality, the largest clique
of size k is on the �rst k vertices. This means that the k-th \principal submatrix"
contains ones only. Frommatrix theory, it is known that the largest eigenvalue of
a matrix is at least the value of the largest eigenvalue of any principal submatrix.
Since k is an eigenvalue of the k-th principal submatrix, we obtain

�(G) > �1(A
0) > k = !(G):

The largest eigenvalue of a symmetric matrix can be computed with the help of
a semide�nite program. Let �1; : : : ; �n be the eigenvalues of a matrix A. Then
the eigenvalues of z � Id � A are z � �1; : : : ; z � �n. Hence, the solution to the
following semide�nite program yields the largest eigenvalue of A:

minimize z such that z � Id� A is PSD

It is now obvious that we can also compute the Lov�asz number of a graph with
the help of semide�nite programming.

11.4 Duality and an Interior-Point Method

Duality is an important concept in mathematical programming. It allows one to
prove optimality of a given solution in a simple fashion. Furthermore, it plays a
crucial role in algorithms which employ the interior-point method to solve such
mathematical programs.

In this section, we will sketch very roughly the interior-point method by Ye
which can be employed in solving a semide�nite program. The reader interested
in details is referred to [Ye90].

Let us �rst recall the concept of duality from linear programming. A linear
program (LP) consists (without loss of generality) of the following:

minimize cTx such that Ax = b and x > 0:
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As an example,

minimize x1+3x2+x3 such that x1+ x2 = 3; x3�x1 = 4; x1; x2; x3 > 0:

Without solving the linear program explicitly, we can get bounds from the linear
equalities. For example, since the objective function x1 + 3x2 + x3 is at least
x2+x3, and adding the �rst two linear equalities yields the condition x2+x3 = 7;
we know that the optimal solution cannot be smaller than seven. One can now
see that taking any linear combination of the equalities yields a bound whenever
it is smaller than the objective function. Of course, we want to obtain a bound
which is as large as possible. This yields the following problem.

maximize bT � y such that AT � y 6 c:

This is another linear program which is called the dual of the original one, which
is called the primal. Our arguments above can be used to show that any solution
to the dual yields a lower bound for the primal.

This principle is known as weak duality: The optimum value of the dual is not
larger than the optimum value of the primal. Even more can be shown, namely
that for linear programming, strong duality holds, i.e., both values agree:

If the primal or the dual is feasible, then their optima are the same.

This shows that duality can be used to prove optimality of some solution easily:
We just provide two vectors x and y which are feasible points in the primal and
dual, respectively. If bTy = cTx, we know that x must be an optimal point in
the primal and dual problem.

It also makes sense to measure for an arbitrary point x how far away it is from the
optimum. For this purpose, we solve the primal and dual simultaneously. Given
a primal-dual pair x; y in between, one de�nes the duality gap as cT � x� bT � y.
The smaller the gap, the closer we are to the optimum.

Similar concepts hold for semide�nite programming. Before exhibiting what the
correspondences are, we want to sketch how duality can be used in an interior-
point method for solving a linear program.

Khachian was the �rst to come up with a polynomial-time algorithm for solving
linear programs. His method is known as the ellipsoid algorithm. Later, Kar-
markar found another, more practical, polynomial-time algorithmwhich founded
a family of algorithms known as the interior-point method.

On a very abstract level, an interior-point algorithm proceeds as follows: Given
a point x in the interior of the polyhedron de�ned by the linear inequalities,
it maps the polyhedron into another one in which x is \not very close to the
boundaries." Then, the algorithm moves from x to some x0 in the transformed
space, and it maps x0 back to some point in the original space. This step is
repeated until some potential function tells us that we are very close to the
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optimal solution. Then, we can either stop and be happy with the good enough
approximation, or we can apply another procedure which from this point obtains
an optimal solution.

In de�ning the potential function, the size L of a linear program is needed which
measures how many bits we need to store the program. We do not want to give
a formal de�nition, since it is very close to the intuition. As one consequence,
it is valid that every vertex of a linear program has rational coordinates where
the numerator and denominator can be written using L bits only. (A vertex is a
feasible point x such that there is no vector y 6= 0 with x+y and x�y feasible.)

There is the following lemma:

Lemma 11.10. If x1 and x2 are vertices of Ax = b; x > 0, then either cTx1 �
cTx2 = 0 or cTx1 � cTx2 > 2�2L.

This means that we only need to evaluate the objective function with an error
less than 2�2L since whenever we have reached a point which has distance less
than 2�2L to the optimum, then it must be the optimal point.

The �rst step in Ye's interior-point algorithm consists of a�ne scaling. Given
a current solution pair x; y for the primal and dual, a scaling transformation
(which depends on x and y) is applied to the LP. This a�ne scaling step does
not change the duality gap.

The potential function is de�ned as follows:

G(x; y) := q � ln(xT � y) �
nX
i=1

ln(xiyi) for q = n+ d
p
n e:

From the de�nition of the potential function G, it follows that if G(x; y) 6
�kpnL, then xT � y is small enough to imply that x is an optimal solution to
the primal problem. The high-level description of Ye's algorithm now looks as
follows:

Ye's algorithm

while G(x; y) > �2pnL
do a�ne scaling
do change either x or y according to some rule

end

It can be shown that the \rule" above can be chosen such that in every step of
the while-loop, the potential function decreases by a constant amount, say 7

120
.

It can also be shown that one can obtain an initial solution which has a potential
of size O(pnL).
Altogether, this guarantees that the while loop will be executed O(pnL) many
times, and it can be shown that every step of the operation can be performed in
time O(n3).
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Let us now try to sketch very roughly what this algorithm looks like in the
context of semide�nite programs: The primal and dual problems look as follows:

Primal

maximize bTy

such thatC�
Pm

i=1 yiAi is PSD.

Dual

minimize C �X
such that Ai �X = bi; i = 1 : : :m

and X is PSD.

Here is a proof of weak duality:

Lemma 11.11. Let X be a feasible matrix for the dual and y be any feasible

vector for the primal. Then C �X > bTy.

Proof. C �X �
mX
i=1

biyi = C �X �
mX
i=1

(Ai �X)yi = (C �
mX
i=1

yiAi) �X > 0:

The last inequality holds since the inner product of two PSD matrices is non-
negative.

One of the things that make semide�nite programmingmore complex than linear
programming is that the strong duality of a problem pair cannot be proved in a
fashion as simple as for linear programming.

Nevertheless, it can be shown that whenever a polynomial a priori bound on the
size of the primal and dual feasible sets are known, then the primal-dual pair
of problems can be transformed into an equivalent pair for which strong duality
holds.

A primal-dual solution pair now is a pair of matrices X and Y , and the potential
function is de�ned as follows:

G(X;Y ) = q � ln(X � Y )� lndet(XY ):

Like in Ye's algorithm, one now proceeds with a while-loop where in every single
step the potential function is reduced by a constant amount, and after at most
O(pn j log "j ) executions of the while-loop a solution with duality gap at most
" can be found. Nevertheless, the details are much more di�cult and beyond
the scope of this survey. The interested reader may �nd some of those details in
[Ali95] or in [Ye90].

As Alizadeh [Ali95] notes, the remarkable similarity between Ye's algorithm
for linear programming and its version for semide�nite programming suggests
that other LP interior-point methods, too, can be turned into algorithms for
semide�nite programming rather mechanically.
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Why an a priori bound makes sense. Whereas for a linear program, we
have a bound of 2L on the size of the solutions given the size L of the linear pro-
gram, the situation is di�erent for semide�nite programs. Consider the following
example from Alizadeh:

minimize xn such that x1 = 2 and xi > x2i�1

The optimum value of this program is of course 22
n

. This is a semide�nite pro-
gram since we have already seen earlier that the condition xi > x2i�1 can be
expressed. Just outputting this solution would take us time 
(2n).

11.5 Approximation Algorithms for MaxCut

We recall the de�nition of MaxCut.

MaxCut

Instance: Given an undirected graph G = (V;E).
Problem: Find a partition V = V1[V2 such that the number of edges between

V1 and V2 is maximized.

MaxCut is an NP-hard problem. There is also a weighted version in which
there is a positive weight for every edge and we are asked to compute a partition
where the sum of the edge weights in the cut is maximized.

11.5.1 MaxCut and Classical Methods

It is known that the weight of the largest cut is at least 50 percent of the graph
weight. A simple probabilistic argument works as follows: Scan the vertices v1 to
vn and put each independently with probability 1=2 into V1 and with probability
1=2 into V2. The probability of an edge being in the cut is 1=2. By linearity of
expectation, the expected value is at least 50% of the graph weight, hence there
exists a cut of this weight. As one might guess, this simple argument can be
derandomized, leading to a simple greedy strategy which is a 2-approximation
algorithm.

It has also been shown by Ngoc and Tuza (see, e.g., the survey paper by Poljak
and Tuza [PT95]) that for every 0 < " < 1=2, it is NP-complete to decide
whether the largest cut of a graph has size at least (1=2 + ") � jEj.
Before the work of Goemans and Williamson, progress has only been on improv-
ing additional terms. We sketch one of those results from [HL96] here:

Theorem 11.12. Every graph G has a cut of size at least
w(G)+w(M)

2
, where

M is a matching in G. (Here, w(G) and w(M ) denote the sum of weights of the

edges in those subgraphs.) Given M , such a cut can be computed in linear time.
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We give a proof sketch of the existence. We process the edges of the matching
consecutively. For an edge e = fv; wg of the matching, we either add v to V1 and
w to V2, or we add v to V2 and w to V1, each with probability 1/2. Remaining
vertices are distributed independently to either V1 or V2, each with probability
1=2. It can now be seen that the edges in the matching appear in the cut, and
other edges appear with probability 1=2, which means that the expected value

of the cut is w(G)+w(M)

2
. (The reader is asked to derandomize this experiment

in Exercise 11.3).

By Vizing's Theorem, the edges of every graph can be partitioned into at most
�+ 1 matchings (where � denotes the maximum degree in a graph). Thus, one
of them has size at least jEj=(�+ 1) yielding that every graph has a cut of size
at least (jEj=2) � (1 + 1=(�+ 1)):

11.5.2 MaxCut as a Semide�nite Program

We �rst observe that the optimum value of MaxCut can be obtained through
the following mathematical program:

maximize
X

fi;jg2E

1� yiyj

2
such that yi 2 f�1; 1g for all 1 6 i 6 n:

The idea is that V1 = fi j yi = 1g and V2 = fi j yi = �1g constitute the two
classes of the partition for the cut. The term (1 � yiyj)=2 contributes 1 to the
sum i� yi 6= yj and 0 otherwise.

We want to relax this program into such a form that we can use semide�nite
programming. If we relax the solution space from one dimension to n dimensions,
we obtain the following mathematical program:

maximize
X

fi;jg2E

1� yiyj

2
such that jjyijj = 1; yi 2 Rn:

(Note that in this section only, vector variables are underlined in order to dis-
tinguish them more clearly from integer variables.)

This is not yet a semide�nite program, but by introducing new variables, we can
cast it as a semide�nite program:

max
X

fi;jg2E

1� yi;j

2
such that

0
BBBBB@

1 y1;2 y1;3 : : : y1;n
y1;2 1 y2;3 : : : y2;n
y1;3 y2;3 1 : : : y3;n
...

...
...

. . .
...

y1;n y2;n y3;n : : : 1

1
CCCCCA is PSD:
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α

vj

vi

Fig. 11.2. The angle � = arccos(vi �vj) between the vectors vi and vj is invariant
under rotation.

The reason is the following: By the third equivalence condition in Lemma 11.6,
the matrix de�nes a solution space in which every variable yi;j can be written
as the product of some vi � vj . The diagonal guarantees that jjvijj = 1 for all i.

This is a relaxation since any solution in one dimension (with the other compo-
nents equal to zero) yields a feasible solution of this semide�nite program with
the same objective function value.

Now, assume that we are given an (optimal) solution to this semide�nite pro-
gram. We proceed as follows in order to obtain a partition :

{ Use Cholesky decomposition to compute vi, i = 1; : : : ; n such that yi;j = vi �vj.
This can be done in time O(n3).

{ Choose randomly a hyperplane. (This can be done by choosing some random
vector r as the normal of the hyperplane.) For this purpose, use the rotationally
symmetric distribution.

{ Choose V1 to consist of all vertices whose vectors are on one side of the hy-
perplane (i.e., r � vi 6 0) and let V2 := V n V1.

The process of turning the vectors vi into elements from f�1; 1g by choosing a
hyperplane is also called the \rounding procedure." It remains to show that the
partition so obtained leads to a cutsize which is at least 87% of the optimum
cutsize. For this purpose, we consider the expected value of the cutsize obtained.
Because of linearity, we only need to consider for two given vectors vi and vj the
probability that they are on di�erent sides of the hyperplane. Since the product
vi � vj is invariant under rotation, we can consider the plane de�ned by the two
vectors, depicted in Figure 11.2.

First, we note that the probability that the hyperplane H chosen randomly is
equal to the considered plane is equal to zero.

In the other cases, H and the plane de�ned by vi and vj intersect in a straight
line. If the two vectors are to be on di�erent sides of the hyperplane H, then this
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intersection line has to lie \between" vi and vj (i.e., fall into the shaded part of

the �gure) which happens with probability

2�

2�
=
�

�
=

arccos(vi � vj)
�

:

Hence, the expected value of the cut is equal to

E[cutsize] =
X

fi;jg2E

arccos(vi � vj)
�

: (11.2)

We remark that one can also arrive at this expression by observing that

E[sgn(r � vi) � sgn(r � vj)] =
1

2�
�
Z 2�

'=0

sgn(cos') � sgn(cos('� �)) d' = 1� 2 � �
�
:

Whenever we solve a concrete semide�nite relaxation of the MaxCut problem,
we obtain an upper bound on theMaxCut solution. The quality of the outcome
of the rounding procedure can then directly be measured by comparing it with
this upper bound.

Nevertheless, one is of course interested in how good one can guarantee the
expected solution to be in the worst case. The next two subsections will analyze
this worst case behavior. One should keep in mind, though, that experiments
indicate that in \most" cases, the quality of the solutions produced is higher
than in the worst case.

Analyzing the Quality Coarsely. We compare the expected value (11.2)
with the value of the relaxed program. One way to do so is to compare every
single term arccos(vi � vj)=� with (1� vi � vj)=2.
Solving a simple calculus exercise, one can show that in the range �1 6 y 6 1,

arccos(y)

�
> 0:87856 � 1� y

2
:

(Let us denote by �GW = 0:87856 : : : the maximum constant we could have
used.)
A sketch of the involved functions may also be quite helpful. The following �gure
shows the function arccos(y)=� as well as the function (1� y)=2.

0
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0.4

0.6

0.8

1.0

-1 -0.5 0.5 1y
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The following two �gures show the quotient arccos(y)

�
=1�y

2
in the range �1 6

y 6 1 and �1 6 y 6 0, respectively. (At �rst sight, it is rather surprising
that the quotient is larger than 1 for y > 0, since our randomized procedure
then yields terms which are larger than the terms in the relaxed program.)

1

2

3

4

5

6

7

8

9

-1 -0.5 0 0.5 1
y

0.88

0.90

0.92

0.94

0.96

0.98

1.00

-1 -0.8 -0.6 -0.4 -0.2 0
y

Let Relaxopt denote the optimal value of the semide�nite program. The conclu-
sion of the analysis above is that the expected value of the cutsize produced
by the rounding procedure is at least 0:878 �Relaxopt, hence the quality of the
solution is also not larger than 1=0:878 � 1:139.

We also see that the quality of the solution obtained could be improved if we
could achieve that vi � vj is \far away" from approximately �0:689.

Thus, one might hope that extra constraints could improve the quality of the
solution. In this direction, Karlo� [Kar96] has shown that the quality of the
rounding procedure cannot be improved by adding linear inequality constraints
to the semide�nite program. For MaxCut, the ratio can be improved for some
families of graphs, but not in the general worst case. However, additional lin-
ear inequality constraints can improve the approximation ratio in the case of
MaxDiCut and MaxE2Sat, see Section 11.8.

Analyzing the Quality More Precisely. In the above subsection, we have
analyzed the quality of our solution term by term. We can improve our estima-
tions by taking into account the value of the solution our semide�nite program
has produced.

For this purpose assume that the optimum is assumed for some values of yi;j,
and let Ysum :=

P
fi;jg2E yi;j. Then,

Relaxopt :=
X

fi;jg2E

1� yi;j

2
=

jEj
2
� 1

2
� Ysum

depends only on Ysum and not on each individual value yi;j.

If Relaxopt is known, then Ysum = jEj�2 �Relaxopt 6 0 is known. We can ask for
which individual values of yi;j summing to Ysum, S :=

P
i;j arccos(yi;j) attains a

minimum. Observe that arccos(y) is convex on [�1; 0] and concave on [0; 1] (the

derivative of arccos y is �1=
p
1� y2).
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In Exercise 11.4, we ask the reader to verify the following: If Ysum is �xed,
then the yi;j for which

P
i;j arccos(yi;j) attains a minimum, ful�ll the following

property:
There is a value Y 6 0 and an r with jEj=2 6 r 6 jEj such that r of the yi;j are
equal to Y and jEj � r of the yi;j are equal to one.

Then,
P

fi;jg2E arccos(yi;j) = r � arccos(Ysum�jEj+r
r

) and the quotient
P

fi;jg
arccos(yi;j)

Relaxopt
can be estimated. We obtain that

E[cutsize]

Relaxopt
> min

jEj=26r6jEj

r � arccos(Ysum�jEj+r
r

)

� �Relaxopt

= min
r

arccos( r�2�Relaxopt
r

)

� �Relaxopt=r

=
arccos(1� 2x)

� � x =: q(x);

where we have substituted x := Relaxopt=r for the r where the minimum is
attained. We have obtained the following: Given a graph G with optimal cut-
size MC, and \relative" cutsize y := MC=jEj, it holds that y 6 x and thus
the \rounding quality" E[cutsize]=Relaxopt obtained for graph G is at least
minx>y q(x). Below, we give a plot of Q(y) := minx>y q(x).

0.88
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0.92

0.94

0.96

0.98

1.00

0.5 0.6 0.7 0.8 0.9 1.0

As we can see, the quality of the rounding procedure becomes better when the
relative maximum cutsize of the input graph becomes larger.

The above analysis only considers the quality of the rounding procedure. Karlo�
has shown in [Kar96] that there is a family of graphs for which the quality of
the rounding procedure is arbitrarily close to �GW . Nevertheless, it might be
possible to obtain a better approximation ratio than 1=�GW � 1:139 by using
a di�erent rounding procedure, since for the family of graphs constructed by
Karlo�, the optimum cutsize is equal to Relaxopt.
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Thus, it is also a natural question to ask how much larger Relaxopt can be
compared to the optimumMaxCut solution MAXopt.

Karlo� [Kar96] calls this the \integrality ratio", and remarks that from his paper,
nothing can be concluded about this \integrality ratio."

On the other hand, Goemans and Williamson mention that for the input graph
\5-cycle", MAXopt=Relaxopt = 0:88445 : : : holds which gives a graph where the
relaxation is relatively far away from the original best solution.

It is clear that for these graphs, even a better rounding procedure would not
lead to better results.

The above considerations suggest that it would be nice if we could keep a sub-
stantial subset of all products vi � vj away from � �0:689, where the worst
case approximation 0:878 : : : is attained. One might hope that adding extra con-
straints might lead to better approximation ratios.

Implementation Remarks. For practical purposes, it is probably not a good
idea to derandomize the probabilistic algorithm given by Goemans and William-
son, since it seems very likely that after only a few rounds of choosing random
hyperplanes, one should �nd a good enough approximation, and the quality of
the approximation can also be controlled by comparing with the upper bound
of the semide�nite program.

Nevertheless, it is an interesting theoretical problem to show that semide�nite
programming also yields a deterministic approximation algorithm.

In the original proceedings paper by Goemans and Williamson, a derandom-
ization procedure was suggested which later turned out to have a 
aw. A new
suggestion was made by Mahajan and Ramesh [MR95a], but their arguments
are rather involved and technical which is why we omit them in this survey. One
can only hope that a simpler deterministic procedure will be found.

Just one little remark remains as far as the implementation of the randomized
algorithm is concerned. How do we draw the vector r, i.e., how do we obtain the
rotationally symmetric distribution? For this purpose, one can draw n values r1
to rn independently, using the standard normal distribution. Unit length of the
vector can be achieved by a normalization.

For the purposes of the MaxCut-algorithm, a normalization is not necessary
since we are only interested in the sign of r �vi. The standard normal distribution
can be simulated using the uniform distribution between 0 and 1, for details see
[Knu81, pp. 117 and 130].
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11.6 Modeling Asymmetric Problems

In the following, we describe approximation algorithms for MaxDiCut and
Max2Sat/MaxE2Sat. The algorithms are based on semide�nite programming.
All results in this section (as well as many in the following section) are due to
Goemans and Williamson [GW95].

The general approach which yields good randomized approximation algorithms
forMaxDiCut andMaxE2Sat is very similar to the approach used to approx-
imate MaxCut with ratio 1.139, cf. Section 11.5.2. We summarize the three
main steps of this approach:

1. Modeling. First, model the problem as an integer quadratic problem over
some set Y = fy1; : : : ; yng of variables. The objective function is linear in
fyiyj : yi; yj 2 Y g. The only restrictions on the variables are yi 2 f�1; 1g,
yi 2 Y .

2. Relaxation. Consider the semide�nite relaxation of the integer quadratic
problem. The relaxed problem has jY j2 variables yi;j. The objective function
is linear in these variables. In the relaxation, the restriction is that the
matrix (yi;j) is PSD and that all entries on the main diagonal of this matrix
are one.

An optimal solution of the semide�nite program can be computed in poly-
nomial time with any desired precision ".

3. Rounding. By a Cholesky decomposition, the solution of the relaxation
can be expressed by n vectors vi 2 Rn. Use these vectors in a probabilistic
experiment, i.e., choose a hyperplane at random and assign +1 and �1 to the
variables yi. The result is a (suboptimal) solution of the integer quadratic
problem.

In order to approximateMaxDiCut andMaxE2Sat, step 2 will be exactly the
same as for MaxCut. Step 3, the rounding, will be almost the same. However,
the modeling in step 1 is di�erent.

The di�erence in the modeling stems from an asymmetry which is inherent in
the problems MaxDiCut and MaxE2Sat. MaxCut is a symmetric problem,
since switching the role of the \left" and the \right" set of the partition does not
change the size of the cut. Thus, the objective function of the integer quadratic
program ofMaxCut models only whether the vertices of an edge are in di�erent
sets:

maximize
X

fi;jg2E

1� yi � yj
2

such that yi 2 f�1; 1g 8i 2 f1; : : : ; ng
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Of course, for any set S of vertices, the value of the objective function for the
cuts (S; S) and (S; S) is the same. In contrast, for a directed cut the direction
of an edge does make a di�erence. The objective function must distinguish the
directed cuts (S; S) and (S; S).

We describe an approach to model these problems by a semide�nite program.

11.6.1 ApproximatingMaxDiCut

As before, we want the values of the variables yi of the integer quadratic program
to be restricted to 1 or �1. The reason is that this simpli�es the relaxation. The
objective function must be linear in the product yi � yj of any pair (yi; yj) of
variables. However, we cannot distinguish edge (i; j) from edge (j; i) by just
looking at the product yi � yj .

The trick Goemans and Williamson use to model the direction of an edge is to
introduce a new variable y0. Like other variables, y0 may be �1 or 1. Now, the
graph-theoretical property

i 2 S

is expressed in the integer quadratic program by the property

yi � y0 = 1:

In this way, the term

(1 + yiy0) � (1� yjy0) = 4 = (1 + yiy0 � yjy0 � yiyj) = 4 (11.3)

is equal to 1 if yi = y0 = �yj . Otherwise, it is 0. Thus, (11.3) represents the
contribution of edge (i; j) to the objective function. The value of the whole
directed cut, i.e., the objective function for MaxDiCut, is the sum of term
(11.3) over all edges in the graph. In this way, we get

maximize
X

(i;j)2E

1 + yiy0 � yjy0 � yiyj

4
(11.4)

such that yi 2 f�1; 1g 8i 2 f0; : : : ; ng

as an integer quadratic program modeling the problemMaxDiCut.

Remark 11.13. An equivalent view of (11.4) is that an isolated vertex 0 62 V

has been added to the graph. For any cut, the objective function counts exactly
those edges (i; j) where the tail i is in the same set as 0 and where the head j is
in the other set.
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As in the MaxCut approximation, step 2 of the MaxDiCut approximation
consists of relaxing to

maximize
X

(i;j)2E

1 + yiy0 � yjy0 � yiyj

4
(11.5)

such that yi 2 Rn+1; kyik = 1 8i 2 f0; : : : ; ng:

Note that in this case the relaxation is to the (n+ 1)-dimensional vector space.

Letting yi;j = yi � yj , we obtain the semide�nite program

maximize
X

(i;j)2E

1 + yi;0 � yj;0 � yi;j

4
(11.6)

such that the matrix (yi;j) is PSD;

yi;i = 1 8i 2 f0; : : : ; ng:

By solving (11.6) and computing the Cholesky decomposition, we get vectors
v0; v1; : : : ; vn such that (yi;j) = (v0; v1; : : : ; vn)T (v0; v1; : : : ; vn) maximizes the
value of the objective function (within the desired precision).

The next step consists of rounding the vectors v0; v1; : : : ; vn. Because of the
special role of v0, this step slightly di�ers from the rounding step forMaxCut. In
a certain sense, the inner product vi �v0 measures the probability of vertex i being
in cut S of the output. If vi �v0 = 1, then i 2 S with probability 1, if vi �v0 = �1,
then i 2 S with probability 0. More formally, with uniform distribution, choose
a unit vector r 2 Rn+1 and let Hr be the hyperplane through the origin which
has normal r. Let

S := fi : sgn(vi � r) = sgn(v0 � r)g
be the set of those vertices i where vi and v0 are on the same side of Hr. The
randomized procedure outputs this set S.

The probability of edge (i; j) occurring in the directed cut is exactly

Probr2Rn+1;krk=1[sgn(vi � r) = sgn(v0 � r) 6= sgn(vj � r)]:

By arguments from spherical geometry (see [GW95] for details), for any unit
vectors vi; vj; v0 2 Rn+1, this probability is at least

0:796 � 1 + viv0 � vjv0 � vivj

4
:

This yields

Theorem 11.14 ([GW95]). MaxDiCut can be approximated by a random-

ized polynomial-time algorithm with approximation ratio 1.257, i.e., the expected

value of the computed solution is at least 0.796 times the optimal solution.
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11.6.2 ApproximatingMax2Sat

We turn to the approximation ofMax2Sat. Of course, the results in this section
also hold for MaxE2Sat.

As MaxDiCut, Max2Sat is an asymmetric problem: In general, switching the
truth values in an assignment for the variables in a Boolean formula will change
the number of clauses which are satis�ed.

As before, we will use an additional variable y0 when modelingMax2Sat. (\The
value of y0 will determine whether �1 or 1 will correspond to `true' in the
Max2Sat instance" [GW95].) Let v(C) 2 f0; 1g denote the contribution of
clause C to the objective function. Thus, the contribution of a singleton clause xi
(or xi) is

v(xi) =
1 + yi � y0

2
(11.7)

(or

v(xi) =
1� yi � y0

2
; (11.8)

respectively). For clauses of length two, say xi _ xj , we have

v(xi _ xj) = 1� v(xi) � v(xj)

= 1� 1� yi � y0
2

� 1 + yj � y0
2

=
1 + yi � y0

4
+

1� yj � y0
4

+
1 + yi � yj

4
: (11.9)

In this way, the value of all clauses of length up to two can be expressed as
nonnegative linear combinations of 1 + yi � yj and 1 � yi � yj . Thus, we can
compute nonnegative ai;j, bi;j such that

mX
i=1

v(Ci) =
X
i;j

ai;j(1 + yi � yj) + bi;j(1� yi � yj):

The Max2Sat instance is thus modelled by the integer quadratic program

maximize
X
i;j

ai;j(1 + yi � yj) + bi;j(1� yi � yj) (11.10)

such that yi 2 f�1; 1g 8i 2 f0; : : : ; ng

and the semide�nite formulation of the relaxation is

maximize
X
i;j

ai;j(1 + yi;j) + bi;j(1� yi;j) (11.11)

such that the matrix (yi;j) is PSD,

yi;i = 1 8i 2 f0; : : : ; ng:
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In the rounding procedure, those variables xi are set to true where the vectors
vi and v0 of the Cholesky decomposition are on the same side of the random
hyperplane.

By an argument that is similar to the one used in the analysis of MaxCut, the
expected value of the computed solution is at least 0.878 times the value of an
optimal solution. I.e., we have

Theorem 11.15 ([GW95]). Max2Sat (and, thus, MaxE2Sat) can be ap-

proximated by a randomized polynomial-time algorithm with approximation ratio

1.139.

11.7 Combining Semide�nite Programming with

Classical Approximation Algorithms

Prior to the work in [GW95], at least three di�erent approaches to approximate
MaxEkSat/MaxSat have been proposed: Johnson's algorithm, an algorithm
based on network 
ow, and an algorithm based on linear programming. To dis-
tinguish these approaches from the semide�nite programming technique, we call
them classical algorithms.

Johnson's algorithm. Johnson's algorithm [Joh74] is the derandomization
of the probabilistic algorithm where the truth assignment is uniformly cho-
sen among all possible assignments. This algorithm is described in Chapter 2
and derandomized in Chapter 3.MaxEkSat is solved with approximation ratio
1=(1 � 2�k). The approximation ratio for MaxSat is at least 2. (Poljak and
Turz��k describe another MaxSat algorithm that achieves the same approxima-
tion ratio.)

Network 
ow. Yannakakis [Yan92] describes an approximation algorithm for
MaxSat which is based on computing maximal 
ows in networks. Yannakakis'
algorithm is rather involved. Asano et al. [AHOH96] give an outline of this
algorithm. The main idea is to construct several networks. The maximum
ow in
these networks is used to partition the set of variables in the Boolean formula into
three classes. The variables in the �rst (second, third) class are independently
set to be true with probability 0.5 (0.555, 0.75, respectively). The expected value
of the approximation ratio of this algorithm is shown to be 1.334. The algorithm
can be derandomized.

Linear programming. Chapter 2 contains a description of a MaxSat-algo-
rithm due to Goemans and Williamson [GW94] which solves the linear relaxation
of an integer program modeling MaxSat. The solution of the linear program
determines for each variable the probabilitywith which this variable is set to true.
This algorithm solvesMaxkSat with approximation ratio 1=(1�(1�1=k)k) and
MaxSat with approximation ratio e=(e � 1) = 1:582. It can be derandomized.
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Johnson's Network Linear
k algorithm 
ow programming
1 0.5 0.75 1.0
2 0.75 0.75 0.75
3 0.875 0.75 0.703
4 0.937 0.765 0.683
5 0.968 0.762 0.672
6 0.984 0.822 0.665
7 0.992 0.866 0.660

Table 11.1. For three basic MaxSat algorithms, a lower bound on the prob-
ability that the computed solution satis�es a �xed clause of length k is given,
k = 1; : : : ; 7.

For all of these algorithms, the approximation ratio depends on the concrete
MaxSat instance. If the clauses in the formula are rather long, then Johnson's
algorithm is very good. If almost all of the clauses are very short, then the
algorithm based on linear programmingmight be better. However, the algorithm
based on network 
ows is the only one of these algorithms where the analysis
guarantees approximation ratio 1.334. Thus, among these algorithms there is no
\best" one. Table 11.1 summarizes (lower bounds on) the approximation ratio
of these algorithms on instances of MaxEkSat for di�erent k, 1 6 k 6 7.

In Chapter 2, we have seen that the merits of di�erent MaxSat algorithms can
be combined. The combination of two di�erent algorithms may yield a better
approximation ofMaxSat. Namely, another 1.334-approximation is obtained by
combining Johnson's algorithm and the algorithm based on linear programming.
On any input, the combined algorithm calls both of these algorithms. This yields
two truth assignments. The combined algorithm outputs that truth assignment
which satis�es the larger number of clauses.

In the rest of this section we use a variant of this technique where the algorithms
are combined in a probabilistic way. In our examples, three di�erent algorithms
will be combined.

First, we describe MaxSat approximations that are based on semide�nite pro-
gramming (Section 11.7.1). Then, these algorithms are combined with a classical
algorithm (Section 11.7.2).

11.7.1 Handling Long Clauses

The algorithm described in Section 11.6.2 handles only clauses of length at most
two. In the following, we describe how Goemans and Williamson treat longer
clauses.
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Let � = C1 ^ : : : ^ Cm be a Boolean formula in conjunctive normal form. For
any clause Cj let `(Cj) denote the length of the clause and let I

+
j (or I�j ) denote

the set of non-negated (negated, respectively) variables in Cj.

Recall Goemans and Williamson's formulation of � as a linear program ((2.1) in
Chapter 2):

maximize
Pm

j=1 zj (11.12)

such that
P

i2I+
j

yi +
P

i2I�
j

(1� yi) > zj 8j 2 f1; : : : ;mg
0 6 yi 6 1 8i 2 f1; : : : ; ng
0 6 zj 6 1 8j 2 f1; : : : ;mg

In a very similar way, by using the function v introduced in (11.7){(11.9),
MaxSat is modelled by

maximize
Pm

j=1 zj (11.13)

such that
P

i2I+
j

v(xi) +
P

i2I�
j

v(xi) > zj 8j 2 f1; : : : ;mg
v(Cj) > zj 8j 2 f1; : : : ;mg; `(Cj) = 2

yi � yi = 1 8i 2 f0; : : : ; ng
0 6 zj 6 1 8j 2 f1; : : : ;mg:

To obtain the corresponding semide�nite formulation, replace each vector prod-
uct yi � yk by a new variable yi;k. As restrictions, we get that the matrix A1 :=
(yi;k)i;k2f0;:::;ng is PSD and that a system of linear inequalities in the vari-
ables yi;k, i; k 2 f0; : : : ; ng, and zj, j 2 f1; : : : ;mg is satis�ed. As noted in
Section 11.3, the linear inequalities can be transformed into a matrix A2 :=
SP (y0;0; : : : ; yn;n; z1; : : : ; zm) which is PSD if and only if all inequalities are sat-
is�ed. Let A be the matrix �

A1 0

0 A2

�
which is PSD if and only if A1 and A2 are PSD. Then

maximize

mX
j=1

zj (11.14)

such that matrix A is PSD

yi;i = 1 8i 2 f0; : : : ; ng

is the corresponding semide�nite relaxation.

Let ŷi;k and ẑj denote the value of the variables in a solution of (11.14).

By A1, we denote the algorithm which computes the Cholesky decomposition
of the matrix (ŷi;k) and applies Goemans-Williamson's rounding procedure to
the solution (as described in Section 11.6.2). For each clause Cj of length one or
two,
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X
i2I+

j

v(xi) +
X
i2I�

j

v(xi) > v(Cj);

i.e., v(Cj) > zj implies
P

i2I+
j

v(xi) +
P

i2I�
j

v(xi) > zj. Thus, algorithm A1

satis�es instances of Max2Sat with probability at least 0.878.

By A2 we denote the following algorithm: Independently for each variable, set xi
to be true with probability (1 + ŷi;0)=2. Then, by the same argument as in the
analysis of (11.12) (cf. Chapter 2), the probability that clause Cj is satis�ed is
at least  

1�
�
1� 1

`(Cj)

�`(Cj )!
ẑj :

11.7.2 ApproximatingMaxSat

Let (p1; p2; p3) be a probability vector, i.e., 0 6 pj 6 1 and p1 + p2 + p3 = 1.
Consider the following combination of three algorithms:

1. With probability p1, execute algorithm A1.

2. With probability p2, execute algorithm A2.

3. With probability p3, execute Johnson's algorithm.

The expected value of the solution of these algorithms is

X
j:`(Cj)62

0:878 ẑj ;
kX
j=1

 
1�

�
1� 1

`(Cj)

�`(Cj)!
ẑj ; or

kX
j=1

�
1� 1

2`(Cj)

�
;

respectively. Thus, the solution of the combined algorithm has expected value

p1
X

j:`(Cj)62

0:878 ẑj+p2

kX
j=1

 
1�

�
1� 1

`(Cj)

�`(Cj)!
ẑj+p3

kX
j=1

�
1� 1

2`(Cj)

�
:

If we choose p1 = 0:0430 and p2 = p3 = 0:4785, then by a numerical computation
it can be checked that this term is at least 0.755 times the optimum of (11.14).
I.e., we have

Theorem 11.16 ([GW95]). MaxSat can be approximated by a randomized

polynomial-time algorithm with approximation ratio 1.324.
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Note that in a practical implementation we would use a deterministic combina-
tion of A1, A2, and Johnson's algorithm. The combined algorithm outputs that
truth assignment which satis�es the larger number of clauses. The approximation
ratio of this algorithm is also at least 1.324.

Using a similar approach, where long clauses are handled in a slightly di�erent
way, Goemans and Williamson also achieve an approximation ratio of 1:319 for
MaxSat.

Asano et al. have proposed another method for handling long clauses by semi-
de�nite programs [AOH96]. They obtain an algorithm with approximation ratio
1.307. Tuning the latter method, Asano et al. [AHOH96] have obtained an 1.304-
approximation algorithm forMaxSat. However, the best known approximation
for MaxSat is an algorithm by Asano [Asa97] which is based on a re�nement
of Yannakakis' algorithm. This algorithm has approximation ratio 1.299.

11.8 Improving the Approximation Ratio

In this section we describe two techniques due to Feige and Goemans [FG95] and
to Karlo� [Kar96] which improve the approximation ratio of the semide�nite pro-
grams forMaxE2Sat andMaxDiCut. The idea is to add linear restrictions to
the semide�nite program and to modify the rounding procedure. This improves
the approximation ratio for MaxE2Sat to 1.075 and the approximation ratio
for MaxDiCut to 1.165.

11.8.1 Adding Constraints

Note that we can add any (polynomial) number of linear restrictions to a semidef-
inite program whilst keeping the running time of the approximation algorithm
polynomial. The constraints considered here are valid for all truth assignments
and all cuts, respectively. (In particular, the constraints do not depend on the
instance of the problem.) However, they do not hold for all the vectors in the
relaxation. Thus, they may change the solution of the relaxation. This may im-
prove the approximation ratio of the algorithm.

Feige and Goemans [FG95] discuss the use of two sets of linear inequality con-
straints which sharpen the restrictions of MaxE2Sat and MaxDiCut. Their
�rst set contains for all i; j; k 2 f0; : : : ; ng the inequalities

yi � yj + yj � yk + yk � yi > �1
�yi � yj � yj � yk + yk � yi > �1
�yi � yj + yj � yk � yk � yi > �1
yi � yj � yj � yk � yk � yi > �1;
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These inequalities are valid, since they hold for any assignment of yi; yj; yk with
�1 and 1. For MaxE2Sat it expresses the tertium non datur. For MaxDiCut

and MaxCut it expresses the fact that any cut partitions the set of vertices
into two sets.

The second set of constraints is a subset of the �rst one. It contains for all
i; j 2 f0; : : : ; ng the inequalities

yi � y0 + yj � y0 + yi � yj > �1
�yi � y0 � yj � y0 + yi � yj > �1
�yi � y0 + yj � y0 � yi � yj > �1
yi � y0 � yj � y0 � yi � yj > �1:

Consider Goemans-Williamson's formulation ofMaxE2Sat described in Section
11.6.2. For an instance with one clause, say x1 _ x2, the objective function is
(3 + y1 � y0 + y2 � y0 � y1 � y2)=4. In the relaxation of the original formulation,
there are vectors v0; v1; v2 where v1 � v0 = v2 � v0 = �v1 � v2 = 0:5, i.e., where the
objective function is 9=8. Thus, there is an instance where the approximation
ratio is at most 0:888. If the second set of constraints is added to the program,
then the value of the objective function is at most 1 for any feasible solution of
this instance.

11.8.2 Nonuniform Rounding

Feige and Goemans [FG95] introduced the concept of nonuniform rounding , a
technique which improves Goemans-Williamson'sMaxDiCut and MaxE2Sat

approximation.

The idea is to modify step 3, the rounding, in a way that takes advantage of the
special role of vector v0.

First, Feige and Goemans consider those outputs of the semide�nite program
which give rise to the worst case of the approximation ratio. Consider a clause
in a MaxE2Sat instance, say xi _xj . Its contribution to the objective function
is (3 � yi � y0 � yj � y0 � yi � yj)=4. Let v0; vi; vj be the vectors computed by
the approximation algorithm. In Section 11.6.2 we have seen that this clause is
satis�ed with probability at least 0.878 times its contribution in the objective
function, if the \uniform rounding" procedure of Goemans and Williamson is
used. It can be shown that the worst case � 0:878 is attained exactly if two of the
inner products vi�v0, vj �v0, vi�vj are approximately�0:689 and the other product
is 1, cf. also the analysis of the MaxCut algorithm in Section 11.5.2. Thus, in
the worst case, either vi �v0 6 0 or vj �v0 6 0. (Note that the triple of worst case
vectors is not excluded by the additional constraints given in Section 11.8.1.)

Consider the algorithm which assigns xi to true if vi � v0 > 0 and to false oth-
erwise. (Call this crude rounding.) If the triple of vectors v0; vi; vj is a worst
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Fig. 11.3. Plot of the function f used for nonuniform rounding in the approxi-
mation of MaxE2Sat.

case for the uniform rounding step, then crude rounding ensures that the clause
xi_xj is always satis�ed. Thus, for the worst case vectors of the uniform round-
ing procedure, crude rounding is better. Of course, it is not a good idea to use
crude rounding, since it is much worse in many other cases.

We want to skew the uniform rounding procedure a little bit. We would like
to use a rounding procedure which combines uniform rounding with a pinch of
crude rounding. That is, if vi � v0 > 0, then the probability of xi being true
should be increased. If vi � v0 < 0, then the probability of xi being true should
be decreased.

Technically, this e�ect is obtained in the following way. Let # be the angle
between v0 and vi. Fix some function f : [0; �] ! [0; �]. Then, map vector vi
to that vector v0i which is on the same hyperplane as the vectors vi and v0 and
where the angle between v0 and v0i is f(#). Finally, perform the uniform rounding
procedure using the vectors v0 and v01; : : : ; v

0
n.

The choice of f(#) = # corresponds to uniform rounding. We require f(��#) =
� � f(#) in order to ensure that negated and unnegated literals are handled in
the same way.

Among other functions, Feige and Goemans study the e�ect of

f(#) = #+ 0:806765
h�
2
(1� cos#)� #

i
(11.15)

on the approximation ratio in nonuniform rounding, cf. Figure 11.3. Using this
function, they obtain the following approximation ratio.

Theorem 11.17 ([FG95]). MaxE2Sat can be approximated by a random-

ized polynomial-time algorithm with approximation ratio 1.075, i.e., the expected

value of the computed solution is at least 0.931 times the optimal solution.
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Sketch of Proof. By numerical computation, analyze the approximation ratio
of the following modi�cation of the algorithm described in Section 11.6.2:

� Add the constraints listed in Section 11.8.1.

� Use function (11.15) for nonuniform rounding.

In the analysis, �rst discretize the space of all vectors v0; vi; vj that satisfy the
additional constraints. In fact, it is su�cient to discretize the space of all possible
angles between v0, vi and vj . Then, numerically compute the ratio between the
probability that a clause is satis�ed and the contribution of that clause to the
objective function. Check that this ratio is at least 0.931 for all these vectors.

The importance of the additional constraints is stressed by the fact that, for
nonuniform rounding using this function f , the worst case of the performance
ratio is attained for a triple of vectors where vi � v0 + vj � v0 + vi � vj = �1.

Using the same method with a di�erent function f , Feige and Goemans obtain

Theorem 11.18 ([FG95]). MaxDiCut can be approximated by a randomized

polynomial-time algorithm with approximation ratio 0.859.

11.9 Modeling MaximumIndependentSet as a

Semide�nite Program?

Just for didactical purposes, we consider how one might turn MaximumInde-

pendentSet into a semide�nite program. We leave to the interested reader the
investigation whether this can be used to obtain better approximation algorithms
for MaximumIndependentSet than are currently known.

MaximumIndependentSet

Instance: Given an undirected graph G = (V;E).
Problem: Find a subset V1 � V such that V1 does not contain any edge and

jV1j is maximized.

We �rst claim that the size of a maximum independent set in a graph (and
the corresponding independent set) can be obtained by �nding a solution to the
following mathematical program:

max x1 + � � �+ xn �
X

fi;jg2E

xixj such that 8i : 0 6 xi 6 1 (11.16)

Then, the following mathematical program also yields the optimum:
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max x21 + � � �+ x2n �
X

fi;jg2E

xixj such that 8i : 0 6 xi 6 1 (11.17)

This follows from the observation that the objective function considered in one
variable only (others �xed) is a parabola which is open into the positive y-
direction. Hence, we have a guarantee that for either xi = 0 or xi = 1, the
optimum is obtained.

Now, let us show that (11.16) represents MaximumIndependentSet. Given an
independent set I and setting xi = 1 for i 2 I (and xi = 0 otherwise), we see that
the optimal solution of (11.16) is at least the size of a maximum independent
set.

Assume that we are given a solution of (11.16). Since the objective function is
linear in every variable, we can assume that all xi are either 0 or 1. We construct
an independent set I with the same value as the objective function as follows:
If the set I := fi j xi = 1g is not an independent set, we proceed as follows: If
xi = xj = 1 and fi; jg is an edge in the graph, then we set xi = 0 which means
that we have not decreased the objective function. (One vertex was eliminated,
but at least one edge was also removed.)

Hence, the optimal solution of (11.16) or (11.17) yields the optimum cardinality
of an independent set. Since by Theorem 4.12MaximumIndependentSet can-
not be approximated within a factor n" (unless P = NP), it is unlikely that we
can solve this mathematical program with the help of semide�nite programming,
although it looks very much like the problem formulation for MaxCut.

Consider for example the following semide�nite program P :

maximize y1;1 + � � �+ yn;n �
X

fi;jg2E

yi;j such that Y is PSD

We may also add the linear inequalities 0 6 yi;j 6 1 to P. Since this semide�-
nite program is a relaxation of (11.17), we have obtained a method to compute
an upper bound, unfortunately, this upper bound is useless, as the value of
the semide�nite program always is n, since one can choose Y to be the iden-
tity matrix. The question remains whether there are more suitable relaxation
approaches for MaximumIndependentSet.

Exercises

Exercise 11.1. Given the following sets Mi,

{ M1 = f(x1; x2) : x1 > x2; x1 > 1g,

{ M2 = f(x1; x2) : x1x2 > 1; x1 > 0; x2 > 0g,
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{ M3 = f(x1; x2) : x21 + x22 6 1g

{ M4 = f(x1; x2) : x41 + x42 6 1g

construct matrices F 0
i , F

1
i and F 2

i such that

Mi = f(x1; x2) : The matrix Fi(x1; x2) := F 0
i + x1 � F 1

i + x2 � F 2
i is PSDg:

Exercise 11.2. Find an optimal solution to the semide�nite program (11.1)
(parabola and line).

Exercise 11.3. Derandomize the approximation algorithm forMaxCut which
is described in Section 11.5.1.

Exercise 11.4. Let �1 6 yi 6 1; i = 1; : : : ; T and let Ysum :=
PT

i=1 yi 6 0.
Prove the following: If Ysum is �xed, then the yi for which

P
i arccos(yi) attains

a minimum, ful�ll the following property:
There is a value Y 6 0 and an r with T=2 6 r 6 T such that r of the yi are
equal to Y and T � r of the yi are equal to one.
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