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Abstract

For �xed integers k � 2, and for n-element sets X and colorings �: [X]k �! f0; 1; : : :g
where every color class is a matching and has cardinality at most u, we show that there
exists a totally multicolored subset Y � X with

jY j � max

(
c1 �

�
nk

u

� 1

2k�1

; c2 �

�
nk

u

� 1

2k�1

�

�
ln

�
u
p
n

�� 1

2k�1

)

where c1; c2 > 0 are constants. This lower bound is tight up to constant factors for
u = 
(n1=2+�) for every � > 0. For �xed values of k we give a polynomial time algorithm
for �nding such a set Y of guaranteed size.

1 Introduction

On each of
�3n
3

�
=n school days, in a school attended by 3n students, the students are asked to

line up in n rows, each containing three students. In 1851, Kirkman asked for the existence of

such a schedule that would allow each triple of students to form a row on exactly one of the

school days, cf. [Bi 81]. This classical problem was answered completely by Ray-Chaudhuri

and Wilson [RW 71] who proved that such a schedule exists for each n � 1; 3 mod 6. Here,

we investigate a somewhat related combinatorial problem. Suppose that after such a schedule

was prepared, the principle of the school wants (for unrevealed purposes) to select the largest

group of, say, m students with the property that no two triples of students form a row on the
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same day. For any schedule such an m must satisfy

c1 � n2=5 � (lnn)1=5 � m � c2 � n2=3 (1)

where c1; c2 > 0 are constants. While the upper bound is straightforward, the lower bound

follows from [ALR 91]. There are schedules which, up to constant factors, match the lower

bound. Here, we consider the general case in which one has n students which are asked to

line up in at most u rows on a day, each containing k people. Our results extend earlier work

from [ALR 91] and [LRW 96] where the case u = n=k respectively k = 2 was considered. We

also give a polynomial time algorithm which �nds a group of m students satisfying the lower

bound in (1).

It will be convenient to formulate our problem in terms of colorings.

De�nition 1 Let �: [X ]k �! ! where ! = f0; 1; : : :g be a coloring of the k-element subsets of
a set X. The coloring �: [X ]k �! ! with color classes C0; C1; : : :, i.e., �

�1(i) = Ci for i 2 !,

is called u-bounded if jCij � u for i = 0; 1; : : :. The coloring �: [X ]k �! ! is called proper

if each color class Ci, i = 0; 1; : : :, is a matching, i.e., sets of the same color are pairwise

disjoint, thus, �(U) = �(V ) implies U \ V = ; for all distinct sets U; V 2 [X ]k. A subset

Y � X is called totally multicolored if the restriction of the coloring � to the set [Y ]k of all

k-element subsets of Y is a one-to-one coloring.

For an n-element set X, de�ne the parameter fu(n; k) by

fu(n; k) = min�maxY�XfjY j ; Y is totally multicoloredg ;

where we minimize over all proper u-bounded colorings �: [X ]k �! ! with jX j = n.

The �rst estimates on fu(n; k) were given by Babai, cf. [Ba 85], in connection with a Sidon-

type problem. He showed for the case u = n=2 and k = 2 that

c1 � n1=3 � fn=2(n; 2) � c2 � (n � ln n)1=3

for constants c1; c2 > 0. In [ALR 91] the lower bound was improved by the factor �((ln n)1=3),

i.e., fn=2(n; 2) � c3 � (n � lnn)1=3 where c3 > 0 is a constant. Moreover, for �xed integers k � 2
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the results from [ALR 91] show that

fn=k(n; k) = �

�
n

k�1
2k�1 � (lnn) 1

2k�1

�

Here we will prove the following:

Theorem 1 Let k � 2 be a �xed integer. There exist constants c1; c2; c3 > 0 such that for

2 � u � n=k,

max

8<
:c1 �

 
nk

u

! 1

2k�1

; c2 �
 
nk

u
� ln

�
up
n

�! 1

2k�1

9=
; � fu(n; k) � c3 �

 
nk

u
� lnn

! 1

2k�1

: (2)

Moreover, for every n-element set X and every u-bounded proper coloring �: [X ]k �! ! one

can �nd in time O(u � n2k�1) a totally multicolored subset Y � X with

jY j � max

8<
:c1 �

 
nk

u

! 1

2k�1

; c2 �
 
nk

u

! 1

2k�1

�
�
ln

�
up
n

�� 1

2k�1

9=
; :

2 The Existence

In this section, we will prove the existence of a totally multicolored subset as guaranteed by

Theorem 1. We will use the notion of of edge-colored hypergraphs. The vertices are the n

students, the edges correspond to the rows, and these edges are colored by the day.

Let G = (V; E) be a hypergraph with vertex set V and edge set E . For a vertex v 2 V ,

let d(v) denote the degree of v in G, i.e., the number of edges E 2 E containing v. Let

d =
P

v2V d(v)=jV j denote the average degree of G. If for some �xed k we have jEj = k for

each edge E 2 E , then G is called k-uniform. A 2-cycle in G is an (unordered) pair E;E0 2 E
of distinct edges which intersect in at least two vertices. The independence number �(G) is
the largest size of a subset I � V such that the induced hypergraph contains no edges, i.e.,

E 6� I for every edge E 2 E .

Lower Bounds

It turns out that the independence number is important in our considerations. Some of our

arguments are based on a result of Ajtai, Koml�os, Pintz, Spencer and Szemer�edi, [AKPSS 82].

Here, we will use a modi�ed version proved in [DLR 95].
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Theorem 2 Let G be a (k + 1)-uniform hypergraph on n vertices. Assume that

(i) G contains no 2-cycles, and

(ii) the average degree satis�es d � tk where t � t0(k),

then for some positive constant c = c(k),

�(G) � c � n
t
� (ln t)

1

k : (3)

Now we are ready to prove the lower bounds given in Theorem 1.

Proof: We start by showing the two lower bounds in (2). Let �: [X ]k ! ! be a u-bounded

proper coloring where jX j = n. We construct a 2k-uniform hypergraph H = (X; E) on X

where E 2 E � [X ]2k if there exist two distinct k-element sets S; T 2 [X ]k, S; T � E, so that

�(S) = �(T ). As the number of k-element sets of the same color is at most u, the number of

edges in H satis�es

jEj =
X
i2!

 
j��1(i)j

2

!
�
�n
k

�
u
�
 
u

2

!
: (4)

Observe that, if I � X is an independent set of H, then I is totally multicolored with respect

to the coloring �. Concerning the �rst lower bound, it is enough to show that H contains

an independent set of size c1 � (nk=u)1=(2k�1). To see this, pick every vertex in X at random

independently of the other vertices with probability

p = (nk�1 � u)� 1

2k�1 : (5)

By Cherno�'s inequality, there exists a subset Y � X of cardinality at least

(1� o(1)) � p � n = (1� o(1)) �
�
nk=u

� 1

2k�1
;

and by Markov's inequality, the on Y induced subhypergraph H0 = (Y; E\[Y ]2k) ofH contains

at most

2 � p2k � jEj � 2 � p2k �
�n
k

�
u
�
 
u

2

!
� 1

2
�
 
nk

u

! 1

2k�1

edges since k � 2. By deleting one vertex from each edge in [Y ]2k \ E , we obtain a subset

Y 0 � Y with jY 0j � jY j=2 � (1=2� o(1)) � p � n. Clearly, Y 0 is an independent set in H, and
hence Y 0 is totally multicolored with respect to �, i.e., fu(n; k) = 
((nk=u)1=(2k�1)).
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If u =
p
n � !(n), where !(n) �! 1 with n �! 1, we can improve the lower bound

fu(n; k) � c1 � (nk=u)1=(2k�1) by a logarithmic factor. Let �: [X ]k ! ! be a u-bounded proper

coloring. Consider the 2k-uniform hypergraph H with vertex set X and with the set E of

edges de�ned in the same way as above. Again, we want to show a large lower bound on the

independence number of H. Our strategy will be to �nd a random subset Y � X such that

the induced hypergraph has only a few 2-cycles. By deleting these 2-cycles the desired result

will follow with Theorem 2.

Throughout this proof, let c1; c2; : : : denote positive constants. Recall that the number of

edges of H satis�es inequality (4). For j = 2; 3; : : : ; 2k � 1, let �j denote the number of

(2; j)-cycles in H, i.e., the number of pairs fE;E0g 2 [E ]2 of edges which intersect in exactly

j vertices. First, we estimate the total number �j of (2; j)-cycles in the hypergraph H. We

�x an edge E 2 E . The number of unordered pairs fU; V g of distinct sets U; V 2 [X ]k with

�(U) = �(V ) and j(U [ V )\Ej = j and 1 � jU \Ej; jV \Ej � j � 1 is bounded from above

by

j�1X
i=dj=2e

 
2k

i

!
�
 
n � 2k

k � i

!
�
 
2k� i

j � i

!
� c1 � nk�dj=2e ; (6)

as either jU \ Ej � dj=2e or jV \ Ej � dj=2e, and every color class is a matching.

If U \E = ; or V \E = ;, but j(U [ V )\Ej = j, then the number of such pairs fU; V g is at
most  

2k

j

!
�
 
n� 2k

k � j

!
� (u� 1) � c2 � nk�j � u : (7)

Now, (4), (6) and (7) imply that

�j � jEj �
�
c1 � nk�dj=2e + c2 � nk�j � u

�
� c3 � u �

�
n2k�dj=2e + n2k�j � u

�
:

As u � n=k and j � 2, we have n2k�dj=2e � n2k�j � u, hence

�j � c4 � u � n2k�dj=2e : (8)

With foresight we use a slightly larger value than in (5) for the probability p of picking vertices,

namely, we set

p =

�
1

nk�1 � u
� 1

2k�1 �
�

up
n

� 1

(k+1)(2k�1)

:
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Let Y be a random subset of X obtained by choosing vertices v 2 X with probability p

independently of the other vertices. The expected size E(jY j) of Y is given by

E(jY j) = p � n =

 
nk

u

! 1

2k�1

�
�

up
n

� 1

(k+1)(2k�1)

:

Let �j(Y ), for j = 2; 3; : : : ; 2k � 1, be random variables counting the number of (2; j)-cycles

contained in Y . The random variable �2(Y ) =
P2k�1

j=2 �j(Y ) counts the total number of 2-cycles

of the subhypergraph induced on Y . Let E(�2(Y )) and E(�j(Y )) denote the corresponding

expected values.

We infer for j = 2; 3; : : : ; 2k� 1 that

E(�j(Y )) � p4k�j � c4 � u � n2k�dj=2e

= pn � c4 � u
j�2k+ 1

k+1
(4k�j�1)

2k�1 � n
k(j+1�2dj=2e)�bj=2c� 1

2(k+1)
(4k�j�1)

2k�1 ;

thus,

E(�j(Y )) �

8>><
>>:

pn � c4 � u
j�2k+ 1

k+1
(4k�j�1)

2k�1 � n
k� j

2
� 1

2(k+1)
(4k�j�1)

2k�1 if j is even

pn � c4 � u
j�2k+ 1

k+1
(4k�j�1)

2k�1 � n
� j�1

2
� 1

2(k+1)
(4k�j�1)

2k�1 if j is odd.

Recall that u =
p
n � !(n) � n=k with !(n) �! 1 with n �! 1, hence, !(n) = O(

p
n).

Then, for j even,

E(�j(Y )) � pn � c4 � u
j�2k+ 1

k+1
(4k�j�1)

2k�1 � n
k�

j

2
� 1

2(k+1)
(4k�j�1)

2k�1

= pn � c4 � !(n)
j�2k+ 1

k+1
(4k�j�1)

2k�1

� pn � c4 � !(n)
�1

(k+1)(2k�1) as j � 2k � 2

= o(pn) : (9)

For j odd, we obtain

E(�j(Y )) � pn � c4 � u
j�2k+ 1

k+1
(4k�j�1)

2k�1 � n
� j�1

2
� 1

2(k+1)
(4k�j�1)

2k�1

= pn � c4 � !(n)
j�2k+ 1

k+1
(4k�j�1)

2k�1 � n� 1

2

� pn � c4 � !(n)
k�1

(k+1)(2k�1) � n� 1

2 as j � 2k � 1

= o(pn) as !(n) = O(
p
n). (10)
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Hence, by (9) and (10) we conclude E(�2(Y )) =
P2k�1

j=2 E(�j(Y )) = o(p �n). Using Cherno�'s
and Markov's inequality, we infer that there exists a subset Y � X with jY j = c5pn, such

that the induced hypergraph H0 = (Y; E \ [Y ]2k) contains at most c6p
2kjEj edges, and has

only o(pn) 2-cycles. We omit one vertex from each 2-cycle in H0. The resulting induced

subhypergraph H1 has (c5 � o(1)) � pn vertices, contains no 2-cycles anymore, and by (4) has

average degree at most

d � t2k�1 =
2k � c6 � p2k � jEj
(c5 � o(1)) � pn � c7 � p2k�1 � nk�1 � u ;

i.e., t � c8 � p � (nk�1 � u)
1

2k�1 = c8 � (u=
p
n)

1

(k+1)(2k�1) . As u=
p
n �! 1 with n �! 1 we can

apply Theorem 2 to the subhypergraph H1 which yields

�(H) � �(H1) � c � (c5 � o(1)) � p � n
c8 � p � (nk�1 � u)

1

2k�1

�
"
ln

 
c8 �

�
up
n

� 1

(k+1)(2k�1)

!# 1

2k�1

� c0 �
 
nk

u

! 1

2k�1

�
�
ln

�
up
n

�� 1

2k�1

;

i.e., fu(n; k) = 
((nk=u)1=(2k�1) � (lnn)1=(2k�1)).

Upper Bounds

Next, we will show the upper bound in (2) generalizing some arguments from [Ba 85].

Proof: Let X be an n-element set where without loss of generality n is divisible by k. Set

m = dc �nk=ue, where c > 0 is a constant. Let M1;M2; : : : ;Mm be random matchings, chosen

uniformly and independently from the set of all matchings of size u onX . We de�ne a coloring

�: [X ]k ! ! in rounds as follows: in round j = 1; 2; : : : ; m, we color every k-element set in

Mj which has not been colored before, by color j. Let Cj be the set of all k-element subsets of
X which are colored in some round i = 1; 2 : : : ; j � 1. In round m+ 1 we color the remaining

k-elements sets in [X ]k n Cm+1 in an arbitrary way, such that each color class is a matching

of size at most u. Let Y � V be a �xed subset with jY j = x, where x = o(n=u1=k). We will

prove that for x � C � (nk=u � lnn)1=(2k�1) with probability approaching to 1 the set Y is not
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totally multicolored where C > 0 is a su�ciently large constant. This will give the desired

result. We split the proof into several claims.

First, we give an upper bound on the probability that a certain number of k-element subsets

of Y is colored in round j.

Claim 1 For j = 1; 2; : : : ; m and t = 0; 1; : : :,

Prob
h
jMj \ [Y ]kj � t

i
�
 
u � xk
nk

!t

: (11)

Proof: The left hand side of (11) does not depend on the particular choice of Y . Thus,

assume that the matchingMj is �xed. The set Y can be chosen in
�n
x

�
ways. If jMj\ [Y ]kj � t,

then from Mj we can choose t edges in
�u
t

�
ways, and the remaining elements of Y can be

chosen in at most
�n�kt
x�kt

�
ways, hence

Prob
h
jMj \ [Y ]kj � t

i
�
�u
t

� � �n�kt
x�kt

�
�n
x

� �
 
u � xk
nk

!t

:

Now, we estimate the probability that a certain number of k-element subsets of Y is colored

in some round i � m.

Claim 2 For t = 0; 1; : : : and for positive integers n,

Prob
h
jCm+1 \ [Y ]kj � t

i
�
 
e � (t+m) � u � xk

t � nk
!t

: (12)

Proof: For j = 1; 2; : : : ; m, consider the events jMj \ [Y ]kj � tj . As the matchings are

chosen independently of each other, these events are independent. By Claim 1 we have

Prob
h
jMj \ [Y ]k j � tj

i
�
 
u � xk
nk

!tj

:

Since jCm+1 \ [Y ]kj �Pm
j=1 jMj \ [Y ]kj we infer, using �n

k

� � (e � n=k)k , that

Prob
h
jCm+1 \ [Y ]kj � t

i
� Prob

2
4 mX
j=1

jMj \ [Y ]kj � t

3
5

8



�
X

(tj)
m

j=1
;tj�0;

P
m

j=1
tj=t

mY
j=1

Prob
h
jMj \ [Y ]kj � tj

i

�
X

(tj)
m

j=1
;tj�0;

P
m

j=1
tj=t

mY
j=1

 
u � xk
nk

!tj

=
X

(tj)
m

j=1
;tj�0;

P
m

j=1
tj=t

 
u � xk
nk

!t

=

 
t+m� 1

t

!
�
 
u � xk
nk

!tj

�
�
e � (t+m)

t

�t
�
 
u � xk
nk

!t

=

 
e � (t+m) � u � xk

t � nk
!t

:

For i = 1; 2; : : : ; m+1, let Ei denote the event jCi\ [Y ]kj � dc1 �xke where c1 > 0 is a constant

with 3ec � c1 � 1=2 � 1=k!. Note that if Ei does not hold for some i, then also Em+1 does not

hold.

It turns out that with high probability Em+1 holds, i.e., only at most the constant fraction c1

of all k-element subsets of Y is colored before round m+1:

Claim 3 For large enough positive integers n,

Prob [Em+1] � 1� 2�c1�x
k

:

Proof: Set t = dc1 � xke. Since x = o
�
n=u1=k

�
we have t = o(nk=u). For n large enough,

with m = dc � nk=ue, and as e � c=c1 � 1=3, the quotient e�(t+m)�u�xk
t�nk is less than 1=2, hence

with (12) we have

Prob [Em+1] � 1� Prob
h
jCm+1 \ [Y ]kj � t

i
� 1� 2�t � 1� 2�c1�x

k

:

We de�ne another random variable Yj by Yj = j[Mj]
2 \ [[Y ]k n Cj ]2j for j = 1; 2; : : : ; m. Then

Yj counts the number of pairs of distinct k-element subsets of Y which are colored in round
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j. For j = 1; 2; : : : ; m, we want to determine the probability Prob [Yj = 0]. However, we do

not know how many k-element sets of Y were already colored in some round i < j. Therefore,

we condition on the event that only at most the fraction c1 of all k-element subsets of Y has

been colored before round j.

For a random variable Z let E(Z) denote the expected value of Z.

Claim 4 For some constant c2 > 0, and su�ciently large positive integers n, and for j =

1; 2; : : : ; m,

E(Yj jEj) > c2 � u
2 � x2k
n2k

:

Proof: As Ej holds, we have for some constant c
0
1 > 0 that

j[Y ]k n Cj j �
 
x

k

!
� c1 � xk � c01 � xk :

For each set S 2 [Y ]k there are less than k ��x�1
k�1
�
k-element subsets of Y which are not disjoint

from S. Hence, for for some constant c2 > 0 and n large enough, the number of (unordered)

pairs fS; Tg 2 [[Y ]k n Cj ]2 of sets with S \ T = ; is at least

1

2
� c01 � xk �

 
c01 � xk � k �

 
x� 1

k � 1

!!
� c2 � x2k : (13)

For given disjoint k-element sets S; T 2 [X ]k, the probability that both sets are in Mj is given

by

Prob [S; T 2Mj ] =
u � (u� 1)�n
k

� � �n�kk � �
u2

n2k
: (14)

Hence, by (13) and (14) for the conditional expected value E(Yj jEj) we have

E(Yj jEj) � c2 � u
2 � x2k
n2k

:

Claim 5 For j = 1; 2; : : : ; m, and large positive integers n,

Prob [Yj = 1 j Ej] � (c2 � o(1)) � u
2 � x2k
n2k

:
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Proof: For t = 1; 2; : : :, we claim that

Prob [Yj � t j Ej ] �
 
u � xk
nk

!d p2t+1 e
: (15)

Namely, t pairwise distinct two-element sets span a set of cardinality at least d p2t + 1 e, i.e.,
Yj � t implies jMj \ [Y ]kj � d p2t + 1 e. By Claim 1 this shows inequality (15):

Prob [Yj � t j Ej ] � Prob
h
jMj \ [Y ]kj � d p2t+ 1 e

i
�
 
u � xk
nk

!d p2t+1 e
:

For i = 0; 1; : : :, set pi = Prob [Yj = i j Ej ]. Then we infer from (15), using x = o
�
n=u1=k

�
,

that

E(Yj j Ej) =
X
i�0

i � pi � p1 +
X
i�2

i �
 
u � xk
nk

!dp2i+1e

= p1 + O

0
@
 
u � xk
nk

!31A

= p1 + o

 
u2 � x2k
n2k

!
:

By Claim 4 we infer that p1 � (c2 � o(1)) � u2 � x2k=n2k.

Finally, for j = 1; 2; : : : ; m let Aj denote the event (Yj = 0 and Ej+1).

Claim 6 For some constant c3 > 0, and large enough positive integers n,

Prob [A1 ^ : : :^Am] � exp

 
�c3 � u � x

2k

nk

!
:

Proof: Notice that

Prob [A1 ^ : : : ^Am] = Prob [A1] �
mY
i=2

Prob [Ai j A1 ^ : : :^Ai�1] : (16)

By Claim 5 we have

Prob [A1] � Prob (Y1 = 0 jE1) � Prob (Y1 6= 1 jE1) �

� 1� (c2 � o(1)) � u
2 � x2k
n2k

; (17)
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while for i � 2 we infer

Prob [Ai jA1 ^ : : :^Ai�1] � Prob [Yi = 0 j A1 ^ : : :^ Ai�1]

� Prob [Yi = 0 j Ei]

� Prob [Yi 6= 1 j Ei]

� 1� (c2 � o(1)) � u
2 � x2k
n2k

: (18)

Using (1�x)m � exp(�m �x) where m = dc �nk=ue, inequalities (17), (18) together with (16)

imply

Prob [A1 ^ A2 ^ : : :^ Am] �
 
1� (c2 � o(1)) � u

2 � x2k
n2k

!m

� exp

 
�(c2 � o(1)) �m � u

2 � x2k
n2k

!

� exp

 
�c � (c2 � o(1)) � u � x

2k

nk

!

� exp

 
�c3 � u � x

2k

nk

!
:

Claim 7 For large enough positive integers n, the probability that there exists a totally mul-

ticolored x-element subset is at most 
n

x

!
�
 
exp

 
�c3 � u � x

2k

nk

!
+ 2�c1�x

k

!
: (19)

Proof: If Y is totally multicolored, then Y1 = Y2 = : : : = Ym = 0. Thus, either A1 ^ A2 ^
: : :^ Am holds or some Ei, hence, Em+1 fails. As there are exactly

�n
x

�
x-element sets Y , by

combining the estimates from Claim 3 and Claim 6 we obtain (19).

We want to show that for n �! 1 expression (19) tends to 0 for x � C �
�
nk=u

�1=(2k�1) �
(ln n)1=(2k�1) where C > 0 is a big enough constant. Namely, 

n

x

!
� 2�c1�xk �

�
e � n
x

�x
� 2�c1�xk

� exp

�
x � ln n

x
� c1 � ln 2 � xk

�

= o(1)
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for x � C � (lnn)1=(k�1) where C > 0 is a large enough constant.

Moreover, we have 
n

x

!
� exp

 
�c3 � u � x

2k

nk

!
�

�
e � n
x

�x
� exp

 
�c3 � u � x

2k

nk

!

� exp

 
2x � lnn� c3 � u � x

2k

nk

!

� exp

0
@(2C � c3 �C2k) �

 
nk

u

! 1

2k�1

� (lnn) 2k

2k�1

1
A

= o(1)

provided C2k�1 > 2=c3 and n is large enough. Thus, expression (19) tends to 0 with n �! 1.

For n � n0 one can obtain asymptotically the same upper bound by taking an appropriately

large constant C > 0.

3 An Algorithm

Here, we show that one can �nd in time O(u�n2k�1) a totally multicolored subset as guaranteed
by Theorem 1. The algorithm follows the probabilistic arguments given before. It is based on

recent results of Fundia [Fu 96] and from [BL 96].

Proof: Let k � 2 be a �xed integer and let �: [X ]k ! ! with jX j = n be a proper u-

bounded coloring. First, we order the set [X ]k of k-element subsets according to their color.

This can be done in time O(nk � ln n). Then, by examining all k-element sets in [X ]k we

form a 2k-uniform hypergraph H = (X; E), E � [X ]2k, where E 2 E if there exist two distinct

k-element sets S; T 2 [X ]k with S[T = E and �(S) = �(T ). By (4), we have jEj = O(nk �u),
hence constructing the hypergraph H can be done in time O(nk � u + nk � lnn). We use the

following algorithmic version of Tur�an's theorem, cf. [BL 96]. The existence result was given

by Spencer [Sp 72].

Lemma 1 Let G = (V; E) be a k-uniform hypergraph on n vertices with average degree dk�1 �
1. Then, one can �nd in time O(jV j+ jEj) an independent set I � V with

jI j � k � 1

k
� n
d
:

13



Proof: We sketch the arguments. We use the method of conditional probabilities, cf.

[AS 92]. Let V = fv1; v2; : : : ; vng. Every vertex vi will be assigned a probability pi 2 [0; 1],

i = 1; 2; : : : ; n. De�ne a potential by

V (p1; p2; : : : ; pn) =
nX
i=1

pi �
X
E2E

Y
vi2E

pi :

The choice p1 = p2 = : : := pn = p = 1=d gives the initial value of the potential

V (p; : : : ; p) = p � n� pk � n � d
k�1

k
=

k � 1

k
� n
d
:

In each step i, i = 1; 2; : : : ; n, one after the other, we choose either pi = 0 or pi = 1 in order to

maximize the current value of V (p1; p2; : : : ; pn). As V (p1; p2; : : : ; pn) is linear in each pi, for

i = 1, for example, either V (p1; : : : ; pn) � V (1; p2; : : : ; pn) or V (p1; : : : ; pn) � V (0; p2; : : : ; pn).

If V (p1; : : : ; pn) � V (1; p2; : : : ; pn), we set p1 = 1, else let p1 = 0. Iterating this, we obtain

�nally p1; p2; : : : ; pn 2 f0; 1g.
By our strategy, we infer V (p1; p2; : : : ; pn) � V (p; p; : : : ; p). For V 0 = fvi 2 V j pi = 1g we

have

jV 0j =
nX
i=1

pi = V (p1; p2; : : : ; pn) +
X
E2E

Y
vi2E

pi :

We can assume that V 0 is independent as otherwise we omit one vertex from each edge con-

tained in V 0 and the value of V (p1; p2; : : : ; pn) will not decrease. Thus, jV 0j � V (p; p; : : : ; p) =

k�1
k
� n
d
and V 0 is an independent set. The running time is O(jV j+ jEj).

By (4) the average degree d of H satis�es d2k�1 � 2k � jEj=jX j � c1 �nk�1 �u. By Lemma 1 we
can �nd in time O(jX j+ jEj) = O(nk � u) an independent set in H = (X; E) of size at least

k � 1

k
� n
d
� c0 � n

(nk�1 � u) 1

2k�1

= c0 �
 
nk

u

! 1

2k�1

where c0 > 0 is a constant. With the sorting procedure in the beginning, this part of the

algorithm can be done in time O(nk � u + nk � ln n).
Now, assume that u =

p
n � !(n) where !(n) �! 1 with n �! 1. Again we consider

the hypergraph H = (X; E). First, we construct the sets C2;j of (2; j)-cycles in H, j =

2; 3; : : : ; 2k � 1. Using that the k-element sets are sorted according to their color, and that
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sets of the same color are pairwise disjoint, and using the considerations leading to (8), all

2-cycles in H can be constructed in time O(jC2;jj) = O(u � n2k�dj=2e).
We use the following lemma.

Lemma 2 Let k � 3 be an integer. Let G = (V; E) be a k-uniform hypergraph with jV j = n.

Let G contain �j(G) many (2; j)-cycles which can be determined all in time O(�j(G)), j =

2; 3; : : : ; k � 1. Then, for every real p with 0 � p � 1, one can �nd in time O(jV j + jEj +Pk�1
j=2 �j(G)) an induced subhypergraph G0 = (V 0; E 0) such that

jV 0j � p=3 � jV j

jE 0j � 3 � pk � jEj

�j(G0) � 3k � p2k�j � �j(G)

for j = 2; 3; : : : ; k� 1.

Proof: As in the proof of Lemma 1, we use the method of conditional probabilities. Let

C2;j be the set of all (2; j)-cycles in G, j = 2; 3; : : : ; k � 1.

Let V = fv1; v2; : : : ; vng. If pn < 3:9, any two-element subset V 0 � V gives the desired

subhypergraph, thus let pn � 3:9. Every vertex vi will be assigned a probability pi 2 [0; 1],

i = 1; 2; : : : ; n. De�ne a potential V (p1; p2; : : : ; pn) by

V (p1; p2; : : : ; pn) = 3pn=3 �
nY
i=1

�
1� 2

3
� pi
�
+

+

P
E2E

Q
vi2E pi

3 � pk � jEj +
k�1X
j=2

P
C2C2;j

Q
vi2C pi

3k � p2k�j � jC2;jj :

With p1 = p2 = : : := pn = p in the beginning, for pn=3 � 1:3 we have

V (p; : : : ; p) = 3pn=3 �
�
1� 2

3
� p
�n

+
pk � jEj

3 � pk � jEj +
k�1X
j=2

p2k�j � �j(G)
3k � p2k�j � �j(G)

�
�
3

e2

�pn=3
+
2

3

< 1 :

Step by step, we decide which choice of pi 2 f0; 1gminimizes the current value of V (p1; p2; : : : ; pn).
We set p1 = 1, if V (1; p2; : : : ; pn) � V (0; p2; : : : ; pn), else we set p1 = 0. Iterating this for all

vertices v1; v2; : : : ; vn, we obtain �nally p1; p2; : : : ; pn 2 f0; 1g.
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We have chosen the pi's to minimize the potential, thus, V (p1; p2; : : : ; pn) < 1. The set V 0 =

fvi 2 V j pi = 1g yields the desired induced subhypergraph as otherwise V (p1; p2; : : : ; pn) > 1.

The whole computation can be done in time O(jV j+ jEj+Pk�1
j=2 �j(G)).

We apply Lemma 2 to the hypergraph H = (X; E) with

p =

�
1

nk�1 � u
� 1

2k�1
�

up
n

� 1

(k+1)(2k�1)

; (20)

and we obtain in time O(jX j+ jEj+P2k�1
j=2 �j(H)) = O(u � n2k�1) an induced subhypergraph

H0 = (X 0; E 0) of H with jX 0j � pn=3, and, jE 0j � 3p2k � jEj and, using the considerations (9),

(10) the 2-cycles of H0 satisfy
P2k�1

j=2 �j(H0) � pn=6 for n large enough. Then, in time at

most O
�
u � n2k�1

�
we can determine all 2-cycles in H0 and delete from H0 one vertex from

each 2-cycle. The resulting induced hypergraph H00 on at least pn=6 vertices contains at most

c � p2k � nk � u edges, thus, has average degree d2k�1 � c0 � p2k�1 � nk�1 � u. Then, we apply the

following result from [BL 96] which gives an algorithmic version of the existence result from

[DLR 95] and extends an algorithm of Fundia [Fu 96].

Theorem 3 Let k � 3 be a �xed integer. Let G = (V; E) be a k-uniform hypergraph on n

vertices with average degree at most tk�1. If G does not contain any 2-cycles, then one can

�nd for every �xed � > 0 in time O(n � tk�1 + n3=t3��) an independent set of size at least

c(k; �) � n=t � (ln t)1=(k�1).

We apply Theorem 3 to H00 and in time O

 
p2k � nk � u+ n3=

�
p � n k�1

2k�1 � u 1

2k�1

�3��!

= o
�
n2k�1 � u

�
, where � < 3, we obtain an independent set in H00 hence in H of size at least

c2 �
 
nk

u

! 1

2k�1

�
�
ln

�
up
n

�� 1

2k�1

:

The corresponding vertices form a totally multicolored set of size as desired.

4 Concluding Remarks

The running time of the algorithm can be reduced slightly as follows. Similarly as in Lemma

2, we choose �rst a subhypergraph H0 = (X 0; E 0) of H = (X; E), where we do not control
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the 2-cycles, but where jX 0j = p1n=3 and jE 0j � 3p2k1 � jEj. Then, H0 contains at most

O(u � (p1 � n)2k�dj=2e) many (2; j)-cycles. The value of p1 > 0 should be chosen as small as

possible such that for some constant  > 0 and j = 2; 3; : : : ; 2k� 1, cf. [DLR 95] or [BL 96]:

u � (p1n)2k�dj=2e�1 = O

 
p1n �

�
p1 � n

k�1
2k�1 � u 1

2k�1

�4k�1�j�!
:

For this subhypergraph we apply Lemma 2 with a di�erent parameter p2 with p � p1 � p2
and proceed as before where the value of p is given by (20). Thus, we save some time by

controlling the 2-cycles later. However, more interesting might be to �nd the real growth

rate of fu(n; k) and a corresponding fast algorithm. It might be also of some interest to give

explicitly a coloring which yields our, or possibly better upper bounds, on fu(n; k).

References

[AKPSS 82] M. Ajtai, J. Koml�os, J. Pintz, J. Spencer and E. Szemer�edi, Extremal Uncrowded

Hypergraphs, Journal of Combinatorial Theory Ser. A 32, 1982, 321-335.

[ALR 91] N. Alon, H. Lefmann and V. R�odl, On an Anti-Ramsey Type Result, Coll. Math.

Soc. J�anos Bolyai, 60. Sets, Graphs and Numbers, 1991, 9-22.

[AS 92] N. Alon and J. Spencer, The Probabilistic Method, Wiley & Sons, New York,

1992.

[Ba 85] L. Babai, An Anti-Ramsey Theorem, Graphs and Combinatorics 1, 1985, 23-28.

[BL 96] C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded

Hypergraphs (Extended Abstract), Proceedings 8th ACM-SIAM Symposium on

Discrete Algorithms SODA'97, ACM and SIAM, 1996, 296-304.

[Bi 81] N. L. Biggs, T. P. Kirkman, Bull. London Math. Soc. 13, 1981, 97-120.

[DLR 95] R. A. Duke, H. Lefmann and V. R�odl, On Uncrowded Hypergraphs, Random

Structures & Algorithms 6, 1995, 209-212.

17



[Fu 96] A. Fundia, Derandomizing Chebychev's Inequality to �nd Independent Sets in

Uncrowded Hypergraphs, Random Structures & Algorithms 8, 1996, 131-147.

[RW 71] D. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkmans Schoolgirl Problem,

Proc. Symp. Pure Math. Vol. XIX, UCLA, AMS, Providence, 1968, 187-203.

[LRW 96] H. Lefmann, V. R�odl, and B. Wysocka, Multicolored Subsets in Colored Hyper-

graphs, Journal of Combinatorial Theory Ser. A 74, 1996, 209-248.

[RS 94] V. R�odl and E. �Si�najov�a, Note on Independent Sets in Steiner Systems, Random

Structures & Algorithms 5, 1994, 183-190.

[Sp 72] J. Spencer, Tur�an's Theorem for k-Graphs, Discrete Mathematics 2, 1972, 183-

186.

18


