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Abstract

We consider the problem of determining the maximal number N (m; k; r) of columns of a 0-

1-matrix withm rows and exactly r ones in each column such that every k columns are linearly

independent over Z2. For �xed integers k � 4 and r � 2 where k is even and gcd(k�1; r) =

1, we shall prove the probabilistic lower bound N (m; k; r) = 
(m
kr

2(k�1) � (lnm)
1

k�1 ). This

improves on earlier results from [13] by the factor �((lnm)
1

k�1 ) and extends results from

[11] where the case r = 2 was considered. Moreover, we give a polynomial time algorithm

achieving this new lower bound.

1 Introduction

We consider matricesM with entries 0 and 1 and k-wise independent columns, i.e., each k column
vectors of M are linearly independent. A (k; r)-matrix has the property that the column vectors

are k-wise independent and each column contains exactly r ones. Let N(m; k; r) denote the
maximal number of columns a (k; r)-matrix with m rows can have. Some special cases of this
problem, e.g., estimates on N(m; k; 2), and similar questions have been studied in combinatorics

and graph theory with respect to forbidden con�gurations, like cycles in graphs, and there is an
extensive literature on this topic, cf. [10]. For example, considering incidence matrices of graphs

shows that N(m; 4; 2) is equal to the maximal number of edges in a graph on m vertices without
cycles of length 3 or 4, since in graphs, the minimal dependent con�gurations correspond to

cycles. First estimates on N(m; k; r) for arbitrary values of m; k; r were given in [13]. In this
paper we improve on the lower bounds for N(m; k; r) given there. Notice that matrices with

k-wise independent columns are parity check matrices for linear codes with minimal distance at
least k+1, cf. [14]. Recall that for a linear code C � Zn

2 , an m� n matrix M over Z2 = f0; 1g is

a parity check matrix i�
8 x 2 Zn

2 : x 2 C ,M � x = 0 :

If there is no restriction on the number of ones per column, then a lower bound on the maximum

number of columns of 0�1-matrices with k-wise independent columns is given by the Gilbert-
Var�samov bound. Besides of their importance in coding theory, one further application for parity

check matrices lies in the area of derandomization. They can be used for constructing small
sample spaces preserving some limited independence. Related here are recent results of Sipser
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and Spielman [18, 20] who, motivated by the PCP theorem, see [21], constructed asymptotically

good codes using expander graphs. The parity check matrices of these codes are also sparse (each
column and each row has only a constant number of nonzero entries). Our de�nition is di�erent

in that the number of ones per row is not bounded. A related approach was given by Alon, Bruck,
Naor, Naor and Roth [3], who used Ramanujan graphs and Justesen codes for the approximation

of probability distributions by small sample spaces.
In [13], the function N(m; k; r) was de�ned in a slightly di�erent way, namely, each column was
allowed to have at most r ones, but this does not change the growth rate asymptotically.

The following lower bound on N(m; k; r) was shown in [13] by a probabilistic argument: for �xed
integers k � 2 and r � 2,

N(m; k; r) = 


�
m

kr
2(k�1)

�
: (1)

Moreover, [13] also provides an algorithm which computes (k; r)-matrices achieving this lower
bound. Its running time is O(mkr=2), which is polynomial if k and r are �xed.
Kohayakawa, Kreuter and Steger showed in [11] for r=2 the following: for �xed k � 2, it holds

N(m; 2k; 2) = 
(m2k=(2k�1) � (lnm)1=(2k�1)) : For this special case r=2, there are better construc-
tions known from the work of Lubotzky, Phillips and Sarnak [15] and Margulis [16]. However,

the intention in [11] was to study Tur�an-numbers in the random situation. The constructions
from [15] and [16] use algebraic techniques, and yield the so-called Ramanujan graphs, which are

graphs on m vertices with at least 

�
m(3k+5)=(3k+3)

�
edges which do not contain any cycle of

length smaller than 2k+1. I.e., N(m; 2k; 2) = 

�
n(3k+5)=(3k+3)

�
. Recently Lazebnik, Ustimenko

and Woldar [12] showed that N(m; 2k; 2) = 

�
m(3k�1+�)=(3k�3+�)

�
with � = 0 if k is odd and

� = 1 otherwise. Here, we do not focus on the case r = 2; we consider the case of arbitrary
positive integers k and r.

As usual, let gcd(k; l) be the greatest common divisor of positive integers k and l. We improve
the general lower bound (1) by the factor �((lnm)1=(k�1)) if k is even and if gcd(k�1; r) = 1, i.e.,

N(m; k; r) = 
(m
kr

2(k�1) � (lnm)
1

k�1 ) : (2)

The case of odd integers k can easily be reduced to the case of even integers.
It is surprising that our arguments do not work if gcd(k�1; r) > 1. This possibly gives a hint

that the lower bound (1) might be sometimes sharp in that case. As an example, consider that
from the work of Frankl and F�uredi [8] on union-free families of sets the following upper bound
for k = 4 is known:

N(m; 4; r) = O(md4r=3e=2) ;

while (1) yields the lower bound N(m; 4; r) = 
(m2r=3). For r � 0 mod 3, upper and lower bound
match up to constant factors. On the other hand, for, say, r � 1 mod 3, the upper bound is only

of the order O(m2r=3+1=3). Our lower bound here shows N(m; 4; r) = 
(m2r=3 � (lnm)1=3).
The proof of our lower bound �rst transforms the problem into a problem on hypergraphs and

then applies some probabilistic arguments. We also show that derandomization and recent results
from [9] and [6] can be used to obtain a polynomial time algorithm.
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Upper Bounds

For the existing bounds concerning the special case r = 2, we refer to [10]. We remark, that only
for k = 4; 6; 10 matching lower and upper bounds exist, i.e., for these values of k it is known that

N(m; k; 2) = �(m(k+2)=k).
For arbitrary values of k and r, the only known upper bounds on N(m; k; r) are given in [13],

namely: for �xed integers k � 4 and r � 2, where k is even, and 0 � s < r it holds that

N(m; k; r) = O (N(m; k=2; 2r� 2s) +ms) ; and

N(m; k; r) = O

�q
ms �N(m; k=2; 2r� 2s) +ms

�
:

In particular, one knows for k a power of 2:

N(m; k; r) = O
�
mdkr=(k�1)e=2

�
:

2 Basic De�nitions

A hypergraph G = (V; E) consists of a set V of vertices and a set E of edges where every edge
E 2 E satis�es E � V . A hypergraph G = (V; E) is called k-uniform if every edge E 2 E has

cardinality k. In our arguments 2-cycles are crucial, i.e., pairs fE;E0g of distinct edges E;E0 2 E

which satisfy jE \ E0j � 2. A 2-cycle fE;E0g is called (2; j)-cycle if jE \ E0j = j. The average
degree, denoted by tk�1, of a k-uniform hypergraph G = (V; E) is de�ned by tk�1 = k � jEj=jV j.

Given a subset V1 � V of the vertices, the induced subhypergraph on V1 has edge set fE j E 2

E and E � V1g. An independent set is a subset V1 of the vertices such that the induced subhy-

pergraph on V1 has no edge. The independence number �(G) of a hypergraph G is the size of a
largest independent set.

3 Lower Bounds on N(m,k,r)

The trivial bounds areN(m; 2; r) =
�m
r

�
as no column can occur more than once and N(m; k; 1) =

m. In [13] it was shown by a probabilistic argument that asymptotically it su�ces to consider

even dependencies only. Using also monotonicity we have for k; r � 2 that

N(m; 2k+ 1; r)

(
� N(m; 2k; r)
� 1=2 � N(m; 2k; r) :

(3)

It is easy to see that every 0�1-matrix M of dimension m� n contains a m� n=2-submatrix M 0

such that no odd number of columns ofM 0 adds to zero. Namely, form even, partition at random
the row positions 1; : : : ; m into disjoint sets S1; S2 of equal size m=2. Consider the random set
M 0 of all column vectors of M which contain in S1 an odd number of ones. The expected number

of columns of M 0 is equal to n=2. Hence, there exists such a submatrix M 0 with at least this
number of columns. No odd number of columns of M 0 add to zero.

We will show for arbitrary, but �xed values of k and r the following new lower bound onN(m; k; r).

Theorem 3.1 Let k � 4 and r � 2 be �xed integers where k is even. If gcd(k�1; r) = 1, then

N(m; k; r) = 


�
m

kr
2(k�1) � (lnm)

1
k�1

�
:
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From this theorem and inequality (3), we obtain:

Corollary 3.2 Let k � 5 and r � 2 be �xed integers where k is odd. If gcd(k�2; r) = 1, then

N(m; k; r) = 


�
m

(k�1)r

2(k�2) � (lnm)
1

k�2

�
:

In the proof of Theorem 3.1 we will use the following extension (see [7]) of a result of Ajtai,
Koml�os, Pintz, Spencer and Szemer�edi [1]:

Theorem 3.3 Let k � 3 be a �xed integer. Let G = (V; E) be a k-uniform hypergraph on n

vertices with average degree at most tk�1. If G does not contain any 2-cycles, then

�(G) = 


�
n

t
� (ln t)

1
k�1

�
:

This result (as well as the result from [1]) has been applied various times in recent years, for
example in [2], [17], [4], [19], cf. [6] for further references. Here, we obtain another application of

Theorem 3.3, where we have to use �ne-tuned arguments in order to keep the theorem applicable.
Such a careful counting was not necessary in the case r = 2, where the minimal dependent

con�gurations correspond to cycles in graphs.
We will use the following notation: Let Cr

m be the set of all
�m
r

�
possible 0�1-column vectors of

length m with exactly r ones.
Proof. (of Theorem 3.1) Let � be the componentwise addition in Zm

2 . We form a hypergraph

G = (V; E3[: : :[Ek) with vertex set V = Cr
m and j-element edges fa1; : : : ; ajg 2 Ej i� a1�� � ��aj =

0 where j = 3; : : : ; r. By this de�nition, an independent set in G corresponds to a set of column
vectors which are k-wise linear independent, and it is our aim to �nd a large independent set.

First we give an upper bound on jEj j, j = 3; : : : ; k. If the column vectors a1; : : : ; aj 2 Cr
m satisfy

a1 � : : :� aj = 0, then each entry 1 in some column ai, i = 1; : : : ; j, needs a matching entry 1 in

the same row in another column ai0 . Hence, all ones occurring in a1; : : : ; aj are contained in at

most bjr=2c rows. Choosing these rows can be done in at most
Pbjr=2c

i=r+1

�m
i

�
many ways. Then the

jr ones can be chosen in at most
�bjr=2c

r

�j
many ways. Thus, for j = 3; : : : ; k we have for some

positive constant cj = cj(k; r) that

jEjj � cj �m
bjr=2c : (4)

To obtain the improvement over (1) by a logarithmic factor, we will count the number s2;j(Gk) of
(2; j)-cycles, j = 2; : : : ; k�1, in the k-uniform hypergraph Gk = (V; Ek), i.e., we consider only the

k-element edges of G and - with foresight - neglect for the moment the i-element edges for i < k. To
do so, consider a �xed j-element set J = fa1; : : : ; ajg of column vectors, viewed as anm�j-matrix

M(J). Let p(J) be the number of rows of M(J) which contain at least one entry 1. Let podd(J),
(peven(J), respectively) be the number of rows of M(J) containing an odd (even, respectively)

nonzero number of ones. Let a(J) be the number of (k�j)-element subsets fb1; : : : ; bk�jg from
Cr
m n fa1; : : : ; ajg such that fa1; : : : ; aj; b1; : : : ; bk�jg 2 Ek , i.e., a1� � � �� aj � b1� � � �� bk�j = 0.

If some row of a1� � � �� aj contains a 1, then some column bi0 also must contain a 1 in the same
row. Hence, the podd(J) rows containing an odd number of ones need matching ones among the
column vectors b1; : : : ; bk�j , and we are free to choose, respecting dependence, the other at most
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(b(k�j)r � podd(J))=2c ones within the columns b1; : : : ; bk�j . Thus, for some positive constant

C0 = C0(k; r) we have

a(J) � C0 �m
b
(k�j)r�podd(J)

2
c :

We now count quite carefully the number of (2; j)-cycles in Gk , j = 2; : : : ; k�1. The reason is
that the number of 2-cycles fE1; E2g, where p(E1 \ E2) is small, is too large for our purposes.

We will handle these 2-cycles in a di�erent way.
For u = r+1; : : : ; jr, let s2;j:u(Gk) be the number of pairs fE1; E2g of distinct edges with E1; E2 2

Ek and jE1 \ E2j = j and p(E1 \E2) = u. Clearly, we have s2;j(Gk) =
jrX

u=r+1

s2;j:u(Gk) :

For a j-element subset J 2 [Cr
m]

j , there are at most
�a(J)

2

�
pairs fJ1; J2g of sets such that

E1 = J [ J1 and E2 = J [ J2 form a (2; j)-cycle in Gk with E1 \ E2 = J . Hence, we have for
some positive constant C1 = C1(k; r) :

s2;j:u(Gk) �
X

J2[Cr
m]j:p(J)=u

(a(J))2

� C2
0 �

X
J2[Cr

m]j:p(J)=u

m2�b
(k�j)r�podd(J)

2
c

� C1 �
X

J2[Cr
m]j:p(J)=u

m(k�j)r�podd(J) : (5)

To evaluate (5) more precisely, observe that the rows counted by peven(J) contain at least two
ones, and those counted by podd(J) contain at least one 1. With peven(J) + podd(J) = p(J) we

infer

2 � p(J)�podd(J) = 2 � peven(J) + podd(J) � j � r : (6)

Let pj;u(V ) denote the number of j-element subsets J = fa1; : : : ; ajg 2 [Cr
m]

j of column vectors
with p(J) = u. Then, for j < k, pj;u(V ) is bounded from above by C

0

2 �m
u for some positive

constant C
0

2 = C
0

2(k; r). With (6), inequality (5) becomes:

s2;j:u(Gk) � C1 �
X

J2[Cr
m]j:p(J)=u

m(k�j)r+jr�2p(J)

= C1 �
X

J2[Cr
m]j:p(J)=u

mkr�2u

� C0
1 �m

kr�u : (7)

We have to take care of the j-element subsets J 2 [Cm
r ]

j of columns which, viewed as a matrix

M(J), have only a few rows containing at least one entry 1.
The average degree tk�1 of Gk = (V; Ek) satis�es t

k�1 � k �ck �m
kr=2=

�m
r

�
; hence, for some positive

constant C
0

k = C
0

k(k; r) we have

t � t+ := C0
k �m

(k�2)r

2(k�1) :

For applying Theorem 3.3, we have to �nd a subhypergraph without 2-cycles among the k-element
edges and without i-element edges, i = 3; : : : ; k � 1. For obtaining such a subhypergraph, we
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choose in G at random vertices (column vectors) independently of each other with probability

p = t�1+�
+ ; where � is a small positive constant which will be speci�ed later. Vertices not chosen

are removed from the hypergraph. We remark that the choice p = t�1
+ would lead to the lower

bound (1).
Let V1 be the arising random subset of V and let G1 = (V1; E

1
3 [ : : :[ E

1
k ) be the induced random

subhypergraph of G. We consider the expected values E[ � ] of the number of vertices, edges and
j-element subsets J 2 [V1]

j of columns (vertices) with p(J) = s in G1 and also the number of
2-cycles among the k-element edges.

For the number of vertices we have for some positive constant c = c(k; r) that

E[jV1j] = p �

 
m

r

!
� c �m

kr
2(k�1)

+��
(k�2)r

2(k�1) :

The expected number of i-element edges, i = 3; : : : ; k, satis�es by (4) for some positive constants

Di = Di(k; r) that

E[jE1
i j] � pi � ci �m

bir=2c (8)

� Di �m
�

(k�2)ir

2(k�1)
+bir=2c+��

(k�2)ir

2(k�1) :

For j = 2; : : : ; k�1, let pj;s(V1) count the number of j-element subsets J 2 [V1]
j of column vectors

with p(J) = s. Since pj;s(V ) � C0
2 �m

s, we have for some positive constant C0 = C0(k; r) that

E[pj;s(V1)] = pj � pj;s(V )

� C0
2 � p

j �ms (9)

� C
0

�m
s� j(k�2)r

2(k�1)
+�� (k�2)jr

2(k�1) :

For j = 2; : : : ; k� 1, the expected number of (2; j)-cycles fE1; E2g in Gk1 = (V1; E
1
k) with p(E1 \

E2) = u satis�es by (7) for u = r + 1; : : : ; jr:

E[s2;j:u(G
k
1)] = p2k�j � s2;j:u(Gk)

� C0
1 � p

2k�j �mkr�u (10)

� C2 �m
(k�2)j+2k

2(k�1)
�r�u+�� (k�2)(2k�j)r

2(k�1) :

By Cherno�'s and Markov's inequality there exists an induced subhypergraph G1 = (V1; E
1
3 [ : : :[

E1
k ) of G, such that simultaneously for i = 3; : : : ; k, and j = 2; : : : ; k� 1 and s = r+1; : : : ; jr and
u = r + 1; : : : ; jr we have

jV1j �
1

2
� c �m

kr
2(k�1)

+�� (k�2)r

2(k�1)

jE1
i j � Ei �m

� (k�2)ir

2(k�1)
+bir=2c+�� (k�2)ir

2(k�1)

pj;s(V1) � E
0

�m
s� j(k�2)r

2(k�1)
+�� (k�2)jr

2(k�1)

s2;j:u(G
k
1 ) � F �m

(k�2)j+2k

2(k�1)
�r�u+�� (k�2)(2k�j)r

2(k�1)

for some appropriate positive constants Ei; E
0

; E, F depending only on k and r.
We �rst show that some properties in G1 hold:
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Claim 3.4 Let 0 < � < 1=(k � 2)2. Then jE1
i j = o(jV1j) for i = 3; : : : ; k� 1 :

Proof. We have jE1
i j = o(jV1j) i�

pi � jEij = o (p �mr)

, pi�1 �mbir=2c�r = o(1)

, t
(�1+�)(i�1)
+ �mbir=2c�r = o(1)

, �
(k � 2)ir+ kr

2(k� 1)
+ bir=2c+ � �

(i�1)(k�2)r

2(k�1)
< 0 : (11)

It su�ces to verify (11) for the case ir even. Then (11) becomes

�kr + ir

2(k� 1)
+ � �

(i� 1)(k� 2)r

2(k � 1)
< 0

which holds for 0 < � < 1=(k� 2)2, since 3 � i � k � 1. ut

For j = 2; : : : ; k � 1, set

T (j) =

�
(j � 1)kr

2(k� 1)
+ � �

(j � 1)(k� 2)r

2(k � 1)

�
: (12)

Now, gcd(k; k�1) = 1 and gcd(j�1; k�1) < k for j = 2; : : : ; k � 1. As we assumed that

gcd(k�1; r) = 1, we have that
(j�1)kr

2(k�1)
is not an integer for j = 2; : : : ; k � 1. Hence, there is

a range of � > 0 such that (j�1)kr
2(k�1)

� � �
(j�1)(k�2)r

2(k�1)
is for no j = 2; : : : ; k� 1 integer-valued.

Claim 3.5 Let 0 < � < 1=(k � 2)2r. For j = 2; : : : ; k � 1 and s < jr� T (j) it holds that

pj;s(V1) = o(jV1j) :

Proof. To see this, notice that

pj � pj;s(V ) = o (p �mr)

, pj�1 �ms�r = o(1)

, m
s� (k�2)j+k

2(k�1)
�r+�� (j�1)(k�2)r

2(k�1) = o(1)

, jr � s >
(j�1)k

2(k�1)
� r + � �

(j�1)(k�2)r

2(k�1)

, jr � s > T (j)

by de�nition of T (j), cf. (12), since � < 1=(k� 2)2r and (j�1)kr
2(k�1)

is not an integer. ut

Now we want to delete all j-element subsets J 2 [V1]
j of column vectors with small values

of p(J) and all edges E 2 E1
3 [ : : : [ E1

k�1 in the hypergraph G1. We �x some � > 0 with
� < 1=(k � 2)(2k � 3)r. In the subhypergraph G1, we remove one vertex (column) from each j-

element subset J p(J) < jr�T (j) and thus destroy all these j-element sets of columns. Moreover,
for i = 3; : : : ; k�1 we also omit one vertex from each i-element edge E 2 E1

i , therefore, destroying
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all i-element edges. We are left with at least (c=2�o(1))�m
kr

2(k�1)
+��

(k�2)r

2(k�1) column vectors (vertices),

and we obtain a k-uniform induced subhypergraph G2 = (V2; E
1
k \ [V2]

k) = (V2; E
2) with

jV2j � (c=2� o(1)) �m
kr

2(k�1)
+��

(k�2)r

2(k�1)

jE2j � Ek �m
kr

2(k�1)
+��

(k�2)kr

2(k�1) ;

and each j-element subset J 2 [V2]
j of columns satis�es p(J) � jr� T (j). Observe that now we

have s2;j:u(G2) = 0 for u < jr � T (j). Recall that pj;u(V ) = jfJ 2 [Cr
m]

j j p(J) = ugj � C0
2 �m

u.

Then, for j = 2; : : : ; k� 1 and by (10) the number of (2; j)-cycles in G2 satis�es for some positive
constants C�

j = C�
j (k; r):

s2;j(G2) � C �

jrX
u=jr�T (j)

s2;j:u(G
k
1 )

� C00 � p2k�j �

jrX
u=jr�T (j)

mkr�u

� C�
j � p

2k�j �mkr�jr+T (j) : (13)

Claim 3.6 Let 0 < � < 1=(k � 2)(2k� 3)r. For j = 2; : : : ; k� 1 it holds that

s2;j(G2) = o(jV2j) :

Proof. By (13), this holds i�

p2k�j �mkr�jr+T (j) = o (p �mr)

, m
(��1)

(k�2)r(2k�j�1)

2(k�1)
+r(k�j�1)+T (j)

= o(1)

, T (j) <
(j � 1)kr

2(k� 1)
� � �

(k � 2)(2k� j � 1)r

2(k � 1)

which holds by (12) since � < 1=(k � 2)(2k� 3)r and (j�1)kr
2(k�1)

is not an integer. ut

Then, for j = 2; : : : ; k � 1 from each (2; j)-cycle in G2 = (V2; E
2) we omit one vertex, hence

destroying all 2-cycles in G2 and we obtain a k-uniform subhypergraph G3 = (V3; E
3) of G2 with

jV3j � (c=2� o(1)) �m
kr

2(k�1)
+�� (k�2)r

2(k�1) and jE3j � Ek �m
kr

2(k�1)
+�� (k�2)kr

2(k�1) . Notice the following: If we
had not destroyed the j-element subsets J of columns (vertices) with p(J) < jr� T (j), then we

could not have argued that the number of 2-cycles in G2 is much less than the number of vertices,
and the argument would not work that way.
Now we apply Theorem 3.3 and we obtain an independent set in G2, and hence in G, of size




0
@m

kr
2(k�1)

+�� (k�2)r

2(k�1)

m
�� (k�2)r

2(k�1)

� (lnm
�(k�2)r

2(k�1) )
1

k�1

1
A = 


�
m

kr
2(k�1) � (lnm)

1
k�1

�
:

The vertices of this independent set yield the desired 0�1-matrix with k-wise independent columns.

ut
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4 An Algorithm

So far we proved only an existence result. Here we show that this existence proof can be deran-
domized which yields (k; r)-matrices which satisfy the lower bound (2). We use the method of

conditional probabilities, cf. [5], for proving the following:

Theorem 4.1 Let k � 4 and r � 2 be �xed integers where k is even. If gcd(k�1; r) = 1, then one

can �nd in polynomial time a 0�1-parity check matrix with m rows and 


�
m

kr
2(k�1) � (lnm)

1
k�1

�
columns such that each column contains exactly r ones and each set of k columns is linearly

independent.

The corresponding result for odd k (like in Corollary 3.2) can be obtained analogously. Namely,
for a �xed partition of the row indices into sets S1; S2 of equal size, consider all column vectors

with exactly r ones, which have an odd number of ones in S1. No odd number of these column
vectors add to zero. Then, we apply essentially Theorem 4.1.

For proving Theorem 4.1, we will use the following result from [6], which extends former invest-
igations of Fundia [9] and which is the algorithmic analogue of Theorem 3.3.

Theorem 4.2 [6] Let k � 3 be a �xed integer. Let G = (V; E) be a k-uniform hypergraph on

n vertices with average degree at most tk�1 where G does not contain any 2-cycles. Then one

can �nd for any �xed � > 0 in time O(jV j + jEj + n3=t3��) an independent set of size at least

c(k; �) � n=t � (ln t)1=(k�1).

Proof. (of Theorem 4.1) Let Cr
m = fa1; : : : ; aMg: Associate with each column ai a weight

pi 2 [0; 1]. For i = 3; : : : ; k, let Ei be the set of all i-element subsets fa1; : : : ; aig � [Cr
m]

i such

that a1 � : : :� ai = 0. Moreover, for j = 2; : : : ; k � 1 and s = r + 1; : : : ; jr, let P (j; s) be the
set of all j-element subsets J = fa1; : : : ; ajg � [Cr

m]
j with p(J) = s. Let T (j; u) be the set of

all pairs fE1; E2g 2 [Ek]
2, with jE1 \ E2j = j and p(E1 \ E2) = u, where j = 2; : : : ; k � 1 and

u = r + 1; : : : ; jr. We de�ne the following potential:

V (p1; : : : ; pM) := 3pM=3 �
MY
i=1

(1�
2

3
� pi) +

kX
i=3

P
E2Ei

Q
aj2E

pj

6k � ci �mbir=2c � pi
+

+
k�1X
j=2

jr�T (j)�1X
s=r+1

P
J2P (j;s)

Q
ai2J pi

6k2 � r �C0
2 �m

s � pj
+

+
k�1X
j=2

jrX
u=jr�T (j)

P
fE1;E2g2T (j;u)

Q
ai2E1[E2

pi

6k2 � r �C0
1 � p

2k�j �mkr�u

where T (j) is de�ned as in (12). Notice that in the three sum terms the denominators contain

upper bounds on the sizes of the objects which we want to control, cf. (8), (9) and (10).
We claim that for pM=3 � 1 we have V (p; : : : ; p) < 1 : Namely, using 1� x � e�x, we infer

V (p; : : : ; p) � 3pM=3 �

�
1�

2

3
� p

�M
+

+
kX
i=3

1

6k
+

k�1X
j=2

jr�T (j)�1X
s=r+1

1

6k2r
+

9



+
k�1X
j=2

jrX
u=jr�T (j)

1

6k2r

�

�
3

e2

�pM=3

+
1

6
+

1

6
+

1

6
< 1 :

We �x the value of p to p := m
�

(k�2)r

2(k�1)
+"
; where 0 < " < 1=(k� 2)(2k� 3)r. Then, pM=3 � 1 for

m large enough, and we have V (p; : : : ; p) < 1. In each step i = 1; : : : ;M the algorithm chooses

pi = 0 or pi = 1 to minimize the value of the current potential. Finally, p1; : : : ; pM 2 f0; 1g. As
the potential V (p1; : : : ; pM) is linear in each pi, we have V (p1; : : : ; pM) � V (p; : : : ; p) < 1. Let

S = fai 2 Cr
m j pi = 1g be the set of the chosen column vectors.

By de�nition of the potential V ,

jSj � p=3 �M = c1 �m
kr

2(k�1)
+"

:

For i = 3; : : : ; k the number of i-element subsets fa1; : : : ; aig � [S]i \ Ei, i.e., a1 � : : :� ai = 0, is
at most

6k � ci �m
b ir
2
c � pi � c2 �m

ir
2(k�1)

+i"

= o

�
m

kr
2(k�1)

+"
�
;

as otherwise V (p1; : : : ; pM) > 1. For j = 2; : : : ; k� 1 and s = r+1; : : : ; jr�T (j)� 1, the number
of all j-element subsets J = fa1; : : : ; ajg � [S]j with p(J) = s is at most

6k2 � r � C0
2 �m

s � pj � c3 �m
s� (k�2)jr

2(k�1)
+j"

= o

�
m

kr
2(k�1)

+"
�
:

Moreover, for j = 2; : : : ; k � 1 and u = jr � T (j); : : : ; jr, the number of all pairs fE1; E2g with
E1; E2 2 [S]k \ Ek , with jE1 \E2j = j and p(E1 \E2) = u is at most

6k2 � r � C00 � p2k�j �mkr�u � c4 �m
kr�u�

(k�2)(2k�j)r

2(k�1)
+(2k�j)"

= o

�
m

kr
2(k�1)

+"
�
:

Now, for i = 3; : : : ; k, from each i-element subset fa1; : : : ; aig � [S]i\Ei we omit one column. Also,
for j = 2; : : : ; k� 1 and s = r+1; : : : ; jr�T (j)� 1 and each j-element subset J = fa1; : : : ; ajg �

[S]j with p(J) = s we omit one column. Moreover, for j = 2; : : : ; k� 1 and u = jr�T (j); : : : ; jr,

from each pair E1 = fa1; : : : ; akg; E2 = fb1; : : : ; bkg 2 [S]k \ Ek of k-element subsets satisfying
jE1 \ E2j = j and p(E1 \ E2) = u we omit one column. Thus, we remove the few disturbing

groups by omitting one column from each such group. We obtain a subset S1 � S of column
vectors with

jS1j � jSj=2 = c1=2 �m
kr

2(k�1)
+"

;

and S1 contains at most c2 �m
kr

2(k�1)
+k"

dependencies of sets of k columns, i.e., the corresponding

hypergraph has at least c1=2 �m
kr

2(k�1)
+"

vertices, is k-uniform with at most c2 �m
kr

2(k�1)
+k"

edges,
and contains no 2-cycles anymore.
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Now we apply the algorithm from Theorem 4.2 and we obtain in polynomial time an independent

set of size at least




0
@m

kr
2(k�1)

+"

m"
� (lnm")

1
k�1

1
A = 


�
m

kr
2(k�1) � (lnm)

1
k�1

�
:

The vertices of this independent set yield the columns of the desired matrix with k-wise inde-

pendent columns. The running time is mainly given by the number of groups we have to control
and is of the order O(mkr). ut

5 Concluding Remarks

It might be interesting to investigate whether analogues of the results of Lubotzky, Phillips and

Sarnak [15] and Margulis [16] might be applied here, to obtain better bounds on N(m; k; r).
This might also lead to some (more) explicit constructions. It might also be possible that using

algebraic constructions like in the case k = 4 and r = 2, i.e., graphs without triangles and cycles of
length four, where one obtains N(m; 4; 2) = 
(m3=2), lead to better lower bounds for N(m; k; r).

However, the situation seems to be a little tricky, as the improvement by a logarithmic factor is
(with these techniques) only possible if certain divisibility conditions hold. On the other hand,

the results of Frankl and F�uredi [8] and those in [13] show that the lower bounds (1) sometimes
match the upper bounds.
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