Proper Bounded Edge-Colorings

Claudia Bertram-Kretzberg ", Hanno Lehnann ", Voitech Rodly and Beata Wysockaz

Abstract

For iixed integers $\kappa > 2$, and for n-element sets X and colorings Δ : $|X|^{*} \longrightarrow \{0,1,\ldots\}$ where every color class is a matching and has cardinality at most u, we show that there exists a totally multicolored subset $I \subseteq A$ with

$$
|Y| \ge \max\left\{c_1 \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}}, c_2 \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}} \cdot \left(\ln\left(\frac{u}{\sqrt{n}}\right)\right)^{\frac{1}{2k-1}}\right\}
$$

where $c_1, c_2 > 0$ are constants. This lower bound is tight up to constant factors for $u = u \cdot u^{1-\nu-1}$ for every $\epsilon > 0$. For fixed values of k we give a polynomial time algorithm for nding such a set ^Y of guaranteed size.

1 Introduction

On each of $\binom{3n}{3}/n$ school days, in a school attended by 3n students, the students are asked to line up in n rows, each containing three students. In 1851, Kirkman asked for the existence of such a schedule that would allow each triple of students to form a row on exactly one of the school days, cf. [Bi 81]. This classical problem was answered completely by Ray-Chaudhuri and Wilson [RW 71] who proved that such a such as such a schedule \sim 3, 3 mod 6. Here, we investigate a somewhat related combinatorial problem. Suppose that after such a schedule was prepared, the principle of the school wants (for unrevealed purposes) to select the largest group of, say, m students with the property that no two triples of students form a row on the

Universitat Dortmund, Fachbereich Informatik, LS II, D-44221 Dortmund, Germany.

[†]Emory University, Department of Mathematics and Computer Science, Atlanta, Georgia 30322, USA.

 ‡ University of North Carolina at Greensboro, Department of Mathematical Sciences, Greensboro, NC 27412, USA.

[§]Research supported by NSF grant DMS 9401559. Part of this work was done during the author's visit of Humboldt-University, Berlin, with a Humboldt senior-fellowship.

 ¶ Research supported by the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center "Computational Intelligence" (SFB 531).

same day. For any schedule such an m must satisfy

$$
c_1 \cdot n^{2/5} \cdot (\ln n)^{1/5} \le m \le c_2 \cdot n^{2/3} \tag{1}
$$

where $c_1, c_2 > 0$ are constants. While the upper bound is straightforward, the lower bound follows from [ALR 91]. There are schedules which, up to constant factors, match the lower bound. Here, we consider the general case in which one has n students which are asked to line up in at most u rows on a day, each containing k people. Our results extend earlier work from [ALR 91] and [LRW 96] where the case $u = n/k$ respectively $k = 2$ was considered. We also give a polynomial time algorithm which finds a group of m students satisfying the lower bound in (1) .

It will be convenient to formulate our problem in terms of colorings.

Definition 1 Let $\Delta: [X] \longrightarrow \omega$ where $\omega = \{0, 1, ...\}$ be a coloring of the k-element subsets of a set Λ . The coloring $\Delta: [\Lambda]^* \longrightarrow \omega$ with color classes $C_0, C_1, \ldots, L.$ $\Delta^{-1}(i) = C_i$ for $i \in \omega$, is called u-bounded if $|C_i| \leq u$ for $i = 0, 1, \ldots$ The coloring $\Delta : [X] \longrightarrow \omega$ is called proper
if each color class C_i , $i = 0, 1, \ldots$, is a matching, i.e., sets of the same color are pairwise if each color color color color color color color color and i.e., sets of the same color are pairwise \mathcal{N} as joint, thus, $\Delta(U) = \Delta(V)$ implies $U \cap V = \emptyset$ for all aistinct sets $U, V \in [X]$. A subset $Y \subseteq X$ is called totally multicolored if the restriction of the coloring Δ to the set $[Y]$ of all k-element subsets of Y is a one-to-one coloring.

For an *n*-element set X, define the parameter $f_u(n, k)$ by

 $f_u(n, k) = min_\Delta max_{Y \subset X} \{ |Y| ; Y \text{ is totally multicolored} \}$

where we minimize over all proper u-bounded colorings $\Delta: [X]^{n} \longrightarrow \omega$ with $|X| = n$.

The first estimates on $f_u(n, k)$ were given by Babai, cf. [Ba 85], in connection with a Sidontype problem. He showed for the case $u = n/2$ and $k = 2$ that

$$
c_1 \cdot n^{1/3} \le f_{n/2}(n, 2) \le c_2 \cdot (n \cdot \ln n)^{1/3}
$$

for constants $c_1, c_2 > 0$. In [ALR 91] the lower bound was improved by the factor $\Theta((\ln n)^{-\tau})$, 1.e., $f_{n/2}(n, z) \ge c_3 \cdot (n \cdot \ln n)^{-\gamma}$ where $c_3 > 0$ is a constant. Moreover, for fixed integers $\kappa \ge z$ the results from [ALR 91] show that

$$
f_{n/k}(n,k) = \Theta\left(n^{\frac{k-1}{2k-1}} \cdot (\ln n)^{\frac{1}{2k-1}}\right)
$$

Here we will prove the following:

 T_{rel} T_{rel} T_{rel} T_{rel} is a functional there exist constants $c_1, c_2, c_3 > 0$ such that for \overline{a} and \overline{a} and

$$
\max\left\{c_1\cdot\left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}},\ c_2\cdot\left(\frac{n^k}{u}\cdot\ln\left(\frac{u}{\sqrt{n}}\right)\right)^{\frac{1}{2k-1}}\right\}\leq f_u(n,k)\leq c_3\cdot\left(\frac{n^k}{u}\cdot\ln n\right)^{\frac{1}{2k-1}}.\tag{2}
$$

Moreover, for every n-element set X and every u-bounded proper coloring $\Delta : [X]^* \longrightarrow \omega$ one can jina in time $O(u \cdot n^{2k-2})$ a totally multicolored subset $Y \subseteq X$ with

$$
|Y| \ge \max\left\{c_1 \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}}, c_2 \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}} \cdot \left(\ln\left(\frac{u}{\sqrt{n}}\right)\right)^{\frac{1}{2k-1}}\right\}.
$$

2 The Existence

In this section, we will prove the existence of a totally multicolored subset as guaranteed by Theorem 1. We will use the notion of of edge-colored hypergraphs. The vertices are the n students, the edges correspond to the rows, and these edges are colored by the day.

 $\mathcal{L}(\mathcal{L}, \mathcal{L})$ be a hypergraph with vertex set \mathcal{L} and edge set \mathcal{L} . For a vertex $\mathcal{L}(\mathcal{L}, \mathcal{L})$ let $d(v)$ denote the *degree* of v in G, i.e., the number of edges $E \in \mathcal{E}$ containing v. Let g, i.e., the number of edges $E = \sum_{k=1}^{\infty} e^{-kx}$ containing v. Let $d = \sum_{v \in V} d(v)/|V|$ denote the *average degree* of $\mathcal G$. If for some fixed k we have $|E| = k$ for each edge $E \in \mathcal{E}$, then G is called k -uniform. A 2-cycle in G is an (unordered) pair $E, E \in \mathcal{E}$
of distinct edges which intersect in at least two vertices. The *independence number* $\alpha(\mathcal{G})$ is the largest size of a subset Γ is such that the induced hypergraph contains no edges, i.e., $E \not\subseteq I$ for every edge $E \in \mathcal{E}$.

en die voormeerde Enderge Entwickel
Een volgens die Eerste Entwickeling
Eenheids

It turns out that the independence number is important in our considerations. Some of our arguments are based on a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi, [AKPSS 82]. Here, we will use a modified version proved in [DLR 95].

 $T_{\text{rel}} = \text{Eer } S$ be a $(n + 1)$ and form hypergraph on n vertices. However that

- (i) G contains no \mathcal{L}
- (ii) the average degree satisfies $a \leq t^{\alpha}$ where $t \geq t_0(\kappa)$,

then for some positive constant $c = c(k)$,

$$
\alpha(\mathcal{G}) \ge c \cdot \frac{n}{t} \cdot (\ln t)^{\frac{1}{k}} \tag{3}
$$

Now we are ready to prove the lower bounds given in Theorem 1.

Proof: We start by showing the two lower bounds in (2). Let Δ : [Λ] $\rightarrow \omega$ be a u-bounded proper coloring where $|X| = n$. We construct a 2k-uniform hypergraph $\mathcal{H} = (X, \mathcal{E})$ on X where $E \in \mathcal{L} \subseteq [X]^{\sim}$ if there exist two distinct κ -element sets $S, I \in [X]^{\sim}, S, I \subseteq E$, so that $\Delta(S) = \Delta(T)$. As the number of k-element sets of the same color is at most u, the number of edges in H satises

$$
|\mathcal{E}| = \sum_{i \in \omega} {\binom{|\Delta^{-1}(i)|}{2}} \le \frac{\binom{n}{k}}{u} \cdot \binom{u}{2}.
$$
 (4)
Observe that, if $I \subseteq X$ is an independent set of \mathcal{H} , then I is totally multicolored with respect

 \mathbf{C} . Concerning the coloring the show that \mathbf{C} an independent set of size $c_1 \cdot (n^{\alpha}/u)^{1/\alpha+1-\alpha}$. To see this, pick every vertex in X at random independently of the other vertices with probability

$$
p = (n^{k-1} \cdot u)^{-\frac{1}{2k-1}}.
$$
\n(5)

By Chernoff's inequality, there exists a subset $Y \subseteq X$ of cardinality at least

$$
(1 - o(1)) \cdot p \cdot n = (1 - o(1)) \cdot \left(n^{k}/u \right)^{\frac{1}{2k-1}},
$$

and by Markov's inequality, the on Y induced subhypergraph $\mathcal{H}_0 = (Y, \mathcal{E} \cap [Y]^{2k})$ of \mathcal{H} contains
at most at most

$$
2 \cdot p^{2k} \cdot |\mathcal{E}| \le 2 \cdot p^{2k} \cdot \frac{\binom{n}{k}}{u} \cdot \binom{u}{2} \le \frac{1}{2} \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}}
$$

edges since $k \geq 2$. By deleting one vertex \geq 2. By defetting one vertex from each edge in [Y]²² \mid E, we obtain a subset $Y' \mid \geq |Y|/2 \geq (1/2 - o(1)) \cdot p \cdot n$. Clearly, Y' is an independent set in H, and $Y \subseteq Y$ with $|Y| \leq |Y|/2 \leq (1/2 - o(1)) \cdot p \cdot n$. Clearly, Y is an independent set in H , and hence Y is totally multicolored with respect to Δ , i.e., $f_u(n, k) = M((n^2/u)^{2k+2k+2})$.

If $u = \sqrt{n} \cdot \omega$ $\frac{(n^k/u)^{1/(2k-1)}}{y}$ by a logarithmic factor. Let $\Delta: [X]^k \to \omega$ be a *u*-bounded proper $f_u(n, \kappa) \geq c_1 \cdot (n^2/u)^{2\kappa + \kappa - 2\kappa}$ by a logarithmic factor. Let $\Delta : [X]^2 \to \omega$ be a u-bounded proper coloring the 2k-uniform hypergraph H with vertex set $\mathcal{L}_{\mathbf{I}}$ and with the set E official with edges defined in the same way as above. Again, we want to show a large lower bound on the independence number of H. Our strategy will be to find a random subset $Y \subseteq X$ such that the induced hypergraph has only a few 2-cycles. By deleting these 2-cycles the desired result will follow with Theorem 2.

Throughout this proof, let $c_1, c_2,...$ denote positive constants. Recall that the number of edges of H satises inequality (4). For ^j = 2; 3; : : :; 2k 1, let j denote the number of $(2,j)$ -cycles in H, i.e., the number of pairs $\{E, E'\} \in [\mathcal{E}]^2$ of edges which intersect in exactly H, i.e., the number of pairs $\{E, E\} \in [\mathcal{E}]$ ² of edges which intersect in exactly
it, we estimate the total number ν_j of $(2, j)$ -cycles in the hypergraph H. We j vertices. First, we estimate the total number of \int of $\sqrt{2}$; cycles in the hypergraph H. Cycles in the hypergraph H. We estimate the hypergraph H. We estimate the hypergraph H. We estimate the hypergraph H. We esti Itx an edge $E \in \mathcal{E}$. The number of unordered pairs $\{U, V\}$ of distinct sets $U, V \in [X]^*$ with $\Delta(U) = \Delta(V)$ and $|(U \cup V) \cap E| = j$ and $1 \leq |U \cap E|, |V \cap E| \leq j - 1$ is bounded from above $U(\nu) = (V)$ and $j(\nu) = j$ and $1 \leq j \leq k$ is $E[\nu]$ is $E=[\nu]$ is the position of the solution above $E[\nu]$ by

$$
\sum_{i=\lceil j/2\rceil}^{j-1} \binom{2k}{i} \cdot \binom{n-2k}{k-i} \cdot \binom{2k-i}{j-i} \le c_1 \cdot n^{k-\lceil j/2\rceil} \tag{6}
$$

as either $|U \cap E| \ge |j/2|$ or $|V \cap E| \ge |j/2|$, and every color class is a matching. If $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ is at number of such pairs fu; $U = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ most

$$
\binom{2k}{j} \cdot \binom{n-2k}{k-j} \cdot (u-1) \le c_2 \cdot n^{k-j} \cdot u \,. \tag{7}
$$

Now, (4) , (6) and (7) imply that

$$
\nu_j \leq |\mathcal{E}| \cdot \left(c_1 \cdot n^{k - \lceil j/2 \rceil} + c_2 \cdot n^{k-j} \cdot u \right) \leq c_3 \cdot u \cdot \left(n^{2k - \lceil j/2 \rceil} + n^{2k-j} \cdot u \right) .
$$

As $u \leq n/k$ and $j \geq 2$, we have $n^{2k - \lceil j/2 \rceil} \geq n^{2k-j} \cdot u$, hence

$$
\nu_j \le c_4 \cdot u \cdot n^{2k - \lceil j/2 \rceil} \tag{8}
$$

With foresight we use a slightly larger value than in (5) for the probability p of picking vertices, namely, we set

$$
p = \left(\frac{1}{n^{k-1} \cdot u}\right)^{\frac{1}{2k-1}} \cdot \left(\frac{u}{\sqrt{n}}\right)^{\frac{1}{(k+1)(2k-1)}}.
$$

 $\begin{array}{cccccccccccc}\n\mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{z} &$ independently of the other vertices. The expected size $E(|Y|)$ of Y is given by

$$
E(|Y|) = p \cdot n = \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}} \cdot \left(\frac{u}{\sqrt{n}}\right)^{\frac{1}{(k+1)(2k-1)}}.
$$

Let j (Y), for ^j = 2; 3; : : :; 2k 1, be random variables counting the number of (2; j)-cycles contained in Y. The random variable $\mu_2(Y) = \sum_{i=2}^{2k-1} \nu_i(Y)$ counts the total number of 2-cycles of the subhypergraph induced on Y. Let $E(\mu_2(Y))$ and $E(\nu_j(Y))$ denote the corresponding expected values.

 \cdots = \cdots \cdots \cdots \cdots \cdots \cdots

$$
E(\nu_j(Y)) \leq p^{4k-j} \cdot c_4 \cdot u \cdot n^{2k - \lceil j/2 \rceil} \\
= pn \cdot c_4 \cdot u^{\frac{j-2k + \frac{1}{k+1}(4k - j - 1)}{2k - 1}} \cdot n^{\frac{k(j+1-2\lceil j/2 \rceil) - \lfloor j/2 \rfloor - \frac{1}{2(k+1)}(4k - j - 1)}{2k - 1}},
$$

thus,

$$
E(\nu_j(Y)) \leq \begin{cases} pn \cdot c_4 \cdot u^{\frac{j-2k+\frac{1}{k+1}(4k-j-1)}{2k-1}} \cdot n^{\frac{k-\frac{j}{2}-\frac{1}{2(k+1)}(4k-j-1)}{2k-1}} & \text{if } j \text{ is even} \\ pn \cdot c_4 \cdot u^{\frac{j-2k+\frac{1}{k+1}(4k-j-1)}{2k-1}} \cdot n^{\frac{-\frac{j-1}{2}-\frac{1}{2(k+1)}(4k-j-1)}{2k-1}} & \text{if } j \text{ is odd.} \end{cases}
$$

Recall that $u = \sqrt{n} \cdot \omega(n) \le n/k$ with $\omega(n) \longrightarrow \infty$ with $n \longrightarrow \infty$, hence, $\omega(n) = O(\sqrt{n})$.
Then, for j even, Then, for j even,

$$
E(\nu_j(Y)) \leq pn \cdot c_4 \cdot u^{\frac{j-2k+\frac{1}{k+1}(4k-j-1)}{2k-1}} \cdot n^{\frac{k-\frac{j}{2}-\frac{1}{2(k+1)}(4k-j-1)}{2k-1}}
$$

\n
$$
= pn \cdot c_4 \cdot \omega(n)^{\frac{j-2k+\frac{1}{k+1}(4k-j-1)}{2k-1}}
$$

\n
$$
\leq pn \cdot c_4 \cdot \omega(n)^{\frac{-1}{(k+1)(2k-1)}}
$$

\n
$$
= o(pn).
$$

\n(9)

For j odd, we obtain

$$
E(\nu_j(Y)) \le pn \cdot c_4 \cdot u^{\frac{j-2k+\frac{1}{k+1}(4k-j-1)}{2k-1}} \cdot n^{-\frac{j-2}{2} - \frac{1}{2(k+1)}(4k-j-1)}
$$

\n
$$
= pn \cdot c_4 \cdot \omega(n)^{\frac{j-2k+\frac{1}{k+1}(4k-j-1)}{2k-1}} \cdot n^{-\frac{1}{2}}
$$

\n
$$
\le pn \cdot c_4 \cdot \omega(n)^{\frac{k-1}{(k+1)(2k-1)}} \cdot n^{-\frac{1}{2}}
$$
as $j \le 2k - 1$
\n
$$
= o(pn) \qquad \text{as } \omega(n) = O(\sqrt{n}). \qquad (10)
$$

Hence, by (9) and (10) we conclude $E(\mu_2(Y)) = \sum_{j=2}^{2K-1} E(\nu_j(Y)) = o(p \cdot n)$. Using Chernoff's and Markov's inequality, we infer that there exists a subset $Y \subseteq X$ with $|Y| = c_5pn$, such that the induced hypergraph $\pi_0 = (x, \varepsilon \sqcup |x|)^{-\alpha}$ contains at most $c_6 p^{-\alpha} |\varepsilon|$ $\pi_0 = (Y, \varepsilon \sqcup [Y]^{2k})$ contains at most $c_6 p^{-1} |\varepsilon|$ edges, and has
i one vertex from each 2-cycle in \mathcal{H}_0 . The resulting induced $\sigma_{\rm r}$ only $\sigma_{\rm r}$ 2-cycles. We omit on the vertex from each 2-cycle in H0. The resulting induced \mathcal{L} is defined H1 (c5 (1)) \mathcal{L} (cff) in \mathcal{L} (cfff) in \mathcal{L} (4) has \mathcal{L} (4) has average degree at most

$$
d \le t^{2k-1} = \frac{2k \cdot c_6 \cdot p^{2k} \cdot |\mathcal{E}|}{(c_5 - o(1)) \cdot pn} \le c_7 \cdot p^{2k-1} \cdot n^{k-1} \cdot u,
$$

1.e., $t \geq c_8 \cdot p \cdot (n^2 \cdot x + a)$ $\sqrt{a^{2k-1}} = c_8 \cdot (u/\sqrt{n})^{\sqrt{(k+1)}}$ $\frac{(k+1)(2k-1)}{k+1}$. As $u/\sqrt{n} \longrightarrow$ \mathbf{r}

$$
\alpha(\mathcal{H}) \geq \alpha(\mathcal{H}_1) \geq c \cdot \frac{(c_5 - o(1)) \cdot p \cdot n}{c_8 \cdot p \cdot (n^{k-1} \cdot u)^{\frac{1}{2k-1}}} \cdot \left[\ln \left(c_8 \cdot \left(\frac{u}{\sqrt{n}} \right)^{\frac{1}{(k+1)(2k-1)}} \right) \right]^{\frac{1}{2k-1}}
$$

$$
\geq c' \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-1}} \cdot \left(\ln \left(\frac{u}{\sqrt{n}} \right) \right)^{\frac{1}{2k-1}},
$$

 \Box

1.e., $f_u(n, \kappa) = \Omega((n^2/u)^{-1/2} \cdot (\ln n)^{-1/2} \cdot$

Upper Bounds

Next, we will show the upper bound in (2) generalizing some arguments from [Ba 85]. **Proof:** Let X be an *n*-element set where without loss of generality *n* is divisible by k. Set $m = \lceil c \cdot n^k / u \rceil$, where $c > 0$ is a constant. Let M_1, M_2, \ldots, M_m be random matchings, chosen uniformly and independently from the set of all matchings of size u on X . We define a coloring $\Delta: [X] \to \omega$ in rounds as follows: in round $j = 1, 2, ..., m$, we color every *k*-element set in M_j which has not been colored before, by color $j.$ Let \mathcal{C}_j be the set of all k -element subsets of \mathcal{L} which are colored in some round $\mathcal{L} = \{1, 2, \ldots, J\}$. In the round m $+1$ we color the remaining k-elements sets in $[X]^k \setminus \mathcal{C}_{m+1}$ in an arbitrary way, such that each color class is a matching $X \subseteq V$ be a fixed subset with $|Y| = x$, where $x = o(n/u^{1/k})$. We will of size at most u. Let $Y \subseteq V$ be a fixed subset with $|Y| = x$, where $x = o(n/u^{-1})$. We will prove that for $x \geq C \cdot (n^2/a \cdot \ln n)^{2/(2m-2)}$ with probability approaching to 1 the set Y is not

totally multicolored where $C > 0$ is a sufficiently large constant. This will give the desired result. We split the proof into several claims.

First, we give an upper bound on the probability that a certain number of k-element subsets of Y is colored in round j .

Claim 1 For $j = 1, 2, ..., m$ and $t = 0, 1, ...,$

Prob
$$
[|M_j \cap [Y]^k| \ge t] \le \left(\frac{u \cdot x^k}{n^k}\right)^t
$$
. (11)
Proof: The left hand side of (11) does not depend on the particular choice of Y. Thus,

assume that the matching M_j is fixed. The set Y can be chosen in $\binom{n}{x}$ ways. If $|M_j \cap [Y]^k| \ge$ $\lim_{h \to 0} \frac{1}{h}$ then from M_j we can choose t edges in $\binom{u}{t}$ ways, and the remaining elements of Y can be chosen in at most $\binom{n-\kappa t}{x-kt}$ ways, hence

$$
\text{Prob}\left[|M_j \cap [Y]^k| \ge t\right] \le \frac{\binom{u}{t} \cdot \binom{n-kt}{x-kt}}{\binom{n}{x}} \le \left(\frac{u \cdot x^k}{n^k}\right)^t.
$$

Now, we estimate the probability that a certain number of k -element subsets of Y is colored in some round $i \leq m$.

Claim 2 For $t = 0, 1, \ldots$ and for positive integers n,

Prob
$$
[(\mathcal{C}_{m+1} \cap [Y]^k] \ge t] \le \left(\frac{e \cdot (t+m) \cdot u \cdot x^k}{t \cdot n^k}\right)^t
$$
. (12)
1.2 *m* consider the events $|M_i \cap [Y]^k| \ge t_i$. As the matchings are

Proof: For $j = 1, 2, ..., m$, consider the events $|M_j| \cdot |Y| \ge$ $f = \frac{f}{f}$. By Claim 1 we have chosen independently of each other, these events are independent. By Claim 1 we have

$$
Prob\left[|M_j \cap [Y]^k| \ge t_j\right] \le \left(\frac{u \cdot x^k}{n^k}\right)^{t_j}.
$$

 $\text{Prob}\left[|M_j \cap [Y]^k| \ge t_j\right] \le \left(\frac{u \cdot x^m}{n^k}\right)$.

Since $|\mathcal{C}_{m+1} \cap [Y]^k| \le \sum_{j=1}^m |M_j \cap [Y]^k|$ we infer, using $\binom{n}{k} \le (e \cdot n/k)^k$, that
 $\text{Prob}\left[|\mathcal{C}_{m+1} \cap [Y]^k| > t\right] \le \text{Prob}\left[\sum_{j=1}^m |M_j \cap [Y]^k| > t\right]$

$$
\text{Prob}\left[|\mathcal{C}_{m+1}\cap[Y]^k|\geq t\right] \leq \text{Prob}\left[\sum_{j=1}^m |M_j\cap[Y]^k|\geq t\right]
$$

$$
\leq \sum_{(t_j)_{j=1}^m, t_j \geq 0, \sum_{j=1}^m t_j = t} \prod_{j=t}^m \text{Prob} \left[|M_j \cap [Y]^k| \geq t_j \right]
$$
\n
$$
\leq \sum_{(t_j)_{j=1}^m, t_j \geq 0, \sum_{j=1}^m t_j = t} \prod_{j=t}^m \left(\frac{u \cdot x^k}{n^k} \right)^{t_j}
$$
\n
$$
= \sum_{(t_j)_{j=1}^m, t_j \geq 0, \sum_{j=1}^m t_j = t} \left(\frac{u \cdot x^k}{n^k} \right)^t
$$
\n
$$
= \left(\frac{t + m - 1}{t} \right) \cdot \left(\frac{u \cdot x^k}{n^k} \right)^{t_j}
$$
\n
$$
\leq \left(\frac{e \cdot (t + m)}{t} \right)^t \cdot \left(\frac{u \cdot x^k}{n^k} \right)^t
$$
\n
$$
= \left(\frac{e \cdot (t + m) \cdot u \cdot x^k}{t \cdot n^k} \right)^t.
$$

 \Box

 \Box

For $i = 1, 2, ..., m + 1$, let E_i denote the event $|C_i| \cdot |Y| \leq |C_1 \cdot x^*|$ where $c_1 > 0$ is a constant white $3e^z = 1 = 1$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ and the some integration for some i, then also $\frac{1}{2}$ must be integrated for some integration. hold.

It turns out that with high probability E_{m+1} holds, i.e., only at most the constant fraction c_1 of all k-element subsets of Y is colored before round $m+1$:

Claim 3 For large enough positive integers n ,

$$
Prob\left[E_{m+1}\right] \geq 1 - 2^{-c_1 \cdot x^k}.
$$

Proof: Set $t = \lceil c_1 \cdot x^k \rceil$. Since $x = o\left(n/u^{1/k}\right)$ we have $t = o(n^k/u)$. For n large enough, with $m = \lceil c \cdot n^k / u \rceil$, and as $e \cdot c/c_1 \leq 1/3$, the quotient $\frac{e \cdot (t+m) \cdot u \cdot x^k}{t \cdot n^k}$ is $t \cdot n^k$ is the second τ τ τ with (12) we have

Prob
$$
[E_{m+1}] \ge 1 - \text{Prob } [|\mathcal{C}_{m+1} \cap [Y]^k| \ge t] \ge 1 - 2^{-t} \ge 1 - 2^{-c_1 \cdot x^k}
$$
.

We define another random variable Y_j by $Y_j = ||M_j|^{-1} ||[Y||^2 \setminus C_j]^{-1}$ to:
 Y_j counts the number of pairs of distinct k-element subsets of Y which We define another random variable Y_j by $Y_j = |[M_j]^2 \cap [[Y]^k \setminus C_j]^2|$ for $j = 1, 2, ..., m$. Then Yj counts the number of pairs of distinct k-element subsets of ^Y which are colored in round j. For $j = 1, 2, ..., m$, we want to determine the probability Prob $[Y_j = 0]$. However, we do not know how many k-element sets of Y were already colored in some round $i < j$. Therefore, we condition on the event that only at most the fraction c_1 of all k-element subsets of Y has been colored before round j.

For a random variable Z let $E(Z)$ denote the expected value of Z.

Claim 4 For some constant $c_2 > 0$, and sufficiently large positive integers n, and for $j =$ $1, 2, \ldots, m,$

$$
E(Y_j|E_j) > c_2 \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}.
$$

Proof: As E_j holds, we have for some constant $c_1 > 0$ that

$$
|[Y]^k \setminus C_j| \geq {x \choose k} - c_1 \cdot x^k \geq c_1' \cdot x^k.
$$

 $|[Y]^k\setminus \mathcal{C}_j|\geq \binom{x}{k}-c_1\cdot x^k\geq c_1'\cdot x^k\;.$ For each set $S\in [Y]^k$ there are less than $k\cdot \binom{x-1}{k-1}$ k -element subsets of Y which are not disjoint from S. Hence, for for some constant $c_2 > 0$ and n large enough, the number of (unordered) pairs $\{S, T\} \in [[Y]^k \setminus C_j]^2$ of sets with $S \cap T = \emptyset$ is at least

$$
\frac{1}{2} \cdot c_1' \cdot x^k \cdot \left(c_1' \cdot x^k - k \cdot \binom{x-1}{k-1} \right) \ge c_2 \cdot x^{2k} . \tag{13}
$$

For given disjoint *k*-element sets $S, I \in [X]^n$, the probability that both sets are in M_j is given by

$$
\text{Prob}\left[S, T \in M_j\right] = \frac{u \cdot (u - 1)}{\binom{n}{k} \cdot \binom{n - k}{k}} \ge \frac{u^2}{n^{2k}} \,. \tag{14}
$$

Hence, by (13) and (14) for the conditional expected value $E(Y_i|E_j)$ we have

$$
E(Y_j|E_j) \geq c_2 \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}.
$$

Claim 5 For $j = 1, 2, ..., m$, and large positive integers n,

Prob
$$
[Y_j = 1 | E_j] \ge (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}
$$
.

Proof: For $t = 1, 2, \ldots$, we claim that

$$
\text{Prob}\left[Y_j \ge t \mid E_j\right] \le \left(\frac{u \cdot x^k}{n^k}\right)^{\lceil \sqrt{2t+1} \rceil} \tag{15}
$$

Namely, t pairwise distinct two-element sets span a set of cardinality at least $\lceil \sqrt{2t + 1} \rceil$, i.e., $Y_j \geq t$ implies $|M_j \cap [Y]^k | \geq \lceil \sqrt{2t+1} \rceil$. By Claim 1 this shows inequality (15):

$$
\text{Prob } [Y_j \ge t \mid E_j] \le \text{Prob } \left[|M_j \cap [Y]^k| \ge \lceil \sqrt{2t+1} \rceil \right] \le \left(\frac{u \cdot x^k}{n^k} \right)^{\lceil \sqrt{2t+1} \rceil}.
$$

For $i = 0, 1, \ldots$, set $p_i = \text{Prob } [Y_j = i \mid E_j].$ Then we infer from (15), using $x = o\left(n/u^{1/k}\right)$, that

$$
E(Y_j | E_j) = \sum_{i \ge 0} i \cdot p_i \le p_1 + \sum_{i \ge 2} i \cdot \left(\frac{u \cdot x^k}{n^k}\right)^{\lceil \sqrt{2i+1} \rceil}
$$

= $p_1 + O\left(\left(\frac{u \cdot x^k}{n^k}\right)^3\right)$
= $p_1 + o\left(\frac{u^2 \cdot x^{2k}}{n^{2k}}\right)$.

By Claim 4 we inter that $p_1 \ge (c_2 - o(1)) \cdot u^{-1} \cdot x^{-1}/u^{-2}$.

Finally, for $j = 1, 2, ..., m$ let A_j denote the event $(Y_j = 0$ and $E_{j+1})$.

Claim 6 For some constant $c_3 > 0$, and large enough positive integers n,

$$
Prob [A_1 \wedge \ldots \wedge A_m] \leq \exp \left(-c_3 \cdot u \cdot \frac{x^{2k}}{n^k}\right).
$$

Proof: Notice that

$$
\text{Prob}\left[A_1 \wedge \ldots \wedge A_m\right] = \text{Prob}\left[A_1\right] \cdot \prod_{i=2}^m \text{Prob}\left[A_i \mid A_1 \wedge \ldots \wedge A_{i-1}\right].\tag{16}
$$

By Claim 5 we have

$$
\begin{aligned} \text{Prob} \left[A_1 \right] &\leq \text{Prob} \left(Y_1 = 0 \ | E_1 \right) \leq \text{Prob} \left(Y_1 \neq 1 \ | E_1 \right) \leq \\ &\leq \ 1 - (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}, \end{aligned} \tag{17}
$$

 \Box

:

while for inferred in the form of the second control of the second c

$$
\begin{aligned}\n\text{Prob}\left[A_i \mid A_1 \wedge \ldots \wedge A_{i-1}\right] &\leq \text{Prob}\left[Y_i = 0 \mid A_1 \wedge \ldots \wedge A_{i-1}\right] \\
&\leq \text{Prob}\left[Y_i = 0 \mid E_i\right] \\
&\leq \text{Prob}\left[Y_i \neq 1 \mid E_i\right] \\
&\leq 1 - (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}\n\end{aligned} \tag{18}
$$

Using $(1 - x)^m \ge \exp(-m \cdot x)$ where $m = [c \cdot n^2 / u]$, inequalities (17) , (18) together with (16) imply

$$
\begin{array}{rcl}\n\text{Prob}\left[A_1 \wedge A_2 \wedge \ldots \wedge A_m\right] & \leq & \left(1 - (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}\right)^m \\
& \leq & \exp\left(-(c_2 - o(1)) \cdot m \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}\right) \\
& \leq & \exp\left(-c \cdot (c_2 - o(1)) \cdot \frac{u \cdot x^{2k}}{n^k}\right) \\
& \leq & \exp\left(-c_3 \cdot \frac{u \cdot x^{2k}}{n^k}\right) \,.\n\end{array}
$$

Claim 7 For large enough positive integers n, the probability that there exists a totally multicolored x-element subset is at most

$$
\binom{n}{x} \cdot \left(\exp\left(-c_3 \cdot u \cdot \frac{x^{2k}}{n^k}\right) + 2^{-c_1 \cdot x^k}\right) \tag{19}
$$

 \Box

 $P = P \cdot P$ is to all $P \cdot P \cdot P$ is the following multicolored, then P_1 and P_2 \cdots P_m and P_m \cdots P_m \cdots P_m \cdots P_m \cdots P_m \cdots P_m \cdots $\ldots \wedge A_m$ holds or some E_i , hence, E_{m+1} fails. As there are exactly $\binom{n}{x}$ x **Service Contract Contract Contract** \cdots element sets \cdots \cdots \cdots \cdots combining the estimates from Claim 3 and Claim 6 we obtain (19). \Box

 $\longrightarrow \infty$ expression (19) tends to 0 for $x \geq C \cdot (n^{k}/u)^{1/(2k-1)}$.
a big enough constant. Namely, $(\ln n)^{-1}$ and where $C > 0$ is a big enough constant. Namely,

$$
\binom{n}{x} \cdot 2^{-c_1 \cdot x^k} \le \left(\frac{e \cdot n}{x}\right)^x \cdot 2^{-c_1 \cdot x^k}
$$

$$
\le \exp\left(x \cdot \ln \frac{n}{x} - c_1 \cdot \ln 2 \cdot x^k\right)
$$

$$
= o(1)
$$

for $x \geq C \cdot (\ln n)^{-\sqrt{N}}$ where $C > 0$ is a large enough constant.

Moreover, we have

$$
\binom{n}{x} \cdot \exp\left(-c_3 \cdot u \cdot \frac{x^{2k}}{n^k}\right) \le \left(\frac{e \cdot n}{x}\right)^x \cdot \exp\left(-c_3 \cdot u \cdot \frac{x^{2k}}{n^k}\right)
$$

$$
\le \exp\left(2x \cdot \ln n - c_3 \cdot u \cdot \frac{x^{2k}}{n^k}\right)
$$

$$
\le \exp\left((2C - c_3 \cdot C^{2k}) \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}} \cdot (\ln n)^{\frac{2k}{2k-1}}\right)
$$

$$
= o(1)
$$

provided C^{2k1} $>$ 2/c₃ and n is large enough. Thus, expression (19) tends to 0 with n $\rightarrow \infty$.
For $n \le n_0$ one can obtain asymptotically the same upper bound by taking an appropriately For $n = 0$ one can obtain asymptotically the same upper bound by taking an appropriately large constant $C > 0$.

3 An Algorithm

Here, we show that one can find in time $O(u \cdot n^{-\alpha-1})$ a totally multicolored subset as guaranteed by Theorem 1. The algorithm follows the probabilistic arguments given before. It is based on recent results of Fundia [Fu 96] and from [BL 96].

Proof: Let $\kappa \geq 2$ be a fixed integer and let Δ : $[X]^{n} \to \omega$ with $|X| = n$ be a proper ubounded coloring. First, we order the set $[X]^k$ of k-element subsets according to their color. This can be done in time $O(n^2 \cdot \ln n)$. Then, by examining all k-element sets in [X]. We form a 2k-uniform hypergraph , where E $H = (X, \mathcal{E}), \mathcal{E} \subseteq [X]^{n}$, where $E \in \mathcal{E}$ if there exist two distinct
 $S \cup T = E$ and $\Delta(S) = \Delta(T)$. By (4), we have $|\mathcal{E}| = O(n^k \cdot u)$, k-element sets $\left(\frac{1}{2}\right)$, $\left(\frac{1}{2}\right$ $\sum_{k=1}^{\infty}$ [X]^k with $S \cup T = E$ and $\Delta(S) = \Delta(T)$. By (4), we have $|\mathcal{E}| = O(n^k \cdot u)$
the hypergraph \mathcal{H} can be done in time $O(n^k \cdot u + n^k \cdot \ln n)$. We use the hence constructing the hypergraph π can be done in time $O(n^2 + u + n^2 + \ln n)$. We use the following algorithmic version of Turán's theorem, cf. [BL 96]. The existence result was given by Spencer [Sp 72].

Lemma 1 Let $g = (V, \mathcal{E})$ be a k-uniform hypergraph on n vertices with average degree a \mathcal{E}

$$
|I| \ge \frac{k-1}{k} \cdot \frac{n}{d} \; .
$$

Proof: We sketch the arguments. We use the method of conditional probabilities, cf. [AS 92]. Let $V = \{v_1, v_2, \ldots, v_n\}$. Every vertex v_i will be assigned a probability $p_i \in [0, 1]$, $i = 1, 2, \ldots, n$. Define a potential by

$$
V(p_1, p_2, \ldots, p_n) = \sum_{i=1}^n p_i - \sum_{E \in \mathcal{E}} \prod_{v_i \in E} p_i.
$$

The choice $p_1 = p_2 = \ldots = p_n = p = 1/d$ gives the initial value of the potential

$$
V(p,\ldots,p) = p \cdot n - p^k \cdot \frac{n \cdot d^{k-1}}{k} = \frac{k-1}{k} \cdot \frac{n}{d}.
$$

In each step i, $i = 1, 2, ..., n$, one after the other, we choose either $p_i = 0$ or $p_i = 1$ in order to maximize the current value of $V(p_1, p_2, \ldots, p_n)$. As $V(p_1, p_2, \ldots, p_n)$ is linear in each p_i , for $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\left(Y(1) \right)$ if $h \neq 0$, $\left(Y(2) \right)$ if $h \neq 0$, we set the particle particle particle in $\left(Y(1) \right)$ is $\left(Y(2) \right)$ if $\left(Y(3) \right)$ is $\left(Y(4) \right)$ if $\left(Y(5) \right)$ is $\left(Y(4) \right)$ if $\left(Y(5) \right)$ is $\left(Y(5) \right)$ if $\left(Y(5) \right)$

By our strategy, we infer $V(p_1)$. By our strategy, we infer $V(p_1, p_2, \ldots, p_n) \geq V(p, p, \ldots, p)$. For $V = \{v_i \in V \mid p_i = 1\}$ we have

$$
|V'| = \sum_{i=1}^{n} p_i = V(p_1, p_2, \dots, p_n) + \sum_{E \in \mathcal{E}} \prod_{v_i \in E} p_i.
$$

We can assume that V' is independent as otherwise we omit one vertex from each edge contained in V and the value of $V(p_1, p_2, ..., p_n)$ will not decrease. Thus, $|V| \ge V(p, p, ..., p) =$
 $\frac{k-1}{k} \cdot \frac{n}{d}$ and V' is an independent set. The running time is $O(|V| + |\mathcal{E}|)$. $\frac{a}{k} \cdot \frac{a}{d}$ and

 $\frac{d}{d}$ and *V* is an independent set. The running time is $O(|V| + |C|)$.

) the average degree *d* of *H* satisfies $d^{2k-1} \leq 2k \cdot |\mathcal{E}|/|X| \leq c_1 \cdot n^{k-1} \cdot u$. $\frac{1}{2}$ (4) the average degree d of $\frac{1}{2}$ we define $\frac{1}{2}$ we define $\frac{1}{2}$ we define $\frac{1}{2}$ we define $\frac{1}{2}$ π satisfies $a^{2k+1} \leq 2k \cdot |\mathcal{E}|/|X| \leq c_1 \cdot n^{k+1} \cdot u$
= $O(n^k \cdot u)$ an independent set in $\mathcal{H} = (X, \mathcal{E})$

can find in time
$$
O(|A| + |\mathcal{E}|) = O(n^2 \cdot u)
$$
 an independent set in $\mathcal{H} = (X, \mathcal{E})$ of size at least
$$
\frac{k-1}{k} \cdot \frac{n}{d} \ge c' \cdot \frac{n}{(n^{k-1} \cdot u)^{\frac{1}{2k-1}}} = c' \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}}
$$

where $c > 0$ is a constant. With the sorting procedure in the beginning, this part of the algorithm can be done in time $O(n^2 + u + n^2 + \ln n)$.

Now, assume that $u = \sqrt{n} \cdot \omega$ First, we construct the sets $C_{2,j}$ of $(2,j)$ -cycles in $\mathcal{H}, j =$ $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$. First, we construct the sets C₂; $\begin{pmatrix} 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \end{pmatrix}$ 2; 3; : : :; 2k 1. Using that the k-element sets are sorted according to their color, and that

sets of the same color are pairwise disjoint, and using the considerations leading to (8), all 2-cycles in π can be constructed in time $O(|C_{2,j}|) = O(u \cdot n^{2k-2j-2})$.

We use the following lemma.

Lemma 2 Let $k \leq 0$ be an integer. Let $g = (V, C)$ be a k-uniform hypergraph with $|V| = n$. L_{C} many (2; j)-cycles which can be determined also which can be determined also be determined as $\frac{1}{2}$ $2, 3, \ldots, k-1$. Then, for every real p with $0 \le p \le 1$, one can find in time $O(|V| + |\mathcal{E}| +$ (i) an induced subhypergraph $G' = (V', \mathcal{E}')$ such that $\sum_{j=2}^{\kappa-1} \nu_j(\mathcal{G})$ an induced subhypergraph $\mathcal{G}'=(V',\mathcal{E}')$ such that

$$
|V'| \ge p/3 \cdot |V|
$$

$$
|\mathcal{E}'| \le 3 \cdot p^k \cdot |\mathcal{E}|
$$

$$
\nu_j(\mathcal{G}') \le 3k \cdot p^{2k-j} \cdot \nu_j(\mathcal{G})
$$

 \boldsymbol{J} $\boldsymbol{$

Proof: As in the proof of Lemma 1, we use the method of conditional probabilities. Let $C_{2,j}$ be the set of all $(2; j)$ -cycles in $C_{2,j}$, j = 2; $(3; j)$ = 2; 3; 3; 1; $(3; j)$

Let $V = \{v_1, v_2, \ldots, v_n\}$. If $pn < 3.9$, any two-element subset $V' \subseteq V$ gives the desired \mathbf{v} is defined a probability vertex vertex vertex vertex via probability pixels with pixels \mathbf{v} is a probability pixel be assigned a probability pixels with \mathbf{v} is a probability pixel be a probability pixel $i = 1, 2, \ldots, n$. Define a potential $V(p_1, p_2, \ldots, p_n)$ by

$$
V(p_1, p_2, ..., p_n) = 3^{pn/3} \cdot \prod_{i=1}^n \left(1 - \frac{2}{3} \cdot p_i\right) +
$$

+
$$
\frac{\sum_{E \in \mathcal{E}} \prod_{v_i \in E} p_i}{3 \cdot p^k \cdot |\mathcal{E}|} + \sum_{j=2}^{k-1} \frac{\sum_{C \in C_{2,j}} \prod_{v_i \in C} p_i}{3k \cdot p^{2k-j} \cdot |C_{2,j}|}.
$$

= ... = $p_n = p$ in the beginning, for $pn/3 \ge 1.3$ we have

With p1 ⁼ p2 ⁼ :::= pn ⁼ ^p in the beginning, for pn=3 1:3 we have

$$
V(p,...,p) = 3^{pn/3} \cdot \left(1 - \frac{2}{3} \cdot p\right)^n + \frac{p^k \cdot |\mathcal{E}|}{3 \cdot p^k \cdot |\mathcal{E}|} + \sum_{j=2}^{k-1} \frac{p^{2k-j} \cdot \nu_j(\mathcal{G})}{3k \cdot p^{2k-j} \cdot \nu_j(\mathcal{G})}
$$

\$\leq \left(\frac{3}{e^2}\right)^{pn/3} + \frac{2}{3}\$
\$\leq 1.\$

We set $p_1 = 1$, if $V(1, p_2, \ldots, p_n) \le V(0, p_2, \ldots, p_n)$, else we set $p_1 = 0$. Iterating this for all \mathbf{I} if $\mathbf{$ vertices v_1, v_2, \ldots, v_n , we obtain finally $p_1, p_2, \ldots, p_n \in \{0, 1\}.$

We have chosen the p_i 's to minimize the potential, thus, $V(p_1, p_2, \ldots, p_n) < 1$. The set $V' =$ $\{v_i \in V \mid p_i = 1\}$ yields the desired induced subhypergraph as otherwise $V(p_1, p_2, \ldots, p_n) > 1$. \Box The whole computation can be done in time $O(|V| + |\mathcal{E}| + \sum_{j=2}^{k-1} \nu_j(\mathcal{G}))$.
We apply Lemma 2 to the hypergraph $\mathcal{H} = (X, \mathcal{E})$ with

We apply \exists the halo has hypergraph \forall $(2, 1)$ with

$$
p = \left(\frac{1}{n^{k-1} \cdot u}\right)^{\frac{1}{2k-1}} \left(\frac{u}{\sqrt{n}}\right)^{\frac{1}{(k+1)(2k-1)}},
$$
\n(20)

 $\mathcal{H}' = (X', \mathcal{E}')$ of \mathcal{H} with $|X'| \ge pn/3$, and, $|\mathcal{E}'| \le 3p^{2k} \cdot |\mathcal{E}|$ and, using the considerations (9) $j=2$ $\nu_j(\mathcal{H}) = O(u \cdot n^{-\alpha-2})$ an induced subhypergraph $\mathcal{H} = (X, \mathcal{E})$ of \mathcal{H} with $|X| \geq pn/3$, and, $|\mathcal{E}| \geq 3p^{2k-1}$ $|\mathcal{E}|$ and, using the considerations (9),
(10) the 2-cycles of \mathcal{H}' satisfy $\sum_{j=2}^{2k-1} \nu_j(\mathcal{H}') \leq pn/6$ for *n* large enough. Then, in ti most $O\left(u \cdot n^{2k-1} \right)$ we can determine all 2-cycles in \mathcal{H}' and delete from \mathcal{H}' one vertex from each 2-cycle. The resulting induced hypergraph \mathcal{H} ⁰ on at least pn/6 vertices contains at most $c \cdot p^{-n} \cdot n^{n} \cdot u$ edges, thus, has average degree $a^{-n-1} \leq c \cdot p^{-n-1} \cdot n^{n-1} \cdot u$. Then, we apply the following result from [BL 96] which gives an algorithmic version of the existence result from [DLR 95] and extends an algorithm of Fundia [Fu 96].

Theorem 3 Let $k \leq 3$ be a fact integer. Let $S = (1, \epsilon)$ be a k-uniform hypergraph on k vertices with average degree at most ι^* \cdot . If $\mathcal G$ does not contain any 2-cycles, then one can fina for every fixed $v > 0$ in time $O(n+r^2+ n^2/t^2)$ an independent set of size at least $c(\kappa, \theta) \cdot n / t \cdot (\text{Im } t)^{-\gamma(\kappa-1)}.$

we apply Theorem 5 to π and in time $O(p^{2n})$ $p^{2k} \cdot n^k \cdot u + n^3 / (p \cdot n^{\frac{k-1}{2k-1}})$ $\frac{2k-1}{2k-1} \cdot u^{\frac{2k-1}{2k-1}}$ $\frac{1}{2k-1}$ $3-\delta$ $= o\left(n^{2k-1} \cdot u\right), w$ \mathcal{L} and the set of , where $v < 3$, we obtain an independent set in π -hence in π or size at least

$$
c_2 \cdot \left(\frac{n^k}{u}\right)^{\frac{1}{2k-1}} \cdot \left(\ln\left(\frac{u}{\sqrt{n}}\right)\right)^{\frac{1}{2k-1}}.
$$

The corresponding vertices form a totally multicolored set of size as desired.

 \Box

4 Concluding Remarks

The running time of the algorithm can be reduced slightly as follows. Similarly as in Lemma 2, we choose first a subhypergraph $\mathcal{H}' = (X', \mathcal{E}')$ of $\mathcal{H} = (X, \mathcal{E})$, where we do not control

the 2-cycles, but where $|X| = p_1 n/3$ and $|C| \ge 3p_1^{2k-1} |C|$. Then, H contains at most
 $O(u \cdot (p_1 \cdot n)^{2k - \lceil j/2 \rceil})$ many $(2, j)$ -cycles. The value of $p_1 > 0$ should be chosen as small as $O(u \cdot (p_1 \cdot n)^{2\alpha-1})$ many $(2, j)$ -cycles. The value of $p_1 > 0$ should be chosen as small as possible such that for some constant $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ is $\frac{1}{2}$ or $\frac{1}{2}$

$$
u \cdot (p_1 n)^{2k - \lceil j/2 \rceil - 1} = O\left(p_1 n \cdot \left(p_1 \cdot n^{\frac{k-1}{2k-1}} \cdot u^{\frac{1}{2k-1}}\right)^{4k-1-j-\gamma}\right).
$$

For this subhypergraph we apply Lemma 2 with a direction parameter p_2 with $p = p_1 \cdot p_2$ and proceed as before where the value of p is given by (20) . Thus, we save some time by controlling the 2-cycles later. However, more interesting might be to find the real growth rate of $f_u(n, k)$ and a corresponding fast algorithm. It might be also of some interest to give explicitly a coloring which yields our, or possibly better upper bounds, on $f_u(n, k)$.

References

- [AKPSS 82] M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, *Extremal Uncrowded* Hypergraphs, Journal of Combinatorial Theory Ser. A 32, 1982, 321-335.
- [ALR 91] N. Alon, H. Lefmann and V. Rödl, On an Anti-Ramsey Type Result, Coll. Math. Soc. János Bolyai, 60. Sets, Graphs and Numbers, 1991, 9-22.
- [AS 92] N. Alon and J. Spencer, The Probabilistic Method, Wiley & Sons, New York, 1992.
- [Ba 85] L. Babai, An Anti-Ramsey Theorem, Graphs and Combinatorics 1, 1985, 23-28.
- [BL 96] C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded Hypergraphs (Extended Abstract), Proceedings 8th ACM-SIAM Symposium on Discrete Algorithms SODA'97, ACM and SIAM, 1996, 296-304.
- [Bi 81] N. L. Biggs, T. P. Kirkman, Bull. London Math. Soc. 13, 1981, 97-120.
- [DLR 95] R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random Structures & Algorithms 6, 1995, 209-212.
- [Fu 96] A. Fundia, *Derandomizing Chebychev's Inequality to find Independent Sets in* Uncrowded Hypergraphs, Random Structures & Algorithms 8, 1996, 131-147.
- [RW 71] D. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkmans Schoolgirl Problem, Proc. Symp. Pure Math. Vol. XIX, UCLA, AMS, Providence, 1968, 187-203.
- [LRW 96] H. Lefmann, V. Rödl, and B. Wysocka, *Multicolored Subsets in Colored Hyper*graphs, Journal of Combinatorial Theory Ser. A 74, 1996, 209-248.
- [RS 94] V. Rödl and E. Šiňa jová, Note on Independent Sets in Steiner Systems, Random Structures & Algorithms 5, 1994, 183-190.
- [Sp 72] J. Spencer, Turán's Theorem for k-Graphs, Discrete Mathematics 2, 1972, 183-186.