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Abstract

We consider the problem of �nding deterministically a large independent set of guaranteed

size in a hypergraph on n vertices and with m edges. With respect to the Tur�an bound, the

quality of our solutions is for hypergraphs with not too many small cycles by a logarithmic

factor in the input size better. The algorithms are fast; they often have a running time of

O(m) + o(n3). Indeed, the denser the hypergraphs are the more close are the running times

to the linear ones. This gives for the �rst time for some combinatorial problems algorithmic

solutions with state-of-the-art quality, solutions of which so far only the existence was known.

In some cases, the corresponding upper bounds match the lower bounds up to constant

factors. The involved concepts are uncrowded hypergraphs.

1 Introduction

A fundamental problem in Computer Science and Mathematics is to �nd a large independent set

in an arbitrary graph [6], [14], [20]. Recall, that for a graph G = (V;E) with vertex set V and

edgeset E � [V ]2 a subset I � V of the vertex set is called independent, if the subgraph induced

on I contains no edges e 2 E, i.e., E\ [I]2 = ;. The maximum cardinality of an independent set

I is called the independence number �(G) of G. It is well-known, that �nding in a graph G an

independent set of size �(G) is an NP-hard problem, even for graphs with bounded maximum

degree.

This suggests to look for approximation algorithms with guaranteed performance ratio which

is the quotient of the sizes of the optimal and the found solution in the worst case. The

results of Arora, Lund, Motwani, Sudan and Szegedy [10] on interactive proof systems show

that, with respect to polynomial time algorithms, there is no constant performance ratio for

the independent set problem for graphs on n vertices, indeed no ratio of n1=4 unless P = NP ,

cf. the work of Bellare, Goldreich and Sudan [13]. Recently, H�astad [26] showed that there is

no performance ratio of n1=2�� unless NP = P , and no such ratio of n1�� unless NP = coR.

With respect to polynomial time algorithms, for triangle-free graphs with maximum degree �,

a performance ratio of O(�= ln�) was given in [23], [27], and moreover, if they contain no
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complete subgraph Kl, l � 4, then a performance ratio of O(�= ln ln�) is known, cf. [23], [24].

Recently it was shown by Brandt [15] that the independence number of triangle-free graphs with

minimum degree � > n=3 can be computed as fast as matrix multiplication in time O(n2:376),

while within the class of graphs with minimum degree � > (1� �)n=4 where � > 0, the problem

is NP-hard. Recall that every triangle-free graph on n vertices has at most bn=2c � dn=2e edges.
For hypergraphs, the corresponding problem has been less studied, cf. [28]. Here we consider

this problem of �nding a large independent set in a hypergraph. Hypergraphs are important,

as many problems can be formulated in terms of them. A hypergraph G = (V; E) is given by a

set V of vertices and a set E of edges (hyperedges) where each edge E 2 E is a nonempty subset

of V . A hypergraph G = (V; E) is called (k + 1)-uniform if E � [V ]k+1, i.e., each edge E 2 E
contains exactly (k + 1) vertices. If the hypergraph G = (V; E) is (k + 1)-uniform, then

t(G) = t =

�
(k + 1) � jEj

jV j
�1=k

is the k'th root of the average degree of G. Similarly to the graph case, the independence number

�(G) of a hypergraph G = (V; E) is de�ned as the maximum size of a subset I � V which

contains no edges E 2 E , i.e., there is no edge E 2 E with E � I.

We give a general approximation strategy which has a performance ratio of O(t=(ln t)1=k) for

(k+1)-uniform hypergraphs with average degree tk and not too many small cycles. For random

hypergraphs, no algorithm has a better performance ratio. The idea for doing this originates in

a powerful result of Ajtai, Koml�os, Pintz, Spencer and Szemer�edi [2] on uncrowded hypergraphs.

These have the property that they contain no small cycles. We remark that derandomizing a

probabilistic argument of Spencer [44] yields a performance ratio of O(t) for arbitrary hyper-

graphs. We apply our approximation strategy to some combinatorial and graph problems for

which so far only the existence of solutions of a certain quality was known. Our algorithms match

these qualities and yield for these problems algorithmic solutions of state-of-the-art quality.

2 Uncrowded Hypergraphs

Tur�an's Theorem for Hypergraphs G gives a lower bound for the independence number �(G), cf.
Spencer [44]:

Theorem 2.1 [44] Let G = (V; E) be a (k+1)-uniform hypergraph, k � 1, with average degree

tk � 1 and jV j = n. Then,

�(G) � ck � n
t
: (1)

Moreover, an independent set of size at least ck � n=t can be found in time O(jEj).

We remark that for (k + 1)-uniform hypergraphs on n vertices with average degree tk < 1 one

can simply use a Greedy strategy to obtain in time O(jEj) an independent set of size at least

c0k � n, or more simply, we add in an arbitrary way a few edges to the hypergraph to achieve in

the resulting hypergraph that 1 � tk < (k + 1), and then we apply Theorem 2.1.
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For completeness we give the algorithmic proof of (1).

Proof: Let V = fv1; v2; : : : ; vng be the set of vertices of G. The existence of an independent set
of size as guaranteed in (1) can be shown by picking vertices of V independently of each other

at random with probability p = 1=t. The set of picked vertices will yield the independent set.

For the algorithm we imitate this approach by using the method of conditional probabilities,

cf. [9]. To give a deterministic algorithm, we start by generalizing the probabilistic experiment.

For i = 1; 2; : : : ; n vertex vi will be assigned a weight (probability) pi 2 [0; 1]. De�ne a potential

V (p1; p2; : : : ; pn) by

V (p1; p2; : : : ; pn) =
nX
i=1

pi �
X
E2E

Y
vi2E

pi :

Note that in the corresponding random experiment,
Pn

i=1 pi is the expected number of picked

vertices and
P

E2E
Q

vi2E pi is the expected number of edges in the induced random hypergraph.

Now, for i = 1; 2; : : : ; n in each step i we choose either pi = 0 or pi = 1 in order to maximize the

value of the potential V (p1; p2; : : : ; pn). As V (p1; p2; : : : ; pn) is linear in each pi, i.e., for i = 1,

V (p1; p2; : : : ; pn) = p1 � V (1; p2; : : : ; pn) + (1� p1) � V (0; p2; : : : ; pn)

either V (1; p2; : : : ; pn) � V (p1; p2; : : : ; pn) or V (0; p2; : : : ; pn) � V (p1; p2; : : : ; pn). We take vertex

v1 for the independent set, if V (1; p2; : : : ; pn) > V (p1; p2; : : : ; pn), else we discard it. Doing this

one after the other for i = 1; 2; : : : ; n, �nally, each vertex vi is assigned a weight pi 2 f0; 1g,
i = 1; 2; : : : ; n.

Choosing in the beginning p1 = p2 = : : : = pn = p, we have

V (p; : : : ; p) = p � n� pk+1 � n � t
k

k + 1

which is maximal (taking the derivative) for p = 1=t, i.e., with this choice of p we have

V (p; : : : ; p) =
k

k + 1
� n
t
: (2)

By our strategy we obtain �nally V (p1; p2; : : : ; pn) � V (p; : : : ; p). Let V 0 = fvi 2 V j pi = 1g.
By (2), and using that pi � 0 for i = 1; 2; : : : ; n, we infer

jV 0j =
nX
i=1

pi = V (p1; : : : ; pn) +
X
E2E

Y
vi2E

pi � V (p; : : : ; p) +
X
E2E

Y
vi2E

pi � k

k + 1
� n
t
:

We claim that V 0 is an independent set in G. Suppose for contradiction that this is not the case

and let E = fvi1 ; vi2 ; : : : ; vik+1
g 2 E \ [V 0]k+1 where i1 < i2 < : : : < ik+1 = s. Consider step s.

As we had chosen in this step ps = 1, we have

V (p1; : : : ; ps�1; 1; ps+1; : : : ; pn) > V (p1; : : : ; pn) : (3)

However, as edge E came in in step s, we infer

V (p1; : : : ; ps�1; 1; ps+1; : : : ; pn)� V (p1; : : : ; pn) � (1� ps)� (1� ps) = 0
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which contradicts (3). Thus V 0 is an independent set in G of size at least k
k+1

� n
t
, i.e., �(G) �

k
k+1 � nt .
During the algorithm each vertex and each edge is considered only a constant number of times,

hence, with tk � 1 the running time is O(jEj).
For �xed integers k � 1, there are examples of (k+1)-uniform hypergraphs whose independence

numbers match the lower bound (1) up to constant factors. Simply take n=x vertex disjoint

copies of complete (k + 1)-uniform hypergraphs on x vertices each where tk � �x�1
k

�
. However,

quite often the hypergraphs under consideration are in some sense sparse, and for these the

general lower bound (1) can be improved as can be seen in the following.

A cycle of length i in a (k + 1)-uniform hypergraph G = (V; E) is a set of i edges from E
whose union contains at most i � k vertices. An i-cycle is a cycle of length i which does not

contain any cycles of length 2; 3; : : : ; i � 1. To specify the notion `sparse' mentioned above,

we de�ne a hypergraph G to be uncrowded if it does not contain any 2-, 3- or 4-cycles. For a

vertex v 2 V let d(v) denote its degree, i.e., the number of edges E 2 E which contain v. Let

�(G) = maxv2V fd(v)g be the maximum degree of G. For a subset V 0 � V let G0 = (V 0; E 0)
with E 0 = E \ [V 0]k+1 be the on V 0 induced subhypergraph of G.
For uncrowded hypergraphs, the lower bound (1) was improved by the following powerful result

of Ajtai, Koml�os, Pintz, Spencer and Szemer�edi:

Theorem 2.2 [2] Let k � 2 be a �xed integer. Let G be a (k + 1)-uniform hypergraph on n

vertices. Assume that

(i) G is uncrowded, i.e., contains no 2-, 3- or 4-cycles, and

(ii) the maximum degree �(G) satis�es �(G) � tk where t � t0(k), and

(iii) n � n0(k; t),

then the independence number �(G) satis�es

�(G) � 0:98

e
� 10�5=k � n

t
� (ln t)1=k : (4)

Various applications of Theorem 2.2 have been found including the disproof of Heilbronn's

conjecture [30], results on Sidon sets [4], Steiner-systems [40], complexity theory [37], Ramsey

numbers [3], geometric selection problems [34], Tur�an numbers for random graphs [29] and graph

coloring problems [8], [16] and [33].

Indeed, for a certain range of the involved parameters k; n; t inequality (4) is best possible

up to constant factors as a random hypergraph argument shows. Namely, for a �xed integer

k � 1 consider a random (k + 1)-uniform hypergraph on n vertices, where the edges are chosen

independently at random with probability p = (t=n)k, where n� t� k. Let l = C �n=t�(ln t)1=k,
where C > 0 is a large enough constant. For a �xed l-element subset I � V of the vertex set,

the probability that I is an independent set, is equal to

(1� p)(
l

k+1) � exp

(
�p �

 
l

k + 1

!)
� exp

(
�p � l

k+1 � (1� o(1))

(k + 1)!

)

4



where we used the inequality 1� x � expf�xg := e�x. Using the inequality
�n
l

� � (e � n=l)l, the
expected number of independent sets of size l in the random hypergraph is at most 

n

l

!
� exp

(
�p � l

k+1 � (1� o(1))

(k + 1)!

)

�
 
e � n
l

� exp
(
�p � l

k � (1� o(1))

(k + 1)!

)!l

�
 
e

C
� t

(ln t)1=k
� exp

(
�C

k � (1� o(1)) � ln t
(k + 1)!

)!l

�
 
e

C
� exp

(
ln t� ln ln t

k
� Ck � (1� o(1)) � ln t

(k + 1)!

)!l

< 1

for Ck � 2 � (k+1)! and t large enough. However, the expected number of cycles of length i � 4

in the random hypergraph is at most

nik � pi = tik � t4k :

By Markov's inequality there exists a hypergraph G on n vertices with at most

3 � p �
 

n

k + 1

!
� 3 � n � tk

(k + 1)!

edges which contains no independent set of size C � n=t � (ln t)1=k and with at most 9 � t4k cycles

of length at most 4. Note that for each induced subhypergraph G0 of G we have �(G0) � �(G).
Now, omitting one vertex from each cycle of length at most 4 gives a (k+1)-uniform uncrowded

hypergraph on n � 9 � t4k = (1 � o(1)) � n vertices, with average degree at most 3=k! � tk and

with independence number at most C � n=t � (ln t)1=k, provided t4k = o(n). Hence, for many

hypergraphs inequality (4) is best possible up to constant factors.

Notice, that in (4) we gain a logarithmic factor, if we compare it to Tur�an's lower bound (1).

This additional logarithmic factor is of interest as in several applications one can use Theorem

2.2 to prove lower bounds which, with respect to the corresponding applications, asymptotically

match the upper bounds.

Recently, Fundia [19] gave a polynomial time algorithm, which �nds an independent set of size

asymptotically at least as guaranteed by inequality (4).

Theorem 2.3 [19] Let k � 2 be a positive integer. Let G be an uncrowded (k + 1)-uniform

hypergraph on n vertices with average degree tk where k4 � t4k < n, and k < t. Then, one can

�nd in time O
�
n3 � t6k � ln t

�
an independent set of size at least 


�
n=t � (ln t)1=k

�
.

Notice, that in uncrowded (k+1)-uniform hypergraphs G = (V; E) with jV j = n two edges have

at most one vertex in common, hence, jEj � �n
2

�
=
�k+1

2

�
.
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We remark that in Theorem 2.3 the condition k4 � t4k < n is not that important, cf. [8], if we

ignore for the moment the algorithmic aspects. Namely, if k4 � t4k � n, then we set

N =

&
k4 � t4k + 1

n

'

and we form a new hypergraph H = (V 0; E 0) by taking N vertex disjoint copies of G. Clearly,

jV 0j = N �n and jE 0j = N �jEj, thus G andH have the same average degree. However, H ful�ls the

assumptions of Theorem 2.3, and we obtain in time O
�
(N � n)3 � t6k � ln t

�
an independent set of

size 

�
N � n=t � (ln t)1=k

�
. Then, restricting the independent set to one copy of G yields the de-

sired result, i.e., an independent set of size 
(n=t � (ln t)1=k). We have in uncrowded hypergraphs

t = O(n1=k), hence, we infer for the running time O
�
(N � n)3 � t6k � ln t

�
= O

�
t18k � ln t

�
=

O
�
n18 � lnn�, i.e., polynomial running time for �xed k.

Contrary to our considerations of blowing up the hypergraph, i.e., taking copies, we will work

on small subhypergraphs of G to keep the running times of the corresponding algorithms small,

cf. Kortsarz and Peleg [31]. Throughout this paper, k will always be a �xed positive integer

with k � 2, and tk, the average degree, will always be an increasing function of n, the number

of vertices of the hypergraph, i.e., t = t(n)!1 with n!1.

Theorem 2.3 does not seem to be applicable to many hypergraphs. In general, the hypergraphs

under consideration are not uncrowded and have quite a lot of 2-, 3- or 4-cycles. However, as we

will see, in several cases, the trick is to choose at random an appropriate small subhypergraph

which turns out to be `nearly' uncrowded, i.e., has only a few small cycles. After deleting these

cycles one can apply Theorem 2.3. Indeed, seemingly against the intuition, one chooses vertices

with a probability p = t�1+� for some � > 0 which is a little bigger than that one would usually

take, i.e., p = t�1. But this gives the improvement by a logarithmic factor.

In the following we state our main results. First, we improve Theorem 2.3 as follows.

Theorem 2.4 Let k � 2 be a �xed positive integer. Let G be an uncrowded (k + 1)-uniform

hypergraph on n vertices with average degree tk and t ! 1 with n ! 1. Then, for each �xed

� > 0, one can �nd in time

O

 
n � tk + n3

t3��

!
(5)

an independent set in G of size at least 

�
n=t � (ln t)1=k

�
.

The parameter � > 0 can be chosen to be small. Thus, the more edges the hypergraph has, the

closer is the running time to the linear one O(n � tk). However, as t = O(n1=k), for k � 3 and

� > 0, the time bound is always O(jEj+ n3�3=k+�) = O(n3�3=k+�).

The proof of Theorem 2.4 shows that with the factor t� in the running time there comes a factor

(�=(6k + 4))1=k in the quality of the solution. Hence, for k � 3, dropping the running time

from O(n3=t3��) to O(n3=t3��=2), i.e., by the factor t�=2, means that we loose in the guaranteed

quality the factor 21=k.
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Corollary 2.5 Let k � 2 be a �xed positive integer. Let G be an uncrowded (k + 1)-uniform

hypergraph on n vertices with average degree at most tk and t ! 1 with n ! 1. Then, for

each �xed � > 0, one can �nd in time

O

 
n � tk + n3

t3��

!
(6)

an independent set in G of size at least 

�
n=t � (ln t)1=k

�
.

Proof: If the average degree t(G)k of G satis�es t(G)k � tk= ln t, then by Theorem 2.1 we �nd

in time O(n � t(G)k) = O(n � tk) an independent set of size




�
n

t(G)
�
= 


�
n

t
� (ln t)1=k

�
:

Otherwise, if tk � t(G)k > tk= ln t, then we apply Theorem 2.4 with �0 = �=2 and we obtain in

time

O

 
n � t(G)k + n3

t(G)3��0
!
= O

 
n � tk + n3

t3��0
� (ln t)(3��0)=k

!
= O

 
n � tk + n3

t3��

!

an independent set of size at least 

�
n=t(G) � (ln t(G))1=k

�
= 


�
n=t � (ln t)1=k

�
. Here we used

that the function f(t) = (ln t)1=k=t is decreasing for t � 2.

It turns out that the 2-cycles are important. For a hypergraph G = (V; E) a 2-cycle fE1; E2g with
E1; E2 2 E is called (2; j)-cycle if jE1 \ E2j = j. Let s2;j(G) denote the number of (2; j)-cycles
in G.
The next theorem yields an algorithmic version of the existence result which was proved by

Duke, Lefmann and R�odl [16]. The following corollary 2.8 gives an algorithmic solution of a

conjecture of Spencer [45].

Theorem 2.6 Let k � 2 be a �xed integer. Let G = (V; E) be a (k + 1)-uniform hypergraph on

n vertices with average degree tk where t!1 with n!1. If the (2; j)-cycles satisfy

s2;j(G) � c � n � t2k+1�j�


for j = 2; 3; : : : ; k, and some constants c; 
 > 0, then one can �nd for every �xed � > 0 in time

O
�
n � tk +Pk

j=2 s2;j(G) + n3=t3��
�
an independent set of size at least

C(k; 
; �; c) � n
t
� (ln t)1=k :

Corollary 2.7 Let k � 2 be a �xed integer. Let G = (V; E) be a (k + 1)-uniform hypergraph on

n vertices with average degree at most tk where t!1 with n!1. If the (2; j)-cycles satisfy

s2;j(G) � c � n � t2k+1�j�


for j = 2; 3; : : : ; k, and some constants c; 
 > 0, then one can �nd for every �xed � > 0 in time

O
�
n � tk +Pk

j=2 s2;j(G) + n3=t3��
�
an independent set of size at least 


�
n=t � (ln t)1=k

�
.
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Proof: If the average degree t(G) of G satis�es tk � t(G)k � tk= ln t, then the (2; j)-cycles

satisfy

s2;j(G) � c � n � t2k+1�j�
 � c � n � t(G)2k+1�j�
=2
for t large. Thus, the assumptions of Theorem 2.6 are ful�lled, and we obtain for every �xed � > 0

in time O
�
n � tk +Pk

j=2 s2;j(G) + n3=t3��
�
an independent set of size at least 


�
n=t � (ln t)1=k

�
.

Otherwise, if t(G)k < tk= ln t, we apply Theorem 2.1 and we obtain in time O(n � tk) an indepen-

dent set of size at least 

�
n=t � (ln t)1=k

�
.

As an immediate consequence of Corollary 2.7 we have the following:

Corollary 2.8 Let k � 2 be a �xed integer. Let G = (V; E) be a (k + 1)-uniform hypergraph on

n vertices with average degree at most tk where t!1 with n!1. If G does not contain any

2-cycles, then one can �nd for every �xed � > 0 in time O
�
n � tk + n3=t3��

�
an independent set

of size at least 

�
n=t � (ln t)1=k

�
.

3 Choosing Small Subhypergraphs

For proving our results, we use the idea of choosing small subhypergraphs on which we con-

trol certain parameters like the number of vertices, edges or cycles. The control on the small

subhypergraphs re
ects a probabilistic approach.

Lemma 3.1 Let k � 2 be a positive integer. Let G = (V; E) be a (k + 1)-uniform hypergraph

with s2;j(G) many (2; j)-cycles, j = 2; 3; : : : ; k. For every p with 0 � p � 1, one can �nd in time

O(jV j+ jEj+Pk
j=2 s2;j(G)) an induced subhypergraph H = (V 0; E 0) such that for j = 2; 3; : : : ; k

it is

jV 0j � p=3 � jV j and jE 0j � 3 � pk+1 � jEj and s2;j(H) � 3 � (k � 1) � p2k+2�j � s2;j(G) :
Proof: By inspecting each two-element subset which is contained in an edge E 2 E , we obtain
for each two-element set fx; yg all edges E 2 E with fx; yg � E. This can be done in time

O(jEj). Then, the sets Cj , which contain the vertex sets of all (2; j)-cycles in G, j = 2; 3; : : : ; k,

can be constructed in time O(jV j+ jEj+Pk
j=2 s2;j(G)).

Let V = fv1; v2; : : : ; vng. Every vertex vi will be assigned a weight pi 2 [0; 1], i = 1; 2; : : : ; n.

De�ne a potential V (p1; p2; : : : ; pn) by

V (p1; p2; : : : ; pn) = 3pn=3 �
nY
i=1

�
1� 2

3
� pi
�
+

P
E2E

Q
vi2E pi

3 � pk+1 � jEj +
kX

j=2

P
C2Cj

Q
vi2C pi

3 � (k � 1) � p2k+2�j � jCjj :

If pn < 6 any two vertices will do, since they do not yield an edge. Hence, we assume that

pn � 6. With p1 = : : : = pn = p � 6=n in the beginning, and using e�x � 1� x, we infer

V (p; : : : ; p) = 3pn=3 �
�
1� 2

3
� p
�n

+
pk+1 � jEj

3 � pk+1 � jEj +
kX

j=2

p2k+2�j � sj(G)
3 � (k � 1) � p2k+2�j � s2;j(G)

<

�
3

e2

�pn=3
+

2

3
< 1 :
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The potential V (p1; p2; : : : ; pn) is linear in each pi. As in the algorithmic argument for proving

Theorem 2.1, step by step, we decide which choice of pi, either pi = 0 or pi = 1, minimizes

the current value of V (p1; p2; : : : ; pn). We choose a vertex v1 to be in V 0 i� V (1; p2; : : : ; pn) �
V (0; p2; : : : ; pn). Doing this for all vertices v1; v2; : : : ; vn yields the desired set V

0 = fvi 2 V j pi =
1g. We always choose the value of pi to minimize the value of the potential, i.e., �nally, we have

V (p1; p2; : : : ; pn) < 1, too. All summands in V (p1; p2; : : : ; pn) are nonnegative. If the chosen

subhypergraph H = (V 0; E 0) with E 0 = E \ [V 0]k+1 violated one of the desired properties, then

the corresponding summand would be bigger than 1 which is not possible by our strategy.

The computation of V (p; p; : : : ; p) in the beginning can be done in timeO(jV j+jEj+Pk
j=2 s2;j(G)),

and updating all the potentials V (p1; : : : ; pn) during the algorithm can be done in the same time.

For a hypergraph G let �i(G), i = 3; 4, denote the number of i-cycles in G.

Lemma 3.2 Let k � 2 be a positive integer. Let G = (V; E) be a (k+1)-uniform hypergraph on

jV j = n vertices with average degree tk. If G does not contain any 2-cycles, then one can �nd in

time O(n+ n � tk) an induced subhypergraph G0 = (V 0; E 0) with jV 0j � jV j=2 and

�i(G) � ci(k) � n � t(i�1)k (7)

for i = 3; 4. The sets Ci of i-cycles, i = 3; 4, can be computed in time O(n + n � t(i�1)k) =
O(n+ n � t3k).

Proof: For each edge E 2 E we mark in time O(jEj) all two-element subsets which are

contained in E by `E'. Then, in time O(1) we can decide whether a two-element set is contained

in some edge E 2 E or not.

First we discard all vertices v 2 V with degree d(v) > 2(k + 1) � tk = � and all edges incident

with such vertices v. This can be done in time O(n+ n � tk). The resulting induced hypergraph

G0 = (V 0; E 0) of G has jV 0j � n=2 vertices. As G contains no 2-cycles, for each two distinct

vertices x; y 2 V 0, there exists at most one edge which contains both x and y. The maximum

degree of G0 is at most �, hence

�3(G0) � 1

3
� n �

 
�

2

!
� k2 � c3(k) � n � t2k

�4(G0) � 1

4
� n �

 
�

2

!
� k �� � k2 � c4(k) � n � t3k :

To determine the set C3 of all 3-cycles in G0, we consider each vertex v 2 V0, and all pairs

fE1; E2g 2 [E 0]2 of edges with v 2 E1 and v 2 E2. This can be done in time O(n ��2). Then,

for each two vertices x 2 E1 nfvg and y 2 E2 nfvg we test in time O(1), whether there exists an

edge E 2 E 0 with x; y 2 E. Thus, determining the set C3 of 3-cycles in G0 can be done in time

O(n+n � t2k). Similarly, one can determine the set C4 of 4-cycles in G0 in time O(n+n � t3k).
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Lemma 3.3 Let G = (V; E) be a (k + 1)-uniform hypergraph on jV j = n vertices with average

degree tk where G contains no 2-cycles. For every p with 0 � p � 1, one can �nd in time

O(n+ n � t3k) an induced subhypergraph H = (V 0; E 0) of G such that

jV 0j � p=6 � jV j
jE 0j � 3 � pk+1 � jEj (8)

�i(H) � 6 � pik � ci(k) � n � t(i�1)k for i = 3; 4 :

Proof: By Lemma 3.2, we �nd in G in time O(n+n�tk) an induced subhypergraph G0 = (V 0; E 0)
with V 0 = fv1; v2; : : : ; vlg and jV 0j � jV j=2 which contains at most ci(k) �n � t(i�1)k i-cycles. The
sets C 0

i of i-cycles in G0, i = 3; 4, can be computed in time O(n+ n � t3k). Then we apply to G0
the same derandomization technique as in the proof of Lemma 3.1 using the potential

V (p1; p2; : : : ; pl) = 3pn=6
Y

vi2V 0

�
1� 2

3
� pi
�
+

P
E2E 0

Q
vi2E

3 � pk+1 � jEj +
4X

j=3

P
C2C0

j

Q
vi2C pi

6 � pjk � cj(k) � n � t(j�1)k
;

and we obtain in time O(n+ n � t3k) an induced subhypergraph ful�lling all properties (8).

Similarly, one can show the following:

Lemma 3.4 Let G = (V; E) be a (k+1)-uniform hypergraph with jV j = n and with average degree

tk. For every p with 0 � p � 1, one can �nd in time O(n + n � tk) an induced subhypergraph

H = (V 0; E 0) such that

jV 0j � p=2 � jV j and jE 0j � 2 � pk+1 � jEj :

Proof: We apply the same derandomization technique as in the proof of Lemma 3.1 by using

the potential

V (p1; p2; : : : ; pn) = 2pn=2 �
nY
i=1

�
1� pi

2

�
+

P
E2E

Q
vi2E pi

2 � pk+1 � jEj :

4 Avoiding 2-Cycles

Here we will give the proof of Theorem 2.4.

Proof: Let G be an uncrowded (k + 1)-uniform hypergraph on n vertices with average degree

tk, thus t = O(n1=k). The idea is, to choose a small induced subhypergraph G0 of G to which we

apply Theorem 2.3.

First, we apply Lemma 3.4 to G with p = t�1+� where � = min
n

�
6k+4

; k�1
4k

o
, and we obtain in

time O(n � tk) an induced subhypergraph G0 = (V0; E0) of G with

jV0j � p=2 � jV j and jE0j � 2 � pk+1 � jEj :

10



Notice that if we had chosen the probability to be p = 1=t, then the resulting subhypergraph

would only have n=t vertices, but our aim is to �nd an independent set of size at least 
(n=t �
(ln t)1=k).

The hypergraph G0 has average degree
t(G0)k � tk0 = 4 � (p � t)k :

If t(G0) � p � t=(ln(p � t))1=k, then we apply Theorem 2.1 and we obtain in time (p �n+ pk+1 � jEj)
an independent set of size

O

�
p � n
t(G0)

�
= 


�
p � n
p � t � (ln(p � t))

1=k

�
= 


�
n

t
� (ln t)1=k

�
:

Otherwise, let t(G0) > p � t=(ln(p � t))1=k. We have t�=(� � ln t)1=k > k, as k; � are constants and

t!1 with n!1. With t = O(n1=k) and � � (k � 1)=4k we infer

p=2 � n = n=2 � t�1+� > k4 � 44 � t4k� = k4 � t4k0 ;

hence the assumptions of Theorem 2.3 are ful�lled, and we apply it to the hypergraph G0. By
omitting some more vertices we can assume w.l.o.g. that jV0j = p=2 � n. As � � �=(6k + 4), we

obtain in time

O
�
(p � n)3 � (p � t)6k � ln t

�
= O

 
n3

t3�3��6k�
� ln t

!
= O

 
n3

t3��

!

an independent set of size at least




�
p � n
t0

� (ln t0)1=k
�
= 


�
p � n
p � t � (ln(p � t))

1=k

�
= 


�
n

t
� (ln t�)1=k

�
= 


�
n

t
� (ln t)1=k

�

as � > 0 is a constant. Here, we used that the function f(t) = (ln t)1=k=t is decreasing for t � 2.

The algorithm has the desired running time O
�
n � tk + n3=t3��

�
.

Indeed, provided an algorithm does not require any assumptions on the mutual growth of k; t; n,

we have the following Meta-Algorithm:

Let k � 2 be a �xed integer. Let G be an uncrowded (k + 1)-uniform hypergraph on n vertices

with average degree tk and t!1 with n!1. Let � > 0 be any �xed real number.

If one can �nd in time f(n; t) an independent set in G of size 
(n=t � (ln t)1=k), then one can

�nd in time O(f(n=t1��; t�) + n � tk) an independent set in G of size 
(n=t � (ln t)1=k).
Now we come to the proof of Theorem 2.6.

Proof: Let the (2; j)-cycles of G satisfy s2;j(G) � c � n � t2k+1�j�
 for j = 2; 3; : : : ; k and

constants c; 
 > 0. Set

p = t�1+� (9)

with

� = min

�



2k
;

1

3k + 2

�
:
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By Lemma 3.1 we obtain in time

O(jV j+ jEj+
kX

j=2

s2;j(G)) (10)

an induced subhypergraph G0 = (V0; E0) of G such that, possibly after omitting some more

vertices, we have

jV0j = p=3 � jV j ; and
jE0j � 3 � pk+1 � jEj ; and

s2;j(G0) � 3 � (k � 1) � p2k+2�j � s2;j(G) for j = 2; 3; : : : ; k.

With (9) for t� � 2, i.e., t � t0(�), we have for j = 2; 3; : : : ; k that

p2k+2�j � n � t2k+1�j�
 � 2 � p2k+2�j�1 � n � t2k+1�j�1�
 ;

hence, since � � 
=2k and t � t0(k; 
), i.e., t

 � (36 � c � (k � 1))2k, we have

kX
j=2

s2;j(G0) �
kX

j=2

3 � (k � 1) � p2k+2�j � s2;j(G)

� 6 � (k � 1) � c � p2k � n � t2k�1�

� 6 � (k � 1) � c � n � t�1�
+2k�
� 36 � (k � 1) � c � t� 


2k � (p � n=6)
� p � n=6 ;

thus,

jV0j � 2 �
kX

j=2

s2;j(G0) : (11)

The sets of (2; j)-cycles in G0 can be constructed in time O(p � n + jE0j +
Pk

j=2 s2;j(G0)). By

loosing at most half of the vertices, cf. (11), we delete in G0 in time

O

0
@p � n+ pk+1 � jEj+

kX
j=2

s2;j(G) � p2k+2�j
1
A = O

�
n

t1��
+

n

t1�(k+1)�
+

n

t1+
�2k�

�
= o(n)

for � � 1=(k + 2) and � � 
=2k one vertex from each 2-cycle. By deleting possibly some more

vertices we obtain an induced subhypergraph G1 = (V1; E1) of G0 with

jV1j = p � n=6 and jE1j � 3 � pk+1 � jEj ;

such that G1 contains no 2-cycles anymore. Then we have

t(G1)k � (k + 1) � jE1j
p � n=6 = 18 � (p � t)k : (12)
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Next we apply Lemma 3.3 to the hypergraph G1 with

p1 =

�
1

p � t
�1��1

= t��(1��1)

where �1 = (k�1)=4k, and we obtain a subhypergraph G2 = (V2; E2) of G1, which, after possibly
deleting some more vertices, satis�es

jV2j = p1p � n=36
jE2j � 3 � pk+11 � jE1j � 9 � (p1p)k+1 � jEj ;

and, by (8), (12), for i = 3; 4 also ful�lls

�i(G2) � 6 � pik1 � ci(k) �
p � n
6

� t(G1)(i�1)k � ci(k) � pik1 � p � n � (18 � pk � tk)i�1 :

This can be done in time O(p � n+ p � n � (p � t)3k) = O(n � t�1+�(3k+1)) = o(n). We claim that

jV2j � 4 � (�3(G2) + �4(G2)) : (13)

Namely, by our choice of p and p1, i.e., p = t�1+� and p1 = t��(1��1), we have
p1p � n
36

� 8 � ci(k) � pik1 � pn � (18 � pk � tk)i�1

() 1 � 288 � ci(k) � pik�11 � (18 � pk � tk)i�1
() 1 � 288 � 18i�1 � ci(k) � t��(k�1)+��1(ik�1) :

Thus, for �1 < (k � 1)=(4k � 1) and t large enough, (13) holds, and G2 contains at least four

times as many vertices as 3- and 4-cycles. Moreover, the average degree of G2 satis�es t(G2)k =
O((p1p � t)k). We omit in G2 all vertices of degree bigger than 2 � (k + 1) � t(G2)k, hence, loosing
at most p1p � n=72 vertices, and then we determine in the resulting induced subhypergraph G02
of G2 the sets of 3- and 4-cycles in time

O(p1p � n+ p1p � n � t(G2)3k) = O(p1p � n � (p1p � t)3k) = O(n � t�1+��1(3k+1)) = o(n)

for ��1 < 1=(3k + 1). By deleting in time o(n) one vertex from each 3- or 4-cycle from G02 we

obtain a subhypergraph G3 = (V3; E3) of G2, which does not contain any 2-, 3-, or 4-cycles, i.e.,

G3 is uncrowded and satis�es w.l.o.g.

jV3j = jV2j=2 = p1p � n=144 and jE3j � 9 � (p1p)k+1 � jEj ;
thus,

t(G3)k � (k + 1) � 9 � (p1p)k+1 � jEj
p1p � n=144 = 1296 � (p1p)k � tk :

To the hypergraph G3 we apply Corollary 2.5, and for �xed � > 0 we obtain in time

O

 
n � t(G3)k + (p1p � n)3

(p1p � t)3��
!
= O

 
n3

t3��

!

an independent set in G3, and hence in G, of size at least




�
p1p � n
p1p � t � (ln (p1p � t))

1=k
�
= 


�
n

t
� (ln t)1=k

�

as desired. The overall running time is given by (10).
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5 Applications

In this section, we give applications of our results to some combinatorial problems. Our ar-

guments are guided by the probabilistic existence proofs. However, for computational reasons

additional ideas are required.

De�nition 5.1 Let X be a set. A triple system F � [X]3 is called a partial Steiner triple

system if for any two vertices x1; x2 2 X there is at most one set F 2 F with fx1; x2g � F .

Hence, every partial Steiner triple system F is nothing else than a 3-uniform hypergraph which

contains no 2-cycles, i.e., jFj � 1=3 � �n
2

�
.

The next result is essentially a reformulation of Corollary 2.8.

Corollary 5.2 Let X be an n-element set, and let F � [X]3 be a partial Steiner triple system.

Then, one can �nd in time O(n2) an independent set I � X with

jIj � c �
p
n � lnn : (14)

We remark that the existence of an independence set of size as in (14) was shown �rst by Phelps

and R�odl [36].

Proof: Since t2 = O(n), by Corollary 2.8 we �nd such an independent set of size at least


(
p
n � lnn) in time O(n2).

In the following we consider a generalization of partial Steiner triple systems.

De�nition 5.3 Let h; k be positive integers with h � k. Let X be an n-element set. A family

F � [X]k+1 of (k+1)-element subsets is called (n,k+1,h)-Steiner system, if for any two distinct

sets F1; F2 2 F , it holds jF1 \ F2j < h.

In a (n; k + 1; h)-Steiner system F on X, each h-element subset of X is contained in at most

one set F 2 F , hence, jFj � �n
h

�
=
�k+1

h

�
. Note that an (n; 3; 2)-Steiner system is a partial Steiner

triple system. In every (n; k+1; 1)-Steiner system F distinct sets F; F 0 2 F are disjoint, hence,

jFj = O(n) and �(F) � k
k+1 � n, and such an independent set can be found easily in time O(n).

For values h � 2 we have the following result.

Theorem 5.4 Let X be an n-element set, and let F � [X]k+1 be an (n; k+1; h)-Steiner system

where h � 2. Then, for every � > 0 one can �nd in time O(nh+n3�3�(h�1)=k+�+n2h�3�(h�1)=k+�)

an independent set I � X with

jIj � c � n k�h+1
k � (lnn) 1k : (15)

Indeed, the lower bound in (15) can be written in terms of jFj as

jIj � c �
 
nk+1

jFj

!1=k

�
�
ln

� jFj
n

��1=k
;

however, we will show only (15).
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The existence of an independent set of size at least as given in (15) was proved by R�odl and

Si�najov�a [40]. They also showed by using the Local Lemma of Lov�asz, cf. [5], that there

exists an (n; k + 1; h)-Steiner system F with independence number bounded from above by

C � n(k�h+1)=k � (lnn)1=k for some constant C > 0. Hence, in general for jFj = �(nh) one cannot

expect, up to constant factors, any better bound than (15).

Concerning the running times in Theorem 5.4 we have O(n2) for h = k = 2, and O(n3�3=k+�)

for h = 2 and k � 3. For h � 3 we have the time bound O(n2h�3�(h�1)=k+�).

Proof: Let F be an (n; k + 1; h)-Steiner system on X. The corresponding hypergraph (X;F)
is (k + 1)-uniform with jFj � �nh�=�k+1h � edges and has average degree

t(F)k � tk =
(k + 1) � �nh��k+1

h

� � n � c1 � nh�1 :

First, we consider the (2; j)-cycles in G = (X;F). For each set F 2 F , we take a j-element

subset S � F and try to extend it to a set F 0 2 F . This can be done in at most O(nh�j) ways.
Thus,

s2;j(G) � cj � jFj � nh�j � c2;j � n2h�j

for j = 2; 3; : : : ; h� 1. Moreover, constructing the set of (2; j)-cycles can be done in time

O

 
jFj �

 
jV j
h� j

!!
:

Also for every subset X 0 � X, the induced subsystem G0 = (X 0;F 0) with F 0 = F \ [X 0]k+1 we

have

s2;j(G0) � c02;j � jF 0j �
 
jX 0j
h� j

!

for j = 2; 3; : : : ; h�1 and the set of (2; j)-cycles in G0 can be determined in time O(jF 0j � jX 0jh�j).
Given � > 0, by Lemma 3.4, for p = n�1=k+� with 0 < � � min f1=k; �=(k + h � 1)g, we select
in time O(nh) an induced subsystem (X0;F0) of (X;F) which satis�es, after possibly omitting

some more vertices,

jX0j = p=2 � jXj and jF0j � 2 � pk+1 � jFj :
Then

t(F0)
k � tk0 = 4 � (p � t)k :

For sequences an; bn, n = 1; 2; : : :, let an � bn if an=bn ! 0 with n ! 1. To apply Corollary

2.7 we want to have for some constant 
 > 0 that

pk+1 � jFj �
 
p � n
h� j

!
� p � n � (t0)2k+1�j�


() p�(k�h+1)+
 � n�(j�1)� k�h+1
k

+
�h�1
k � 1

() n�(j�2)�
k�h+1

k
���(k�h+1)+
�h�2+�k

k � 1
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and the last inequality holds, since j � 2, for 
 < (� � (k� h+1))=((h� 2)=k+ �). By Corollary

2.7 we obtain an independent set in F0, hence in F , of size at least




�
p � n
t0

� (ln t0)
1
k

�
= 


�
p � n
p � t � (ln(p � t))

1
k

�
= 


�
n

k�h+1
k � (lnn) 1k

�
:

The time for doing this is for any �; �� > 0 with and �� � h�1k < �,

O

0
@p � n+ pk+1 � nh +

h�1X
j=2

pk+1 � nh � (p � n)h�j + (p � n)3
(t0)3��

�

1
A

= O
�
pk+1 � nh � (p � n)h�2 + n3�(3��

�)�h�1
k

�
= O

�
n2h�3�

h�1

k
+�(k+h�1) + n3�3(h�1)=k+�

�
= O

�
n2h�3�

h�1

k
+� + n3�3(h�1)=k+�

�
:

Thus, the total running time is O(nh+n3�3(h�1)=k+�+n2h�3�(h�1)=k+�) for each given � > 0.

The following problem was considered the �rst time by Erd�os and Guy [18]: Determine the

maximum cardinality of a subset X of the n� n-grid such that all mutual Euclidean distances

between distinct points of X are distinct. By a Greedy-type argument it was shown in [18] that

for every � > 0 such a set X with jXj � c1 �n2=3�� exists. By a probabilistic argument, this lower

bound was improved by Thiele [46] to jXj � c2 �n2=3=(lnn)1=3. Subsequently, in [34] the existence
of such a set X with jXj � c3 �n2=3 was shown. The problem how to achieve this nonconstructive

lower bound remained open. Here we will give such an algorithm. Such problems are somewhat

related to problems arising from measuring distances using sonar signals, cf. [17], [21] and [22].

Theorem 5.5 One can determine in time O(n6 � lnn) a subset X of the n� n-grid, such that

the distances between distinct points of X are mutually distinct and

jXj � c � n2=3 : (16)

We remark, that by results from number theory currently one can show only the upper bound

jXj � c � n=(lnn)1=4, cf. [18].
Proof: Let Gn = f1; 2; : : : ; ng � f1; 2; : : : ; ng denote the vertex set of the n � n-grid. We

form a (nonuniform) hypergraph G = (V; E3 [ E4) on V = Gn with E3 � [V ]3 and E4 �
[V ]4 as follows. Let d(x; y) denote the Euclidean distance between x and y, i.e., d(x; y) =p
(x1 � x2)2 + (y1 � y2)2 for x = (x1; x2) and y = (y1; y2). For pairwise distinct vertices x; y; z 2

V we form a three-element edge E = fx; y; zg 2 E3 if and only if d(x; y) = d(x; z). Moreover, for

pairwise distinct vertices x1; x2; x3; x4 2 V we form a four-element edge E = fx1; x2; x3; x4g 2 E4
if and only if d(x1; x2) = d(x3; x4).

Our strategy will be to �nd a large independent set I � V in the hypergraph G. Clearly, an

independent set I � V is (in the grid) a set with mutual distinct distances. We will �nd this

independent set I � V again by picking vertices at random, and using derandomization. The

usual process of choosing a subhypergraph and controlling the number of (2; 2)-cycles right from

the beginning would result in a running time of O
�
n8+

c
ln lnn

�
. Therefore, some additional ideas
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are involved here to get the time bound O(n6 � lnn). To achieve this, we will control the (2; 2)-

cycles at a later stage. We remark that jE3 [ E4j = O(n6 � lnn) as will be seen later. Thus, our

algorithm will be linear in the size of G.
In a preprocessing we compute and store the sets Sd of all solutions of the diophantine equation

x2 + y2 = d for d = 1; 2; : : : ; 2(n � 1)2 with integers x and y. For a �xed value of d this can be

done in time O(
p
d) by simply inserting x = �b

p
dc;�b

p
dc + 1; : : : ; b

p
dc in x2 + y2 = d, and

solving this for y. This preprocessing can be done in time

O

0
@2(n�1)2X

d=1

p
d

1
A = O

�
n3
�
:

For positive integers d let r2(d) denote the number of solutions of the equation x2 + y2 = d

within the integers. By a result of Wigert, cf. [25], we have

max fr2(d) j d = 1; 2; : : : ; ng � n
c0

ln lnn (17)

for some constant c0 > 0, hence,

jSdj = r2(d) � n
c0

ln lnn

for d = 1; 2; : : : ; 2(n� 1)2. We will use the following identity due to Ramanujan [39]

mX
d=1

(r2(d))
2 = �(m � lnm) : (18)

Given the n� n-grid, we �rst construct the sets E3 and E4 of edges. For d = 1; 2; : : : ; 2(n � 1)2

and for each vertex x0 2 V there are at most jSdj vertices x1; x2; : : : ; xl 2 V with d(x0; x
j)2 = d,

j = 1; 2; : : : ; l, and all these vertices can easily be determined by a coordinate transformation

x! x� x0 in time O(r2(d)). Then, fx0; xi; xjg, 1 � i < j � l yields a three-element edge in E3.
Hence, using (18) the set E3 of three-element edges can be constructed in time

O

0
@n2 � 2(n�1)

2X
d=1

 
r2(d)

2

!1
A = O

0
@n2 � 2(n�1)

2X
d=1

(r2(d))
2

1
A = O

�
n4 � lnn

�
;

and we also infer

jE3j � c3 � n4 � lnn : (19)

In a similar fashion we construct the set E4 of four-element edges. Namely, we pick two distinct

vertices x; y 2 V and consider the sets A = fz 2 V j d(x; z)2 = dg and B = fw 2 V j d(y;w)2 =
dg for d = 1; 2; : : : ; 2(n � 1)2. Then, fx; y; z; wg with z 2 A, w 2 B and z 6= w yields a

four-element edge E 2 E4. Using (18), this can be done in time

O

0
@n2 � n2 � 2(n�1)

2X
d=1

(r2(d))
2

1
A = O

�
n6 � lnn

�
;

17



and, also

jE4j � c4 � n6 � lnn : (20)

We want to �nd again a small, but large enough, uncrowded induced subhypergraph in G. The
running time will depend essentially on the number of (2; j)-cycles which we have to handle and

which are determined by pairs of distinct edges from E4. Consider only the 4-element edges in G,
i.e., GjE4 = (V; E4). We show how to construct the sets C2;2 and C2;3 of (2; 2)- and (2; 3)-cycles

in GjE4, j = 2; 3. Fix an integer d with 1 � d � 2(n � 1)2. We �x a vertex x 2 V , and we

consider the set S(x; d) of all vertices x� 2 V with d(x; x�)2 = d, i.e., jS(x; d)j � r2(d). We

pick two more vertices y; z 2 V n fx; x�g and determine the sets S(y; d) and S(z; d). Any pair

ffx; x�; y; y�g; fx; x�; z; z�gg with y� 2 S(y; d) and z� 2 S(z; d) yields a (2; 2)-cycle in G if the

vertices x; x�; y; y�; z; z� are pairwise distinct. Moreover, for an edge E = fx1; x2; x3; x4g 2 E4
with d(x1; x2) = d(x3; x4) and two distinct vertices y; z 2 V nE with d(x2; x4) = d(y; z) or with

d(x2; y) = d(x4; z) the pair ffx1; x2; x3; x4g; fx2; x4; y; zgg also yields a (2; 2)-cycle. Hence, using
(17) and (20) the time to construct the set C2;2 of (2; 2)-cycles is given by

O
�
jE4j � n2 �maxfr2(d) j 1 � d � 2(n� 1)2g

�
= O

�
n8+

c1
ln lnn � lnn

�
= O

�
n8+

c
ln lnn

�
(21)

for some constant c > 0. Thus, for some constant c2;2 > 0, we have

s2;2(GjE4) � c2;2 � n8+
c

ln lnn :

To construct the set C2;3 of (2; 3)-cycles in GjE4, we pick an edge E 2 E4 and a three-element

subset S � E, which determines a constant number of distances. Then S can be extended in at

most O(max fr2(d) j 1 � d � 2(n � 1)2g) ways to an edge E0 2 E4 with S � E0. Thus, we can
construct the set C2;3 in GjE4 in time

O(jE4j � max fr2(d) j 1 � d � 2(n� 1)2g) ; (22)

and also for some constant c2;3 > 0 we have

s2;3(GjE4) � c02;3 � n6 � lnn � n
c0

ln ln � c2;3 � n6+
c

ln lnn :

However, we do not construct the sets C2;j of (2; j)-cycles right from the beginning. We �rst

determine a small, but big enough induced subhypergraph, where we only control the number

of vertices and edges, and in this we will construct the sets of (2; j)-cycles, j = 2; 3.

From (21) we infer that every induced subhypergraph G0 = (V 0; E 0) of the hypergraph GjE4 =

(V; E4), consisting only of the four-element edges, satis�es

s2;2(G0) = O
�
jE 0 j � jV 0 j � max fr2(d) j 1 � d � 2(n� 1)2g

�
= O

�
jE 0 j � jV 0 j � n c

ln lnn

�
: (23)

Similarly, with (22) we infer that

s2;3(G0) = O
�
jE 0j � n c

ln lnn

�
: (24)

Also, the set of (2; 2)-cycles in G0 can be determined in time O
�
jE 0 j � jV 0 j � n c

ln lnn

�
, and the set

of (2; 3)-cycles can be constructed in time O
�
jE 0j � n c

ln lnn

�
.
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Lemma 5.6 Let p be a real number, 0 � p � 1. Then, one can construct in time O(jV j+ jE3j+
jE4j) a subhypergraph G0 =

�
V0; E03 [ E04

�
of G = (V; E3 [ E4) with E0i � Ei, i = 3; 4, such that

jV0j = p=3 � jV j and jE03 j � 3 � p3 � jE3j and jE04 j � 3 � p4 � jE4j.
Proof: The proof follows earlier arguments, cf. Lemma 3.4. For V = fv1; v2; : : : ; vmg, we use
the potential

V (p1; p2; : : : ; pm) = 3pm=3 �
mY
i=1

�
1� 2

3
� pi
�
+

P
E2E3

Q
vi2E pi

3 � p3 � jE3j
+

P
E2E4

Q
vi2E pi

3 � p4 � jE4j
:

We obtain in time O(jV j + jE3j + jE4j) a subhypergraph G0 =
�
V0; E03 [ E04

�
of G = (V; E3 [ E4)

with jV0j � p=3 � jV j and jE03 j � 3 � p3 � jE3j and jE04 j � 3 � p4 � jE4j. By omitting possibly some

more vertices we get jV0j = p=3 � jV j.
In time O(jV j+ jE3j+ jE4j) = O(n6 � lnn) we apply Lemma 5.6 to the hypergraph G with

p = n�2=3+� (25)

where 0 < � < 2=3, and we obtain a subhypergraph G0 = (V0; E03 [ E04 ) of G with

jV0j = p � n2=3; jE03 j � 3 � p3 � jE3j; jE04 j � 3 � p4 � jE4j : (26)

Virtually we have no control on the number s2;j(G0jE04 ) of (2; j)-cycles, j = 2; 3, in G0jE04 .
However, by (23) we know for � < 4=15 that

s2;2(G0jE04 ) � c02;2 � jE04 j � jV0j � n
c

ln lnn

� c�2;2 � p4 � n6 � lnn � p � n2 � n
c

ln lnn

= c�2;2 � p5 � n8+
c

ln lnn � lnn
� c�2;2 � n14=3+5�+

c
ln lnn � lnn

= o(n6 � lnn) : (27)

Moreover, for � < 2=3 we infer from (24) that

s2;3(G0; E04 ) � c02;3 � jE04 j � n
c

ln lnn

� c�2;3 � p4 � n6+
c

ln lnn � lnn
� c�2;3 � n10=3+4�+

c
ln lnn � lnn

= o(n6 � lnn) : (28)

The value p is chosen in (25) such that the assumptions of Corollary 2.7 are ful�lled for the

hypergraph G0jE04 , i.e., we choose for p that minimal value, for which the following two conditions

hold for some constants c; 
 > 0:

s2;2(G0jE04 ) � c � p � n2 � t(G0jE04 )5�

s2;3(G0jE04 ) � c � p � n2 � t(G0jE04 )4�
 :

We proceed similarly as in the proof of Theorem 2.6. Namely, we use the following lemma whose

proof is along the lines of former statements:
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Lemma 5.7 For every p1 with 0 � p1 � 1, one can construct in time

O
�
jV0j+ jE03 j+ jE04 j+ s2;3(GjE04 ) + s2;2(G0jE04 )

�

a subhypergraph G1 = (V1; E13 [ E14 ) of G0 = (V0; E03 [ E04 ) with E1i � E0i , i = 3; 4, such that

jV1j = p1=5 � jV0j ; jE13 j � 5 � p31 � jE03 j ; jE14 j � 5 � p41 � jE04 j ; s2;3(G1jE14 ) � 5 � p51 � s2;3
�
G0jE04

�
;

and s2;2
�G1jE14 � � 5 � p61 � s2;2

�G0jE14 �.
Before applying Lemma 5.7 we estimate the corresponding running time, namely using (19),

(20), (25), (26), (27) and (28) we obtain

O
�
jV0j+ jE03 j+ jE04 j+ s2;3(GjE04 ) + s2;2(G0jE04 )

�
= o(n6 � lnn) :

Let

p1 =

 
(lnn)1=3

p � t

!1��1
=

�
1

n2=3+�

�1��1
;

where

�1 =
�

5�+ 11=3
: (29)

By Lemma 5.7 we obtain in time o
�
n6 � lnn� a subhypergraph G1 =

�
V1; E13 [ E14

�
of G0 with

E1i � E0i , i = 3; 4, where

jV1j = p1

5
� jV0j = p1p

15
� n2 = 1

15
� n2=3+2�1=3+��1 ;

and,

jE13 j � 5 � p31 � jE03 j � 15 � p31 � p3 � jE3j � 15 � c3 � n2�1+3��1 � lnn = o(jV1j) :

For the number of (2; 3)-cycles we have using (28) that

s2;3

�
G1jE14

�
� 5 � p51 � s2;3

�
G0jE04

�
� 15 � c2;3 � p51 � n10=3+4�+

c
ln lnn � lnn

� 15 � c2;3 � n��+10�1=3+5��1+
c

ln lnn � lnn
= o(jV1j) :

Finally, using (27) we obtain for the number of (2; 2)-cycles

s2;2

�
G1jE14

�
� 5 � p61 � s2;2(G0jE04 )
� 5 � c�2;2 � p61 � n14=3+5�+

c
ln lnn � lnn

� 5 � c�2;2 � n2=3��+4�1+6��1+
c

ln lnn � lnn
= o(jV1j) :
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Summarizing, we have jE13 j+ s2;3
�G1jE14 �+ s2;2

�G1jE14 � = o(jV1j): We delete from G1 one vertex
from each three-element edge E 2 E13 and from each (2; 2)- or (2; 3)-cycle in G1jE04 , and, possibly
deleting some more vertices, we obtain a 4-uniform induced subhypergraph G2 = (V2; E24 ) of G1
with

jV2j = jV1j
2

=
p1p

30
� n2 ;

and

jE24 j � 15 � c4 � (p1p)4 � n6 � lnn ;

and G2 contains no 2-cycles anymore. By Corollary 2.8 we obtain an independent set in G2, and
hence in G, of size




 
p1p � n2
p1p � t � (ln(p1p � t))1=3

!
= 


 
n2

t
�
�
ln
�
n2�1=3+��1 � lnn

��1=3!

= 


 
n2

n4=3 � (lnn)1=3 � (lnn)
1=3

!

= 

�
n2=3

�
:

as �; �1 > 0 are �xed.

The time for doing this is for any given � with 0 < � < 1

O

 
p1p � n2 � (p1p � t)3 + (p1p � n2)3

(p1p � t)3��
!

= O

 
(p1p)

4 � n2 � t3 + n6

t3��

!

= O
�
(p1p)

4 � n6 � lnn+ n2+4�=3
�

= O
�
n2=3+8�1=3+4��1 � lnn+ n2+4�=3

�
= o

�
n6 � lnn

�
:

The next result gives a k-dimensional version of Theorem 5.5.

Theorem 5.8 Let k � 3 be a �xed integer. For every �xed � > 0, one can �nd in time

O(n6k�22=3+�) a subset X of the k-dimensional n� : : :�n-grid, such that the distances between

distinct points of X are mutually distinct and for some constant c = c(k; �) > 0 it is

jXj � c � n2=3 � (lnn)1=3 : (30)

The existence of such a set X which satis�es (30) was shown in [34]. We remark that here only

the upper bound jXj � c �
p
k � n is known, as shown by Erd�os and Guy [18].

Proof: Let V = f1; 2; : : : ; ngk be the set of vertices of the k-dimensional grid. As in the

proof of Theorem 5.5, we form a nonuniform hypergraph G = (V; E3 [ E4) with E3 � [V ]3

and E4 � [V ]4 as follows. For vertices x = (x1; x2; : : : ; xk) 2 V and y = (y1; y2; : : : ; yk) 2 V

let d(x; y) =
qPk

i=1(xi � yi)2 denote the Euclidean distance between x and y. For pairwise

distinct vertices x; y; z 2 V let fx; y; zg 2 E3 if and only if d(x; y) = d(x; z). Also, for pairwise
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distinct vertices x1; x2; x3; x4 2 V let fx1; x2; x3; x4g 2 E4 if and only if d(x1; x2) = d(x3; x4).

Again our strategy will be to �nd a large independent set in G. In a preprocessing we compute

and store the sets Sk
d of all solutions of the diophantine equation x21 + x22 + : : : + x2k = d for

d = 1; 2; : : : ; k(n� 1)2. By inserting integers x1; x2; : : : ; xk�1 with jxij �
p
d and solving for xk,

this can be done in time

O

0
@k(n�1)2X

d=1

(2 �
p
d)k�1

1
A = O

 Z k�n2

1

x
k�1
2 dx

!
= O

�
nk+1

�
:

For positive integers d, let rk(d) denote the number of solutions of x
2
1+x22+ : : :+ x2k = d within

the integers. Rewriting this as x21 + x22 = d�Pk
i=3 x

2
i , we infer with (17) that

rk(n) � (2 � pn)k�2 � max1�d�pn r2(d) = O

�
n

k
2
�1+ c0

ln lnn

�
:

Hence, for �xed integers k � 3 we have

maxfrk(d) j d = 1; 2; : : : ; k(n� 1)2g � nk�2+
c

ln lnn (31)

for some constant c > 0, and, therefore,

jSk
d j = rk(d) � nn�2+

c
ln lnn :

For �xed k � 3, we have by results from [34] that

nX
d=1

(rk(d))
2 = �

�
nk�1

�
: (32)

First we construct the sets E3 and E4. For d = 1; 2; : : : ; k(n � 1)2, and for each vertex x0 2 V

there are at most jSk
d j vertices x1; x2; : : : ; xl 2 V with d(x0; x

j)2 = d, j = 1; 2; : : : ; l, and all

these vertices can easily be determined by a coordinate transformation in time O(rk(d)). Then,

fx0; xi; xjg, 1 � i < j � l yields a three-element edge E 2 E3. Using (32), the set E3 of

three-element edges can be constructed in time

O

0
@nk � k(n�1)

2X
d=1

 
rk(d)

2

!1
A = O

�
nk � (k � n2)k�1

�
= O

�
n3k�2

�
;

and, also

jE3j � c3 � n3k�2 :
In a similar fashion we construct the set E4 of four-element edges. We pick two distinct vertices

x; y 2 V and consider the sets Ad = fz 2 V j d(x; z)2 = dg and Bd = fw 2 V j d(y;w)2 = dg
for d = 1; 2; : : : ; k(n � 1)2. Then, fx; y; z; wg with z 2 A and w 2 B yields a four-element edge

E 2 E4 if x; y; z; w are pairwise distinct. Using (32), this can be done in time

O

0
@nk � nk � k(n�1)

2X
d=1

(rk(d))
2

1
A = O

�
n4k�2

�
;
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and, also

jE4j � c4 � n4k�2 : (33)

As in the proof of Theorem 5.5, and using (31) the set C2;3 of (2; 3)-cycles in the 4-uniform

subhypergraph GjE4 = (V; E4) can be constructed in time

O(jE4j �maxfrk(d) j 1 � d � k(n� 1)2g) = O
�
n5k�4+

c
ln lnn

�
;

and, for some constant c2;3 > 0, we have

s2;3(GjE4) � c2;3 � n5k�4+
c

ln lnn :

This shows that for each induced subhypergraph G0 = (V 0; E 04) of GjE4 = (V; E4) the set of

(2; 3)-cycles can be constructed in time

O
�
jE 04j � nk�2+

c
ln lnn

�

and,

s2;3(G0) = O
�
jE 04j � nk�2+

c
ln lnn

�
: (34)

Again, as in the proof of Theorem 5.5, using (31) and (33), the construction of the set C2;2 of

(2; 2)-cycles in GjE4 can be done in time

O
�
jE4j � jV j � nk�2+

c
log log n

�
= O

�
n6k�4+

c
ln lnn

�
;

and, for some constant c2;2 > 0, we have

s2;2(GjE4) � c2;2 � n6k�4+
c

ln lnn :

Moreover, for every subhypergraph G0 = (V 0; E 0

4) of GjE4 = (V; E4) we have

s2;2(G0) = O
�
jE 04j � jV 0j � nk�2+ c

ln lnn

�
: (35)

By Lemma 5.6 with p = n�2=3+� where 0 < � < 2=3, we obtain in time O(jV j + jE3j + jE4j) =
O
�
n4k�2

�
a subhypergraph G0 = (V0; E03 [ E04 ) of G with E03 � E3 and E04 � E4 such that

jV0j = p=3 � jV j; jE03 j � 3 � p3 � jE3j; jE04 j � 3 � p4 � jE4j:

The value of p is chosen such that the assumptions of Corollary 2.7 are ful�lled for some constants

c; 
 > 0:

s2;2(G0jE04 ) � c � p � nk � (p � t)5�

s2;3(G0jE04 ) � c � p � nk � (p � t)4�
 :
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Let t3 be the average degree of G4jE4. By (33) we have

t3 � 4 � c4 � n4k�2
nk

� 4 � c4 � n3k�2 : (36)

By Lemma 5.7 with p1 = (p � t)�1+�1 where �1 = �=(5k + 5�), we obtain a subhypergraph

G1 = (V1; E13 [ E14 ) of G0 with E1i � E0i for i = 3; 4 such that jV1j = p1=5 � jV0j, jE13 j � 5 � p31 � jE03 j,
jE14 j � 5 � p41 � jE04 j, s2;3(G1jE14 ) � 5 � s2;3(G1jE14 ), and s2;2(G1jE14 ) � 5 � s2;2(G1jE14 ). This can be

done in time

O(jV0j+ jE03 j+ jE04 j+ s2;3(G0jE04 ) + s2;2(G0jE04 ))
= O

�
p � nk + p3 � jE3j+ p4 � jE4j+ p4 � jE4j � nk�2+

c
ln lnn + p4 � jE4j � p � nk � nk�2+

c
ln lnn

�
= O

�
nk�2=3+� + n3k�4+3� + n6k�22=3+5�+

c
ln lnn

�
= O

�
n6k�22=3+5�+

c
ln lnn

�
: (37)

Since p1p = c � n�k+2=3+�1(k�4=3+�) we have by choice of �1 that

jE13 j � 15 � (p1p)3 � jE3j � C3 � n3�1(k�4=3+�)) = o(jV1j) :
Also, by choice of �1 we have

s2;2(G1jE14 ) = O(p61 � s2;2(G0jE04 ) = O(n2=3��+6�1(k�4=3+�)+ c
ln lnn ) = o(jV1j)

s2;3(G1jE14 ) = O(p51 � s2;3(G0jE04 ) = O(n�2=3+5�1(k�4=3+�)+ c
ln lnn ) = o(jV1j) :

In the resulting subhypergraph G1 = (V1; E13 [E14 ) we delete in time O(jV1j) one vertex from each

three-element edge and from all (2; 2)- and (2; 3)-cycles in G1jE14 . In loosing o(jV1j) vertices, we
obtain a subhypergraph G2 = (V2; E24 ) which contains no 2-cycles anymore, and, possibly after

deleting some more vertices, satis�es

jV2j = jV1j=2 = 1=30 � p1p � nk

and

jE24 j � 15 � c4 � (p1p)4 � n4k�2:
We apply Corollary 2.8 to G2 and we obtain an independent set in G2, hence in G of size at least




 
p1p � nk
p1p � t

� (ln(p1p � t))1=3
!
= 


 
nk

nk�2=3
� (lnn)1=3

!
= 


�
n2=3 � (lnn)1=3

�
:

The time for doing this is for 0 < �1 < 1 and �2 = (k � 2=3) � �1 given by

O

 
p1p � nk � (p1p � t)3 + (p1p � nk)3

(p1p � t)3��1
!
= O

�
(p1p)

4 � nk � t3 + n2+�2
�
= o

�
n6k�22=3+5�+

c
ln lnn

�
:

Hence, for 5� < � by (37) the overall running time is O
�
n6k�22=3+5�+

c
ln lnn

�
= O

�
n6k�22=3+�

�
.

The next problem which we consider concerns colorings of the edges of a complete graph. The

colorings are such that each color class is a matching, that is, edges of the same color have no

vertex in common.
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Theorem 5.9 Let the edges of the complete graph Kn be colored such that every color class is

a matching. Then, one can determine in time O(n3) a complete subgraph Kl of Kn such that

the edges of Kl are totally multicolored (injectively colored), and

l � c � (n � lnn)1=3 : (38)

The existence of such a totally multicolored subgraph satisfying (38) was shown in [8]. Moreover,

Babai [11] showed the existence of colorings of the complete graphKn where every color class is a

matching, such that every totally multicolored complete subgraph Kl satis�es l � C � (n � lnn)1=3
where C � 7:3. The value of the constant C was improved in [33] to C = 2:21. Hence, up to a

constant factor we cannot do better in Theorem 5.9 with respect to the size of l.

Proof: Let �:E(Kn) �! N be a coloring of the edges of the complete graph Kn with

n-element vertex set V , where every color class is a matching.

We form a 4-uniform hypergraph G = (V; E) on the same vertex set as Kn by collecting pairs of

edges of the same color. For distinct edges e1 = fv1; w1g 2 E(Kn) and e2 = fv2; w2g 2 E(Kn)

we have E = e1 [ e2 2 E 2 [V ]4 if and only if �(e1) = �(e2), i.e., �(e1) = �(e2) implies

e1 \ e2 = ;, as every color class is a matching. With j��1(i)j � n=2 for i 2 N we infer

jEj =
X
i2N

 
j��1(i)j

2

!
�
�n
2

�
n
2

�
 

n
2

2

!
<

1

8
� n3 : (39)

By �rst sorting the edges in E(Kn) according to their color, the hypergraph G can be constructed

in time O(n3). The average degree t(G)3 of G satis�es

t(G)3 = 4 � jEj
jV j � n2

2
= t3 :

First, we construct the (2; 3)-cycles in G. For each edge E 2 E and each three-element subset

S � E, the set S can be extended in at most a constant number of ways to an edge E0 2 E , i.e.,
S � E0, as every color class is a matching. Thus the set of (2; 3)-cycles can be constructed in

time O(jEj) = O(n3), and for some constant c2;3 > 0 we have

s2;3(G) � c2;3 � n3 : (40)

We do not construct the set of (2; 2)-cycles right now. To do this, observe that for each edge

E 2 E and each two-element subset e 2 [E]2 there are less than n edges e0 2 E(Kn) with

�(e) = �(e0). Also for distinct vertices v; w 2 E and z 2 V n E, there is at most one edge

e0 2 E(Kn) with w 2 e0 and �(fv; zg) = �(e0). Thus the set of (2; 2)-cycles can be constructed

in time O(jEj � n) = O(n4). Similarly, for each subhypergraph G0 = (V 0; E 0) of G, its set of

(2; 2)-cycles can be constructed in time O(jE 0j � jV 0j), and, also

s2;2(G0) � c02;2 � jE 0j � jV 0j : (41)

By Lemma 5.6, for p = n�1=3+� with 0 < � < 1=3, using (39) and (40) we �nd in time O(jV j +
jEj+ s2;3(G)) = O(n3) a subhypergraph G0 = (V0; E0) of G = (V; E) with

jV0j = p=3 � jV j ; jE0j � 3 � p4 � jEj ; and s2;3(G0) � 3 � p5 � s2;3(G) : (42)
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Then, t(G0)3 � 9 � (p � t)3. We claim that for 
 = �=(1 + �) the following holds:

s2;2(G0)� p � n � (p � t)5�
 :

To see this, observe, using (41), that

p4 � jEj � p � n� p � n � (p � t)5�

() p�1+
 � n�1=3+2
=3 � 1

() n��+
(�+1=3) � 1

and the last inequality holds. Moreover, by (40) and (42) we have

s2;3(G0) � c2;3 � 3 � p5 � s2;3(G) � c02;3 � p5 � n3 � p � n � (p � t)4�
 :

The assumptions of Corollary 2.7 are ful�lled and we obtain an independent set of size at least




�
p � n
p � t � (ln(p � t))

1=3

�
= 


�
(n � lnn)1=3

�
:

The time for doing this is by (41) and (42) for 0 < � < 1 and � < 2=15 given by

O

 
p � n+ p4 � n3 + s2;2(G0) + s2;3(G0) + (p � n)3

(p � t)3��
!

= O

 
p � n+ p4 � n3 + p5 � jEj � n+ p5 � n3 + n3

t3��

!

= O

 
n7=3+5� +

n3

n2�2�=3

!

= O
�
n7=3+5� + n1+2�=3

�
= o(n3) :

Closely related to the problem just considered, is that of �nding large Sidon-sets in Abelian

groups [11].

De�nition 5.10 Let (G;+) be an Abelian group. A subset S � G is called a Sidon set if all

pairwise sums s1 + s2 with s1; s2 2 S and s1 6= s2 are distinct.

In the following we will assume that each addition g + h of elements g; h 2 G can be done in

constant time.

Corollary 5.11 Let (G;+) be an Abelian group. Let W � G be an n-element subset of G.

Then one can compute in time O(n3) a Sidon-set S �W with

jSj � c � (n � lnn)1=3 : (43)
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Note that if W = G, where jW j = n, each Sidon set S satis�es
�jSj
2

� � n, i.e., jSj � 1 +
p
2 � n.

The existence of a Sidon set with size as in (43) follows from results in [8].

We remark that within the set of integers, �nding a Sidon set S � f1; 2; : : : ; ng with jSj � c �pn
can easily be done in time O(n) using Singer sets, cf. [43].

Proof: Given the set W � G with jW j = n, we form a complete graph Kn with vertex set W .

Then we color the edges fv; wg of Kn by color v+w. This can be done in time O(n2). As (G;+)

is Abelian, every color class is a matching. Then, we apply Theorem 5.9 to our colored Kn, and

we obtain in time O(n3) a totally multicolored complete subgraph Kl with l � c � (n � lnn)1=3.
As Kl is totally multicolored, the vertices of Kl yield in W a Sidon set.

The next problem - Sidon sets within the set of squares of integers - was considered the �rst by

Alon and Erd�os [7], where for any � > 0 the lower bound jSj � c �n2=3�� was proved by a Tur�an

strategy.

Theorem 5.12 For every � > 0, one can �nd in time O(n2+�) a Sidon set S � f12; 22; : : : ; n2g
with

jSj � c� � n2=3 : (44)

The existence of an independent set of size at least as in (44) was proved in [34]. By a result of

Landau [32], one has the upper bound jSj � c�n=(lnn)1=4 for every Sidon set S � f12; 22; : : : ; n2g.
Proof: We consider a 4-uniform hypergraph G = (V; E) with vertex set V = f12; 22; : : : ; n2g
and edgeset E � [V ]4. Let fi21; i22; i23; i24g 2 E if and only if i21 + i22 = i23 + i24. To construct G, we
consider all pairs (i2; j2), 1 � i < j � n, and sort them according to the value of their sums

i2 + j2 in time O(n2 � lnn). Then, we collect pairwise the pairs with the same value of the

sum. Recall, that r2(d) denotes the number of representations of d as a sum of two squares, i.e.,

x2 + y2 = d for integers x; y. By (17), we have

r2(n) � n
c0

ln lnn :

Using (18), we infer

jEj �
2n2X
d=1

 
r2(d)

2

!
� c4 � n2 � lnn (45)

and E can be constructed in time O(n2 � lnn).
Now we consider the 2-cycles in the hypergraph G. To count the number s2;2(G0) of (2; 2)-cycles
in any subhypergraph G0 = (V 0; E 0) consider a �xed edge fi21; i22; i23; i24g 2 E 0. The number of

edges fi21; i22; x2; y2g 2 E 0 with i21 + i22 = x2 + y2 is at most r2(i
2
1 + i22) � n

c1
ln lnn . Moreover, the

number of edges fi21; i22; x2; y2g 2 E 0 with i21 + x2 = i22 + y2 is given by a constant times the

number of divisors of i21 � i22, hence, is at most n
c2

ln lnn cf. [25], [34]. Thus, we have for constants

c3; c2;2 > 0 that

s2;2(G0) � c2;2 � jE 0j � n
c3

ln lnn ;

and the set of (2; 2)-cycles in G0 can be constructed in time O
�
jE 0j � n c3

ln lnn

�
.
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As every three-element subset S � V can be extended only in a constant number of ways to

an edge E 2 E , i.e., S � E, every subhypergraph G0 = (V 0; E 0) of G satis�es for some constant

c2;3 > 0 that

s2;3(G0) � c2;3 � jE 0j ;

and the set of (2; 3)-cycles in G0 can be constructed in time O (jE 0j).
Now, for the average degree t(G)3 of G we have by (45) that

t(G)3 � t3 =
4 � c4 � n2 � lnn

n
= c5 � n � lnn :

Then, for 0 < 
 < 1=3, some constant c > 0 and n large we have

s2;2(G) � c2;2 � n2 � lnn � n
c3

ln lnn � n8=3�
=3 � c � n � t5�

s2;3(G) � c2;3 � n2 � lnn� n7=3�
=3 � c � n � t4�
 ;

hence, the assumptions of Corollary 2.7 are ful�lled, and we obtain for any �0 > 0 with �0 < 3�

in time

O

 
n2 � lnn � n c3

ln lnn +
n3

t3��0

!
= O

�
n2+�0=3 � (lnn)�0=3

�
= O

�
n2+�

�

an independent set of size at least




�
n

(n � (lnn))1=3 � (lnn)
1=3

�
= 


�
n2=3

�
:

Sidon sets in arbitrary groups were �rst considered by Babai and S�os [12]. We distinguish two

types:

De�nition 5.13 Let (G; �) be a group and let S be a subset of G. The set S is a Sidon set of

the �rst kind if for all x; y; z; w 2 S where at least three are distinct, it is

x � y 6= z � w :

The set S is a Sidon set of the second kind if

x � y�1 6= z � w�1 :

Theorem 5.14 Let (G; �) be an arbitrary group. Then for every subset W � G with jW j = n,

one can determine in time O(n3) a subset S �W , which is a Sidon set of both kinds, �rst and

second, and satis�es

jSj � c � (n � lnn)1=3 : (46)
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The existence of a Sidon set with jSj � c � n1=3 was shown �rst by Babai and S�os [12]. In [33]

the existence of a Sidon set S satisfying (46) was shown.

Proof: We sketch the arguments for Sidon sets of the second kind. The arguments for Sidon

sets of the �rst kind are similar (also for Sidon sets of both kinds). By results from [12], a subset

S � G is a Sidon set of the second kind if for pairwise distinct elements x; y; z 2 S it is

(i) x � y�1 6= y � z�1 ;

and, for all pairwise distinct elements x; y; z; w 2 S it is

(ii) x � y�1 6= z � w�1 :

Given a subset W � G, we form a hypergraph G = (W; E3 [ E4) by collecting triples and

quadruples of W which violate conditions (i) or (ii). For pairwise distinct elements x; y; z 2W

let fx; y; zg 2 E3 if and only if x � y�1 = y � z�1. Moreover, for pairwise distinct elements

x; y; z; w 2 W let fx; y; z; wg 2 E4 if and only if x � y�1 = z � w�1. Constructing the sets E3; E4
can be done in time O(n3). Again, we want to �nd a large independent set in G.
Let GjE4 = (W; E4). It is easy to see, cf. [33], that

jE3j � c3 � n2 ; jE4j � c4 � n3 ; s2;3(GjE4) � c2;3 � n3 ; and s2;2(GjE4) � c2;2 � n4 ;

and the sets of (2; 3)-cycles can be constructed in time O(s2;3(GjE4)). Moreover, for every

subhypergraph G0 = (W 0; E 0

4) of GjE4 we have

s2;2(G0) � c
0

2;2 � jE 0j � jW 0j :

The situation is similar to that in the proof of Theorem 5.9. We �rst choose with p = n�1=3+�,

where 0 < � < 1=3, in time O(n3) a small subhypergraph G0 of G, where we control the number
of vertices, edges, and (2; 3)-cycles in GjE4. In the resulting hypergraph G0 the number of (2; 2)-
cycles is only O(p4 � jE4j � p � n) = o(n3) for � < 2=15. Then, on this small subhypergraph we

choose in time o(n3) with p = n�1=3+�1 again a small subhypergraph G1, where we control the
number of vertices, edges, and, among the four-element edges, the (2; 3)-cycles and now also

the (2; 2)-cycles. In the resulting hypergraph G1 we delete in time o(n) one vertex from each

three-element edge, each (2; 2)-cycle and each (2; 3)-cycle, and we obtain a 4-uniform hypergraph

without any 2-cycles, for which we apply in time o(n3) Corollary 2.8 and we get a desired Sidon

set.

De�nition 5.15 Let (G; �) be a group. Let C � G be a subset of G with 1 62 C where C is

invariant under taking inverses, i.e., with C = C�1 = fc�1 j c 2 Cg. The Cayley graph �(G;C)

has vertex set G and edgeset ffg; hg j g � h�1 2 C and g; h 2 Gg.

Corollary 5.16 Let (G; �) be a group. There exists a constant c > 0 such that the following

holds. Let H be a graph on n vertices. Then, for every subset W � G with jW j � c � n3= lnn
one can construct in time O

�
n9=(lnn)3

�
some Cayley subgraph of G, and �nd in it an induced

subgraph which is isomorphic to H.
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The existence of such a subset W with jW j � c �n3 was shown �rst by Babai and S�os [12]. This

was improved to jW j � c � n3= log n in [33].

Proof: The arguments follow [12]. Let H = (V;E) be a graph on n vertices and let W � G

be a subset of G with jW j � c � n3= lnn, where c > 0 is a large enough constant. By Theorem

5.14 we obtain in time

O

0
@
 
n3

lnn

!3
1
A = O

 
n9

(lnn)3

!

a subset S � W with jSj = n, where S is a Sidon set of the second kind. Now, we identify S

with the vertex set V of H. Set C = fs � t�1 j fs; tg 2 Eg. Then 1 62 C and C = C�1. Moreover,

the Cayley graph �(S;C) is an induced copy of the graph H.

In connection with the study of random Tur�an numbers the existence of graphs with many edges

and without cycles of small lengths was shown by Kohayakawa, Kreuter and Steger [29]. We

mention without proof that along the lines discussed in this paper the following can be shown:

Theorem 5.17 Let k be a �xed positive integer. Then, one can compute in time O(n4k�3) a
graph G on n vertices, which does not contain any cycle C3; C4; : : : ; C2k, and the number of

edges in G is at least



�
n1+

1
2k�1 � (lnn) 1

2k�1

�
:

Although there are better constructions known, for example, Ramanujan graphs arising from the

work of Lubotzky, Phillips and Sarnak [35], i.e., graphs with at least 

�
n1+

2
3k+3

�
edges which do

not contain any cycle C3; C4; : : : ; C2k, the method used in [29] is interesting to gain a logarithmic

factor. Namely, seemingly against the intuition they delete edges in a complete graph Kn with

probability p = n
�1+ 1

2k�1
+�

where � > 0 which is above the usual choice p0 = �(n
�1+ 1

2k�1 ).

Then they form a hypergraph with vertices being the edges of the resulting graph, and (hyper-

)edges consisting of the cycles C3; C4; : : : ; C2k of the graph Kn. The resulting hypergraph has an

independent set of size 
(n
1+ 1

2k�1 � (lnn) 1
2k�1 ), i.e., the corresponding edges in the graph form

no cycle C3; C4; : : : ; C2k.

For algorithmic reasons, we consider the complete graph on n vertices. We form a hypergraph

G with vertices being the edges of Kn. The edges in G are determined by the edges of cycles of

length at most 2k in Kn. Thus, the hypergraph has
�n
2

�
vertices and �(ni) edges of cardinality

i, where i = 3; 4; : : : ; 2k. Then we determine all 2-cycles among the 2k-element edges of G. The

number of (2; j)-cycles, j = 2; 3; : : : ; 2k � 1 among the 2k-element edges of G is �(n4k�j�1).
Hence, the assumptions of Corollary 2.7 are ful�lled. We get rid of those edges with cardinality

less than 2k by taking a small subhypergraph of G, i.e., choosing vertices of G with probability

p = n
� 2k�2

2k�1
+�

for some � > 0 and we obtain a 2k-uniform subhypergraph for which we apply

Corollary 2.7. The running time of this algorithm is given by the number of (2; 2)-cycles, i.e., is

O(n4k�3).
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