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Abstract

For fixed integers k > 2, and for n-element sets X and colorings A: [X]¥ — {0,1,...}
where every color class is a matching and has cardinality at most u, we show that there
exists a totally multicolored subset Y C X with

| > maX{C1 : (Z—k) e (Z_k) i (hl (%))ﬁ}

where ¢1,¢2 > 0 are constants. This lower bound is tight up to constant factors for
u= Q(nl/z‘l'e) for every € > 0. For fixed values of k£ we give a polynomial time algorithm
for finding such a set Y of guaranteed size.

1 Introduction

On each of (3:?)/71 school days, in a school attended by 3n students, the students are asked to
line up in n rows, each containing three students. In 1851, Kirkman asked for the existence of
such a schedule that would allow each triple of students to form a row on exactly one of the
school days, cf. [Bi 81]. This classical problem was answered completely by Ray-Chaudhuri
and Wilson [RW 71] who proved that such a schedule exists for each n = 1,3 mod 6. Here,
we investigate a somewhat related combinatorial problem. Suppose that after such a schedule
was prepared, the principle of the school wants (for unrevealed purposes) to select the largest

group of, say, m students with the property that no two triples of students form a row on the

*Universitat Dortmund, Fachbereich Informatik, LS II, D-44221 Dortmund, Germany.

"Emory University, Department of Mathematics and Computer Science, Atlanta, Georgia 30322, USA.

{University of North Carolina at Greensboro, Department of Mathematical Sciences, Greensboro, NC 27412,
USA.

$Research supported by NSF grant DMS 9401559. Part of this work was done during the author’s visit of
Humboldt-University, Berlin, with a Humboldt senior-fellowship.

T Research supported by the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center
“Computational Intelligence” (SFB 531).



same day. For any schedule such an m must satisfy
cr -0 ()P < m < ey - n?P (1)

where ¢1,¢5 > 0 are constants. While the upper bound is straightforward, the lower bound
follows from [ALR 91]. There are schedules which, up to constant factors, match the lower
bound. Here, we consider the general case in which one has n students which are asked to
line up in at most « rows on a day, each containing & people. Our results extend earlier work
from [ALR 91] and [LRW 96] where the case u = n/k respectively k = 2 was considered. We
also give a polynomial time algorithm which finds a group of m students satisfying the lower
bound in (1).

It will be convenient to formulate our problem in terms of colorings.

Definition 1 Let A:[X]F — w where w = {0,1,...} be a coloring of the k-element subsets of
a set X. The coloring A: [ X]* — w with color classes Co,C1, . .., i.e., A™V(i) = C; fori € w,
is called u-bounded if |C;| < u for i = 0,1,.... The coloring A:[X]* — w is called proper
if each color class C;, © = 0,1,..., is a matching, i.e., sets of the same color are pairwise
disjoint, thus, A(U) = A(V) implies UNV = ( for all distinct sets U,V € [X]*. A subset
Y C X is called totally multicolored if the restriction of the coloring A to the set [Y]* of all
k-element subsets of Y is a one-to-one coloring.

For an n-element set X, define the parameter f,(n,k) by
fu(n, k) = minamazycx{|Y|; Y is totally multicolored} ,
where we minimize over all proper u-bounded colorings A:[X]F — w with | X| = n.

The first estimates on f,(n, k) were given by Babai, cf. [Ba 85], in connection with a Sidon-

type problem. He showed for the case v = n/2 and k = 2 that
er-n'l? < Jnj2(n,2) < ez - (n-In ")1/3

for constants ¢1, ¢y > 0. In [ALR 91] the lower bound was improved by the factor @((In n)'/?),

ie., fo2(n,2) > cz-(n-In n)'/? where ¢3 > 0 is a constant. Moreover, for fixed integers k > 2



the results from [ALR 91] show that

Here we will prove the following:

Theorem 1 Let k > 2 be a fized integer. There exist constants ¢, co,c3 > 0 such that for

2<u<n/k,

nk ﬁ nk u ﬁ nk 2k—1
max{cl-(z) , 02-(?-111 <%)) } §fu(n,k)§03-(;-lnn) . (2)

Moreover, for every n-element set X and every u-bounded proper coloring A:[X]" — w one

can find in time O(u - n**=1) a totally multicolored subset Y C X with

Y| > max{cl . (%k)ﬁ, cy - (%k)ﬁ . (111 (%))ﬁ} .
2 The Existence

In this section, we will prove the existence of a totally multicolored subset as guaranteed by
Theorem 1. We will use the notion of of edge-colored hypergraphs. The vertices are the n
students, the edges correspond to the rows, and these edges are colored by the day.

Let G = (V,&) be a hypergraph with vertex set V' and edge set £. For a vertex v € V|,
let d(v) denote the degree of v in G, i.e., the number of edges F € & containing v. Let
d =73 ,cvdw)/|V| denote the average degree of G. If for some fixed k we have |E| = k for
each edge F € &, then G is called k-uniform. A 2-cycle in G is an (unordered) pair E, E' € £
of distinct edges which intersect in at least two vertices. The independence number a(G) is
the largest size of a subset I C V such that the induced hypergraph contains no edges, i.e.,
E & I for every edge F € £.

Lower Bounds

It turns out that the independence number is important in our considerations. Some of our
arguments are based on a result of Ajtai, Komlds, Pintz, Spencer and Szemerédi, [AKPSS 82].

Here, we will use a modified version proved in [DLR 95].



Theorem 2 Let G be a (k+ 1)-uniform hypergraph on n vertices. Assume that
(i) G contains no 2-cycles, and
(ii) the average degree satisfies d < t* where t > to(k),

then for some positive constant ¢ = ¢(k),

a(G)> e~ (In t)F . (3)

H~|§

Now we are ready to prove the lower bounds given in Theorem 1.

Proof: We start by showing the two lower bounds in (2). Let A:[X]*¥ — w be a u-bounded
proper coloring where |X| = n. We construct a 2k-uniform hypergraph H = (X,&) on X
where E € £ C [X]?* if there exist two distinct k-element sets §,7 € [X]*, 5,7 C E, so that

A(S) = A(T). As the number of k-element sets of the same color is at most u, the number of

e ('A;(")') <. (g) . (1)

1EW

edges in ‘H satisfies

Observe that, if I C X is an independent set of H, then [ is totally multicolored with respect

to the coloring A. Concerning the first lower bound, it is enough to show that H contains

1/(2k—1)

an independent set of size ¢y - (nk/u) . To see this, pick every vertex in X at random

independently of the other vertices with probability
p=(n"t )T (5)
By Chernoff’s inequality, there exists a subset Y C X of cardinality at least
1
(1=0(1))-p-n=(1-o(1) (n*/u) ™,

and by Markov’s inequality, the on Y induced subhypergraph Ho = (Y, EN[Y]?*) of H contains

1
n 1 k\ 2k—1
2.p2k.|g|§2.p2k.ﬁ. u <. n
U 2 2 U

edges since k > 2. By deleting one vertex from each edge in [Y]?* N £, we obtain a subset

Y'CY with [Y/| > |Y]/2> (1/2=0(1))-p-n. Clearly, Y is an independent set in H, and

at most

hence Y is totally multicolored with respect to A, i.e., f(n, k) = Q((n*/u)"/(ZE-1),



If w = +/n-wn), where w(n) — oo with n — o0, we can improve the lower bound
fuln, k) > 1+ (nk/u)l/(zk_l) by a logarithmic factor. Let A:[X]* — w be a u-bounded proper
coloring. Consider the 2k-uniform hypergraph H with vertex set X and with the set & of
edges defined in the same way as above. Again, we want to show a large lower bound on the
independence number of H. Our strategy will be to find a random subset ¥ C X such that
the induced hypergraph has only a few 2-cycles. By deleting these 2-cycles the desired result
will follow with Theorem 2.

Throughout this proof, let ¢1,¢o,... denote positive constants. Recall that the number of
edges of H satisfies inequality (4). For j = 2,3,...,2k — 1, let v; denote the number of
(2, j)-cyclesin ‘H, i.e., the number of pairs {E, E'} € [£]? of edges which intersect in exactly
J vertices. First, we estimate the total number v; of (2,j)-cycles in the hypergraph H. We
fix an edge £ € £. The number of unordered pairs {U, V} of distinct sets U,V € [X]* with
AU)=AV)and (UUV)NE|=jand 1 <|UNE|,|VNE|<j—1is bounded from above

by
U ok =2\ (2K —i 4
> ()(k )( ')Scl'"k_w’ (6)
=i/ N B

as either |UN E| > [j/2] or [V N E| > [j/2], and every color class is a matching.
HUNE=0or VNE=0,but (UUV)NE|=j, then the number of such pairs {U,V} is at

(Qj) | (nk_—QJk) (=D <t . (7)

Now, (4), (6) and (7) imply that

most

v < |&]- (01 L R u) <ecg-u- (nzk—[j/z] + p2k=i u) .
As u < n/k and j > 2, we have n2k=13/21 > p2k=J .y hence

vj < eq-u-nlR (8)

With foresight we use a slightly larger value than in (5) for the probability p of picking vertices,

( 1 )m (u)W
P= k1 Vn '

namely, we set




Let Y be a random subset of X obtained by choosing vertices v € X with probability p
independently of the other vertices. The expected size F(|Y|) of Y is given by

1

nk\ k-1 u (k+1)(12k—1)
FE(lYN=»p-n=[ — = .
(YD =p-n ( ()

Let v;(Y), for j = 2,3,...,2k — 1, be random variables counting the number of (2, j)-cycles
contained in Y. The random variable p2(Y) = Z?igl v;(Y') counts the total number of 2-cycles
of the subhypergraph induced on Y. Let E(u2(Y)) and E(v;(Y)) denote the corresponding
expected values.

We infer for j = 2.3,...,2k — 1 that

E(v;(Y)) < p*i ey 2192

J=2ht phr(ak—j—1)  RGHL=205/21)= /2] = gty (ks =1)
— pn . C4 - U 2k—1 -n 2k—1 ,
thus,
=2k e (tk—5—1) k—%—2(k1—+1)(4k—J—1) o
PR - Cq - U 2k—1 -n 2k—1 if j is even
E(V](Y)) S okt L (ak—_ _E_+(4k_ —1)
J=2k+ g (ek—5-1) 2 T 2(R+D) ! o
pncq U Gy -n Zh—1 if j is odd.

Recall that v = /n -w(n) < n/k with w(n) — oo with n — o0, hence, w(n) = O(y/n).

Then, for j even,

sz-pﬁ(uﬂ—]_n k—%——2(k1+1)(4k—J_1)
E(VJ(Y)) < pn-cy-u 2k—1 -n Th—1
=2kt g (th =y 1)
= pn-cy w(n) 2k—1
=1 )
< pn-ey - w(n)FFDREST) as j < 2% — 2
= o(pn). 9)
For 7 odd, we obtain
E(VJ(Y)) < pn-cy-u 2k—1 -n Th—1
Ik (=)
= pn-cq-w(n) 2k—1 .n-%
k—1 1 )
S pn - cy - w(n)(k+1)(2k—1) .2 as j S Qk‘ -1

= o(pn) asw(n) = O(y).  (10)



Hence, by (9) and (10) we conclude E(ug(Y)) = Z?igl E(vj(Y)) = o(p-n). Using Chernoff’s
and Markov’s inequality, we infer that there exists a subset Y C X with |Y| = ¢spn, such
that the induced hypergraph Ho = (Y, € N [Y]?*) contains at most cgp?¥|&| edges, and has
only o(pn) 2-cycles. We omit one vertex from each 2-cycle in Hg. The resulting induced
subhypergraph H; has (¢5 — o(1)) - pn vertices, contains no 2-cycles anymore, and by (4) has

average degree at most

2k - cs - p** - |€| <erephlghl oy
(s —o(1)) - pn

d < -1 =

1
e, t<cg-p-(nf! u)%l——l = cg - (u//n)FHDEE-D | As u/\/n — oo with n — oo we can

apply Theorem 2 to the subhypergraph Hy which yields

_1

N N . (cs—o(1))-p-n n (e u e | |
(H) > a(H,) A l1 ( (ﬁ) )]

() ()

i'e'v fu(n7 k) = Q((nk/u)l/(%—l) . (hl n)l/(Qk—l))‘ q

v

v

Upper Bounds

Next, we will show the upper bound in (2) generalizing some arguments from [Ba 85].

Proof: Let X be an n-element set where without loss of generality n is divisible by k. Set
m = [c-n¥/u], where ¢ > 0 is a constant. Let My, My, ..., M,, be random matchings, chosen
uniformly and independently from the set of all matchings of size u on X. We define a coloring
A:[X]" — w in rounds as follows: in round j = 1,2,...,m, we color every k-element set in
M; which has not been colored before, by color j. Let C; be the set of all k-element subsets of
X which are colored in some round ¢ = 1,2...,7 — 1. In round m + 1 we color the remaining
k-elements sets in [X]¥\ C,,41 in an arbitrary way, such that each color class is a matching
of size at most u. Let Y C V be a fixed subset with [Y| = z, where 2 = o(n/u'/*). We will

prove that for z > C - (n*/u - Inn)"/ %=1 with probability approaching to 1 the set Y is not



totally multicolored where €' > 0 is a sufficiently large constant. This will give the desired
result. We split the proof into several claims.
First, we give an upper bound on the probability that a certain number of k-element subsets

of Y is colored in round j.

Claim 1 Forj=1,2,...mandt=0,1,...,

ke 1
Prob ||M; n[yY]F > 1] < (“96 ) . (11)

nk

Proof: The left hand side of (11) does not depend on the particular choice of Y. Thus,
assume that the matching M; is fixed. The set Y can be chosen in (7) ways. If |M; N[Y]*] > ¢,

then from M; we can choose t edges in () ways, and the remaining elements of Y can be

n—kt

chosen in at most (I~

) ways, hence

U n—kt t
pro [y 2 ] < st < (57

0

Now, we estimate the probability that a certain number of k-element subsets of Y is colored

in some round ¢ < m.

Claim 2 Fort=0,1,... and for positive integers n,

Prob |[Crga N[YTF > 1] < (e(ttqukuxk) : (12)

Proof: Tor j = 1,2,...,m, consider the events |M; N [Y]¥| > t;,. As the matchings are

chosen independently of each other, these events are independent. By Claim 1 we have

nk

AN
Prob [|Mjﬁ[Y]k|th]§(u x) .

Since |Cpyp1 N[Y]F] < > M N [V1¥| we infer, using (}) < (e - n/k)*, that

i=1

Prob [|Cryr N[Y]F| > 1] < Prob [imjmmﬂzt]



m

< > [T Prob [|M; n[Y]¥] > 1]
(tj);n=1 ity Zovz;nzl ty=t j=1
ULy T b
< > H( - )

(t5)72 10t 20727;1 1=t J=1
Z (U . xk)t
k
m n
(tﬂ);n=1thZO7Z]=1 ty=t
t
_ [t+m =1 w-ak\’
= . ot
t
(e-(t—l—m))t ——
< -~ 7).
< ; —

_ (6-(t—|—m)-u-xk)t
B t-nk '

Fori=1,2,...,m+1,let E; denote the event |C;N[Y ]| < [c1 w’ﬂ where ¢; > 01is a constant

O

with 3ec < ¢; < 1/2-1/k!. Note that if F; does not hold for some i, then also E,,1; does not
hold.
It turns out that with high probability F,,4+1 holds, i.e., only at most the constant fraction ¢q

of all k-element subsets of Y is colored before round m+1:

Claim 3 For large enough positive integers n,
Prob [E41] > 1 — gmerst

Proof: Set t = [¢; - 2*]. Since z = o (n/ul/k) we have t = o(n*/u). For n large enough,
with m = [c-n*/u], and as e - ¢/c; < 1/3, the quotient W is less than 1/2, hence

with (12) we have

k

Prob [Em_|_1] Z 1 — Prob [|Cm-|—1 N [Y]k| Z t] Z 1— 2—1& Z 1 =9 e

O

We define another random variable Y; by Y; = |[M;]> N [[Y]¥\ C;]?| for j = 1,2,...,m. Then

Y; counts the number of pairs of distinct k-element subsets of Y which are colored in round



j. For j =1,2,...,m, we want to determine the probability Prob [Y; = 0]. However, we do
not know how many k-element sets of Y were already colored in some round 7 < j. Therefore,
we condition on the event that only at most the fraction ¢; of all k-element subsets of ¥ has
been colored before round j.

For a random variable Z let F(Z) denote the expected value of Z.

Claim 4 For some constant co > 0, and sufficiently large positive integers n, and for j =

1,2,...,m,

ul - 2k

E(Yj|Ej) > €2 ——

Proof: As I; holds, we have for some constant ¢} > 0 that
k L ks ok
TG (k) ootz ot

For each set S € [Y]* there are less than k- (ﬁj) k-element subsets of ¥ which are not disjoint

from S. Hence, for for some constant ¢; > 0 and n large enough, the number of (unordered)

pairs {9, T} € [[Y]%\ C;]? of sets with S NT = is at least

1 z—1

For given disjoint k-element sets §,T € [X]”, the probability that both sets are in M; is given
by

. _ 2
Prob [§,7 e = =D % . (14)

(1 - (%5

Hence, by (13) and (14) for the conditional expected value E(Y;|E;) we have

2. .2k
u - x
B8 > e
d
Claim 5 For j = 1,2,...,m, and large positive integers n,
ul . 2k
Prob [Y; = 1| E;] > (¢ca —o(1)) - e

10



Proof: Fort=1,2,... we claim that

u-xk
ok

(VI
) (15)

Prob[YthlEj]s(

Namely, ¢ pairwise distinct two-element sets span a set of cardinality at least [ /2t + 11, i.e.,
Y; >t implies |M; N [Y]¥| > [ /2t + 1]. By Claim 1 this shows inequality (15):

U'$k

[ V3T ]
Prob [V; > 1] ;] < Prob [[M;n[V]*| > [V2t+1]] < ( )

nk

For ¢ = 0,1,..., set p; = Prob [Y; = ¢ | E;]. Then we infer from (15), using = o (n/ul/k),

that
ook VI
P51 B =i < e X (M)
>0 i>2 "
w2k’
= p+0 (( -
n
W2 2k
= pl —I— 4] ( nzk ) .
By Claim 4 we infer that p; > (co — o(1)) - u? - 22k /n2*. 0

Finally, for j = 1,2,...,m let A; denote the event (Y; = 0 and F;4q).

Claim 6 For some constant c3 > 0, and large enough positive integers n,

$2k
Prob [Ay A ... N Ay <exp (—03-u-—k).
n
Proof: Notice that
Prob [A1 A ... A A,] = Prob [A4] - H Prob [A; | At Ao AN A . (16)

=2

By Claim 5 we have

Prob[A1] < Prob (Y1 =0]|F;) <Prob (Y1 #1|FE;) <
W2 2k
< L= (er—o1) (1)

A

11



while for ¢ > 2 we infer

Prob [A; [A1 A ...ANAi—1] < Prob[Y;=0] A A A Ai_q]
< Prob [Y; =0 E|]
< Prob [Y; #1| Ej]
< 1= (e2—o(1)) nkk : (18)

Using (1 —2)™ < exp(—m-z) where m = [c-n* /u], inequalities (17), (18) together with (16)

u? . 2k m
(1 — (2 —o(1))- W)

< exp (—<cQ—o<1>>-m-“7;2i )

imply

Prob [Ay A As A L. A Ay

IN

2k
< exp (—C (c2—o(1))- )

u - $2k
< exp| —es- z .
n

Claim 7 For large enough positive integers m, the probability that there exists a totally mul-

ticolored z-element subset is at most

n x 2k K
(x) . (exp (—03 U - ?) 427 ) . (19)

Proof: IfY is totally multicolored, then Y7 = Y5 = ... =Y, = 0. Thus, either A; A Ay A
... N Ay, holds or some Ej, hence, I/, 41 fails. As there are exactly (Z) z-element sets Y, by
combining the estimates from Claim 3 and Claim 6 we obtain (19). 0
. 1/(2k=1)
We want to show that for n — oo expression (19) tends to 0 for 2 > C - (nk/u) .

(In n)l/(%_l) where C' > 0 is a big enough constant. Namely,

n ok e-n\" &
() = ()
x x

< exp(x-lnﬁ—cl-ln%xk)
x
= o(l)

12



for x > C - (Inn)"/(*=1) swhere €' > 0 is a large enough constant.

e-n\% $2k
(—) exp | —e3 U —
z n

$2k
exp (2$-lnn—03-u-—k)
n

1
k\ 2k—1
exp ((20 —c3- Czk) . (%) -(In n)z;fﬂ)

= o(l)

Moreover, we have

n 2k
( ) + exXp (—03'U'—k)
T n

=

IN

IN

provided C?*~! > 2/c5 and n is large enough. Thus, expression (19) tends to 0 with n — co.
For n < ng one can obtain asymptotically the same upper bound by taking an appropriately

large constant C' > 0. 0

3 An Algorithm

Here, we show that one can find in time O(u-n?~!) a totally multicolored subset as guaranteed
by Theorem 1. The algorithm follows the probabilistic arguments given before. It is based on
recent results of Fundia [Fu 96] and from [BL 96].

Proof: Let k > 2 be a fixed integer and let A:[X]¥ — w with |X| = n be a proper u-
bounded coloring. First, we order the set [X]* of k-element subsets according to their color.
This can be done in time O(n* -Inn). Then, by examining all k-element sets in [X]* we
form a 2k-uniform hypergraph H = (X, &), £ C [X]?*, where E € & if there exist two distinct
k-element sets S, T € [X]* with SUT = E and A(S) = A(T). By (4), we have |€] = O(n” - u),
hence constructing the hypergraph H can be done in time O(nk cu+nF - In n). We use the
following algorithmic version of Turdn’s theorem, cf. [BL 96]. The existence result was given

by Spencer [Sp 72].

Lemma 1 Let G = (V, &) be a k-uniform hypergraph on n vertices with average degree dk=1 >
1. Then, one can find in time O(|V] + |£]) an independent set I C V' with

k—1 n
N> ——.
1= k d

13



Proof:  We sketch the arguments. We use the method of conditional probabilities, cf.
[AS 92]. Let V = {vy,v9,...,v,}. Every vertex v; will be assigned a probability p; € [0, 1],

1=1,2,...,n. Define a potential by

V(p17p27"'7pn) = sz - Z H pi -
=1

Eefv,eR
The choice py = po = ... = p, = p = 1/d gives the initial value of the potential
n-d*=' k-1 n
Vip,....p)=p-n—p~- = C—
(- sp)=p-n—p p o
In each step ¢, ¢ = 1,2,...,n, one after the other, we choose either p; = 0 or p; = 1 in order to
maximize the current value of V(p1,pa,...,pn)- As V(p1,p2,...,pn) is linear in each p;, for

i = 1, for example, either V(p1,...,pn) < V(1L,p2,...,pn) or V(p1,...,pn) < V(0,p2y. .., pn).
I V(prye.oopn) < V(1,p2,...,pn), we set p; = 1, else let p; = 0. Iterating this, we obtain
finally py,p2,...,ps € {0,1}.

By our strategy, we infer V(py,pa,....pn) > V(p,p,...,p). For V/ = {v; € V | p; = 1} we

have

|V/| = Zpl = V(Php%- . 7pn) + Z H pi -
=1

EecEv;,el

We can assume that V' is independent as otherwise we omit one vertex from each edge con-
tained in V'’ and the value of V(p1, p2, ..., p,) will not decrease. Thus, [V'| > V(p,p,...,p) =

kk;l - % and V' is an independent set. The running time is O(|V| + [£]). 0
By (4) the average degree d of H satisfies d**~1 < 2k -|€|/|X| < ¢;-n*~' -u. By Lemma 1 we

can find in time O(|X|+ |€]) = O(n* - u) an independent set in H = (X, &) of size at least

_1

, n , nk 2k—1
Z c - —_— =C - J—
(nk_l . u) 2k—1 u

where ¢ > 0 is a constant. With the sorting procedure in the beginning, this part of the

k—1
k

ST PN

algorithm can be done in time O(n* - u 4+ n* -In n).
Now, assume that « = /n - w(n) where w(n) — oo with n — oo. Again we consider
the hypergraph H = (X,€&). First, we construct the sets Cy; of (2,j)-cycles in H, j =

2,3,...,2k — 1. Using that the k-element sets are sorted according to their color, and that

14



sets of the same color are pairwise disjoint, and using the considerations leading to (8), all
2-cycles in H can be constructed in time O(|Cy|) = O(u - n?F=13/21),

We use the following lemma.

Lemma 2 Let k > 3 be an integer. Let G = (V,E) be a k-uniform hypergraph with |V| = n.
Let G contain v;(G) many (2, j)-cycles which can be determined all in time O(v;(G)), j =
2,3,...,k — 1. Then, for every real p with 0 < p < 1, one can find in time O(|V| + |E| +
Zf;% v;(G)) an induced subhypergraph G' = (V', &) such that

V> p/3-|V|
& < 3k g
vi(G') < 3k p™w(G)

forj=2,3,... k—1.

Proof: As in the proof of Lemma 1, we use the method of conditional probabilities. Let
(' ; be the set of all (2,j)-cyclesin G, j =2,3,...,k — 1.

Let V = {v,09,...,0,}. If pn < 3.9, any two-element subset V' C V gives the desired
subhypergraph, thus let pn > 3.9. Every vertex v; will be assigned a probability p; € [0,1],
i=1,2,...,n. Define a potential V(py1,p2,...,p,) by

- 2
V(p17p27"'7pn) = 3pn/3 : H (1 - g pz) +
=1

k-1 .
ZEes HviEEpi ZCECz,J HvieCpZ

LT D Pl oy e B o i
With p; = p; = ... = p, = p in the beginning, for pn/3 > 1.3 we have
9 n 2k 7. (g)
Vip,....p) = 3?”/3(1——- )
(ps---sp) p) + |E|+Z3k TG

IN

3

By

e? 3
< 1.

Step by step, we decide which choice of p; € {0, 1} minimizes the current value of V' (p1, pa,...,pn).
We set p1 = 1, if V(1,pa2,....pn) < V(0,pa,...,pn), else we set p; = 0. Iterating this for all

vertices vy, vg, ..., v,, we obtain finally py,pa,...,p, € {0, 1}.
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We have chosen the p;’s to minimize the potential, thus, V(p1,p2,...,pn) < 1. The set V' =
{v; € V| p; = 1} yields the desired induced subhypergraph as otherwise V(p1, p2,...,pn) > 1.
The whole computation can be done in time O(|V]| + |€] + f;% v;(G)). a

We apply Lemma 2 to the hypergraph H = (X, &) with

1 1
1 2k—1 w O\ (R¥D)(2k—1)
_ 20
= (=) () , (20)

and we obtain in time O(|X |+ €] + Z?i;l vi(H)) = O(u-n*~1) an induced subhypergraph
H = (X', &) of H with |X’| > pn/3, and, |&'| < 3p?* - |&| and, using the considerations (9),
(10) the 2-cycles of H' satisfy Z?igl vj(H'") < pn/6 for n large enough. Then, in time at
most O (u . n%_l) we can determine all 2-cycles in H’ and delete from H’ one vertex from
each 2-cycle. The resulting induced hypergraph H” on at least pn/6 vertices contains at most

2k—1 | k-1

c-p?F . ¥ . edges, thus, has average degree d**=1 < ¢ . p -u. Then, we apply the

following result from [BL 96] which gives an algorithmic version of the existence result from

[DLR 95] and extends an algorithm of Fundia [Fu 96].

Theorem 3 Let k > 3 be a fized integer. Let G = (V,E) be a k-uniform hypergraph on n
vertices with average degree at most t*=1. If G does not contain any 2-cycles, then one can
find for every fived & > 0 in time O(n - t*~1 + n3/t3=%) an independent set of size at least
e(k,6)-n/t- (Int)/ =1,

. 3-5
We apply Theorem 3 to H” and in time O (p% cnF w43/ (p 2T uﬁ) )

=0 (nzk—l -u), where § < 3, we obtain an independent set in " hence in H of size at least

e () ()T

The corresponding vertices form a totally multicolored set of size as desired. O

4 Concluding Remarks

The running time of the algorithm can be reduced slightly as follows. Similarly as in Lemma

2, we choose first a subhypergraph H' = (X',&’) of H = (X, &), where we do not control
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the 2-cycles, but where |X’| = pyn/3 and |£'| < 3p?* - |€|. Then, H' contains at most
O(u - (py - n)?*=[1/21) many (2, j)-cycles. The value of p; > 0 should be chosen as small as
possible such that for some constant v > 0 and j = 2,3,...,2k — 1, ¢f. [DLR 95] or [BL 96]:

: E— dk—1—j5—~
U - (pln)zk—l—]/z]—l = O (pln . (pl . nﬁ . uﬁ) ) .

For this subhypergraph we apply Lemma 2 with a different parameter p, with p = py - p2
and proceed as before where the value of p is given by (20). Thus, we save some time by
controlling the 2-cycles later. However, more interesting might be to find the real growth
rate of f,(n,k) and a corresponding fast algorithm. It might be also of some interest to give

explicitly a coloring which yields our, or possibly better upper bounds, on f,(n,k).
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