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Abstract

Due to an approximation error the schema theorem implies a wrong estimate for

the frequency of instances of a schema. In this article an example is given for which

the schema theorem gives a wrong estimate. Based on a modeling which allows a

mathematical analysis of genetic algorithms, the schema theorem is revised and a

corrected estimate is shown.

1 Introduction

Today evolutionary algorithms and especially genetic algorithms are known to be e�cient

in many problem domains. But up to now a gap between theoretical foundations and

empirical studies about their behavior and quality exists. This is displeasing since they

are based on a solid grounding of mathematical theory which had been suppressed as their

practical application indicates their bene�t on various problem domains. Even if this gap

cannot be �lled within the next years it seems to be essential to build a solid grounding

on which newer and better results can be achieved. In this article the schema theorem

and the derived understandings will be revised due to the fact that an assumption is used

which cannot be veri�ed.

This article is divided into two parts. The �rst is dealing with the mathematical modeling

of genetic algorithms. For this in subsection 2.1 the used notations and abbreviations are

introduced. In subsection 2.2 the components of genetic algorithms are modeled which

are genetic objects, genetic operators, populations, selection operators, and replacement

strategies. This modeling allows a mathematical analysis of genetic algorithms and is

based on the de�nitions given in [Men96] which is the base document of this article.

The restriction of the used sets to be �nite in the modeling is not necessary and can be

avoided with a greater formal and technical e�ort. We use this modeling in subsection

2.3 to describe the standard genetic algorithm. Section 3 is dealing with the theoretical

foundations of standard genetic algorithms. First in 3.1 the schema theorem, the building
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block hypothesis, and the explanation of the implicit parallelism are cited to understand

the di�erence to the revised results which are presented in 3.3. By using a simple example

we show in 3.2 that the estimate for the schema theorem is wrong. In 3.4 we discuss the

results and their implications for the behavior of genetic algorithms. In Section 4 we

discuss an alternative genetic algorithm, which is also assumed to be a modeling for

which the schema theorem is valid. First we give in 4.1 an example that the estimate of

the schema theorem is not correct. In 4.2 we show a correct estimate for the expected

frequency of instance of schemata.

2 Modeling of genetic algorithms

2.1 Used symbols

Even if only elementary de�nitions of probability theory are used it is assumed that the

reader is familiar with probability theory. With E(X) we denote the expected value of X,

}(X) is the power set of X, and X is used as an abbreviation for G nX if X � G where

the set G will be introduced later. As the indicator whether X is true we use the symbol

11(X). Additionally we remember that for ! 2 
 a transition matrixK : 
�}(
0)! [0; 1]

can be identi�ed with a random variable of the probability space over 
0 because this

identi�cation will be used frequently in this article.

With F : G! (0; 1] as a �tness function, Pi(x) as the frequency of the set x in the i-th

population Pi, and

F(Pt; x) :=

P
g2xF(g)Pt(g)

Pt(x)

as the average �tness of elements of x in the population Pt we will use

Nt(x) :=
Pt(x)

Pt(G)

as an abbreviation for the relative frequency of elements of x in the population Pt,

Ft(x) :=
F(Pt; x)

F(Pt;G)

as the relative average �tness of elements of x in the population Pt, and

Et+1(x) :=
E(Pt+1(x))

E(Pt+1(G))

for the expected relative frequency of elements of x in the population Pt+1.

2.2 Modeling the components

A genetic object will be interpreted as a random variable G of a �nite probability space

over G = f0; 1gM , where 0 and 1 will be called alleles. The hyperplanes of G are called
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schemata and an element of a schema is one of its instances. A schemaS can be interpreted

as an element of the set f0; 1; �gM where � will be called gene. The positions on which a

schema has alleles will be called de�ning positions. The order of a schema is the number

of de�ning positions and the length is the distance between the rightmost and leftmost

de�ning position. Additionally a �tness function will be assumed to be a function

F : G! (0; 1]

over the search space G.

A genetic operator O which creates one genetic object from two given will be modeled as

a transition matrix

O : G2 � }(G)! [0; 1]:

If the probability measure � of a genetic object G ful�ls �(g) = O(Gf ;Gm; g) for all g 2 G

then we denote with

G := O(Gf ;Gm)

the resultant genetic object G created from the genetic objects Gf and Gm. Additionally

the minimum probability of a genetic object G = O(Gf ;Gm) to be an element of the set

00 if Gf is an element of  and Gm of 0 will be called minimum creation probability for

the genetic operator O (for ; 0 and 00) and will be denoted with O
00

;0.

The mutation �PM with the parameter PM applied on a genetic object G = (g1; : : : ; gM )

will result in a genetic object Gc = (g01; : : : ; g
0
M ) where the probability that g0i di�ers from

gi will be PM for all i 2 f1; : : : ;Mg. As a result it can be shown that for any schema S

the mutation �PM will have a creation probability of

�PM
S
S

= (1 � PM )
o(S)

: (1)

When the one-point-crossing-over � is applied on two genetic objects Gf = (g1; : : : ; gM )

and Gm = (g01; : : : ; g
0
M ) it will generate o�springs (g1; : : : ; gi; g

0
i+1; : : : ; g

0
M ) and (g01; : : : ; g

0
i,

gi+1; : : : ; gM ) where i is selected uniformly from f1; : : : ;M�1g. \To incorporate crossing-

over directly [. . . ] one of the resultant structures is discarded"([Hol92] pp:98). Since there

are several alternatives for discarding one genetic object we decide that each resultant

will be discarded with a probability of 0:5. Based on this modeling the minimum creation

probabilities are given by

�S
S;S

= �S
S;S

=
M � 1 � l(S)

2(M � 1)
; (2)

�S
S;S

= 0 and �SS;S = 1:

Because it is elementary to show that the equalities �SS;S = 1 and �S
S;S

= 0 are valid only

the remaining equality is proven. Let us assume that the two genetic objects Gf and Gm
are given and that their o�springs z and z0 are generated as z := (g1; : : : ; gi; g

0
i+1; : : : ; g

0
M )

and z0 := (g01; : : : ; g
0
i; gi+1; : : : ; gM). If Gf is an instance of schema S and Gm is not one

then z will be an instance of S if i � R(S). In an analogous way it can be noted that z0
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will be an instance of S if i < L(S). By summing up the cases when either z or z0 is an

instance of schema S we easily see that only M � R(S) + L(S) � 1 = M � l(S) � 1 of

the 2(M � 1) possible o�springs can be an instance of S. The last genetic operator we

use is the competition �PC with parameter PC whose resultant Gc = �PC (Gf ;Gm) is with

a probability of PC the genetic object Gf and with the remaining probability Gm. It is

trivial to see that

�PC
S

S;S
= 1��PC

S

S;S
= PC (3)

is valid for the minimum creation probability.

Like genetic objects we will interpret a population as a random variable P of a probability

space over IP which is a set of measurable functions from G to IN. Except subsection 3.1

we assume IP to be �nite to simplify and reduce the needed e�ort of modeling genetic

algorithms. With the assumption that IP is a �nite set we de�ne selection operators as

transition matrices

S : IP� }(G)! [0; 1]

which ful�l for p 2 IP the restriction S(p; fgg) = 0 for all g 2 G with p(g) = 0. This

restriction is made due to the fact that only genetic objects can be selected which exist in

the population. If the probability measure � of a genetic object G ful�ls �(g) = S(P; g)

for all g 2 G then the selection of a genetic object from the population P will be denoted

with

G := S(P):

Based on [Hol92] the proportional selection is given by

SP (Pt; G) := Nt(G)Ft(G) (4)

and the uniform selection by

SU (Pt; G) := Nt(G) (5)

for all subsets G of G. Also we de�ne replacement strategies as transition matrices

E : IP2 � }(IP)! [0; 1]

which ful�l E(p; p0; p00) = 0 for p; p0; p00 2 IP if there exists a g 2 G with p00(g) > p(g)+p0(g).

We make this restriction to avoid that genetic objects are introduced into the resultant

population p00 which do not exist in the given populations p and p0. If the probability

measure � of a population P 00 ful�ls �(p) = E(P;P 0; p) for all p 2 IP then the replacement

of the populations P and P 0 will be denoted by

P 00 := E(P;P 0):

The replacement strategy which will be used for the standard genetic algorithm is the

generational replacement. It is given through

EG(P;P
0; P ) := 11(P 02P );
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so the resultant of the replacement of the populations P and P 0 is always the population

P 0.

The last and easiest component we use is needed for building populations from genetic

objects. We denote with

P =

8<
:

O
i=1;:::;n

Gi

9=
;

the population, which consists of the n genetic objects G1; : : : ;Gn.

2.3 Modeling the algorithm

We will now model the standard genetic algorithms by the above formalism. This shows

that our formalism is easy to apply. We choose the standard genetic algorithms for our

example because the results we are about to derive pertain to them.

It has been noted already that standard genetic algorithms use the generational replace-

ment. Therefore the population

Pt+1 := EG(Pt;P
0

t) = P 0

t

at time t+1 is the generational replacement of the current population Pt and a temporary

population

P 0

t :=

8<
:

O
i=1;:::;n

G(t;i)

9=
;

which consists of n independent identically distributed genetic objects G(t;1); : : : ;G(t;n). To

generate the genetic object

G(t;i) := �PM

�
G0(t;i)

�
we mutate a temporary genetic object G0(t;i) with a mutation parameter PM . The genetic

object

G0(t;i) := �PC

�
G00(t;i);G

000

(t;i)

�
is the competition with parameter PC of the genetic object

G000(t;i) = SP (Pt)

which we select with the proportional selection from the current population Pt and

G00(t;i) = � (SP (Pt) ;SU (Pt)) (6)

which is the resultant of the crossing-over of genetic objects selected with the proportional

selection and uniform selection from the population Pt.
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Figure 1: Estimate (7) in dependency to Ft(S) and Nt(S)

3 Theoretical foundations

3.1 Standard genetic algorithms

Genetic algorithms are based on reproductive plans for which Theorem 6:2:3 in [Hol92]

{ which is known as the schema theorem { gives a lower bound for the frequency of

instances of schemata. For the proof of the theorem the assumption that \no more than

a proportion (1�Nt(S))l(S)PC
M�1

of the modi�ed o�spring of S can be expected to be instances

of schemata other than S"([Hol92] pp:102) is used. If this assumption is correct the given

estimate

Nt+1(S) � (1 � PM )
o(S)

Nt(S)Ft(S)

 
1�

PC l(S)

M � 1
(1�Nt(S))

!
(7)

{ which is valid for in�nite populations only { can be generalized to �nite populations

in the way that the expected frequency for instances of a schema S in the successor

population Pt+1 would be

Et+1(S) � (1� PM )
o(S)

Nt(S)Ft(S)

 
1�

PC l(S)

M � 1
(1 �Nt(S))

!
: (8)

The importance of estimates (7) and (8) is not the opportunity to calculate a lower bound

for the frequency of instances for certain schemata. It is more important that from the

estimate (7) understandings are derived which try to describe, explain and predict the

optimization process of genetic algorithms.

One explanation is the building block hypothesis which says that \just as a child cre-

ates magni�cent fortress through the arrangement of simple blocks, so does a genetic

algorithm seek near optimal performance through the juxtaposition of short, low-order,

high performance schemata, or building blocks"([Gol89], p:41). Another explanation is

the implicit parallelism, which is an O(n3) estimate meaning \that despite the processing
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something of only n structures each generation, a genetic algorithm processing something

like n3 schemata in parallel with no special bookkeeping or memory other than the pop-

ulation itself"([Gol89],p.40).

3.2 Falsi�cation for the schema theorem

As a motivation for the revision of the schema theorem we show that the estimate given

by the schema theorem can be incorrect for certain populations.

Proposition 1: It exists a �nite population Pt 2 IP so that the expected frequency of

instances Et+1(S) of a schema S in the successor population Pt+1 ful�lls

Et+1(S) < (1 � PM )
o(S)

Nt(S)Ft(S)

 
1 �

PC l(S)

M � 1
(1 �Nt(S))

!
:

Proof: Let us assume that we have a population Pt consisting of the genetic object

g = (0; : : : ; 0) and n � 1 copies of the genetic object g0 = (1; : : : ; 1). We assume that the

�tness function ful�lls F(g) = 1 and F(g0) = � > 0 with � < 1. It follows that

Ft(g) =
F(Pt; g)

F(Pt;G)
=

n

(n� 1)�+ 1
:

If we regard the schema S = (�; 0; : : : ; 0) we easily achieve that l(S) = M � 2 and

o(S) = M�1. With the assumption of PM = 0 and PC = 1 estimate (8) can be simpli�ed

to

Et+1(S) � (1� PM )
o(S)

Nt(S)Ft(S)

 
1�

PC l(S)

M � 1
(1�Nt(S))

!

=
1

n

n

(n� 1)�+ 1

�
1 �

M � 2

M � 1

n� 1

n

�
=

2

n

1

(n� 1)�+ 1
;

if we choose M = n additionally.

Using �(g; g; g) = 1 � �(g0; g0; g) = 1 and �(g; g0; g) = �(g0; g; g) = 1
2(n�1)

we are able to

show that

Et+1(S) =
X
a2 IG

0
@X
b2 IG

(�(a; b; S)SP (Pt; a)SU(Pt; b))

1
A

= SP (Pt; g)SU(Pt; g)�(g; g; g) + SP (Pt; g
0)SU(Pt; g

0)�(g0; g0; g)

+SP (Pt; g
0)SU (Pt; g)�(g

0; g; g) + SP (Pt; g)SU (Pt; g
0)�(g; g0; g)

= Nt(g)Ft(g)Nt(g)

+(1�Nt(g)Ft(g))Nt(g)
1

2(n � 1)
+Nt(g)Ft(g)(1�Nt(g))

1

2(n� 1)

=
1

n

1

(n� 1)�+ 1
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+

 
1�

1

(n� 1)�+ 1

!
1

n

1

2(n� 1)
+

1

(n � 1)�+ 1

�
1�

1

n

�
1

2(n� 1)

=
2

2n

1

(n� 1)�+ 1
+

�

(n� 1)� + 1

1

2n
+

1

(n� 1)� + 1

1

2n

=
3 + �

2n

1

(n� 1)�+ 1
<

2

n

1

(n� 1)�+ 1
;

because the population Pt consists only of the genetic objects g0 and n� 1 copies of g0. 2

3.3 Revised theoretical foundations

Based on the mathematical formalism introduced in Section 2 we will derive a estimate

for the standard genetic algorithm denoted in Subsection 2.3. To do so we �rst show the

following lemma:

Lemma 2: The expected frequency for a genetic object G = O(S(p);S 0(p)) to be element

of a set G will be at least

E�(11(G2G)) := OG

G;G
+ S(p;G)

�
OG

G;G
�OG

G;G

�
+ S 0(p;G)

�
OG

G;G
�OG

G;G

�
(9)

+S(p;G)S 0(p;G)
�
OG

G;G �OG

G;G

�
+ S(p;G)S 0(p;G)

�
OG

G;G
�OG

G;G

�
where S and S 0 denote selection operators and O a genetic operator.

Proof: A proof is given in the following way:

E(11(G2G)) =
X
a2 IG

0
@X
b2 IG

(O(a; b;G)S(p; a)S 0(p; b))

1
A

� S(p;G)S 0(p;G)OG
G;G + (1� S(p;G))(1 � S 0(p;G))OG

G;G

+(1� S(p;G))S 0(p;G)OG

G;G
+ S(p;G)(1 � S 0(p;G))OG

G;G

=: E�(11(G2G));

because O
00

;0 denotes the minimum probability of creating an element of 00 with the

genetic operator O if  and 00 are given. 2

Because we now have a simple estimate for one genetic object, we use it to achieve an

estimate for the successor population:

Theorem 3: The expected frequency of instances of a schema S in the successor popu-

lation for the standard genetic algorithm as described in subsection 2.3 is

Et+1(S) � (1� PM )
o(S)

Nt(S)

 
PC

M � 1 � l(S)

2(M � 1)
+ Ft(S)�t(S)

!
(10)

= (1� PM )
o(S)

Nt(S)Ft(S)

 
1�

PC l(S)

M � 1
(1�Nt(S))

!

+ (1� PM )
o(S)

Nt(S)PC
M � 1 � l(S)

2(M � 1)
(1 �Ft(S))
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Figure 2: Dependency of estimate (10) to Ft(S) and Nt(S)

with �t(S) := 1� PC
M�1+l(S)(1�2Nt(S))

2(M�1)
.

Proof: If the successor population Pt+1 is generated from independent identically dis-

tributed genetic objects G1; : : : ;Gn it follows that

Et+1(S) =
E(Pt+1(S))

E(Pt+1(G))
=

Pn
i=1 E(11(Gi2S))

n
= E(11(G12S)) � E�(11(G12S))

so it remains to show the estimate for the genetic object

G = �PM (G0)

with G0 = �PC (G
00;G000) ;

G00 = � (SP (Pt) ;SU (Pt)) ;

and G000 = SP (Pt) :

For estimating E(11(G002S)) we use the lemma 2, the estimates (2) and the estimates for

the uniform (5) and proportional selection operators (4) and achieve

E(11(G002S)) = �S
S;S

+ SP (Pt; S)
�
�S
S;S

� �S
S;S

�
+ SU (Pt; S)

�
�S
S;S

� �S
S;S

�
+SP (Pt; S)SU(Pt; S)

�
�SS;S � �S

S;S

�
+ SP (Pt; S)SU(Pt; S)

�
�S
S;S

� �S
S;S

�

= (Nt(S))
2
Ft(S)

 
1�

M � 1 � l(S)

M � 1

!
+Nt(S) (Ft(S) + 1)

M � 1� l(S)

2(M � 1)

and for the genetic object G000 we see

E(11(G0002S)) = SP (Pt; S) = Nt(S)Ft(S):

Using these results and the estimate (3) we are able to show that

E(11(G02S)) = PCE(11(G002S)) + (1 � PC)E(11(G0002S)) = Nt(S)
�
PC�

S

S;S
+ Ft(S)�t(S)

�
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(1 �Ft(S)) in dependency to Ft(S) and Nt(S)

is valid and using the equality (1) we easily see

E(11(G2S)) = E

�
11(G2S^G02S) + 11(G2S^G02S)

�
� �PM

S
S
E
�
11(G02S)

�
= (1� PM )

o(S)
E
�
11(G02S)

�

which completes the proof. 2

For the calculation of the lower bounds of (8) and (10) in the Figures 1 and 2 the constants

(1 � PM)
o(S)

= PC = 0:95, M = 40, l(S) = 5 and the elementary but important equality

F(Pt;G) = F(Pt; G)Nt(G) + F(Pt; G)Nt(G) (11)

are used. In the Figures 3 and 4 the di�erence between the estimates is computed and

visualized to emphasize the understanding.

If Ft(S) is smaller than 1 the estimate (10) will be greater than (8). This will not imply

problems to the analysis of genetic algorithms because the estimate of the schema theorem

denotes a lower bound for the expected frequency for instances of schemata. Nevertheless

the graph of (10) describes the e�ects of the one-point-crossing-over and mutation in

genetic algorithms. First there is for almost all schemata a positive probability of being

explored in the successor population even if the average �tness of their instances is nearly

0. Second the frequency of instances will be decreasing for the schemata with an average

�tness beyond the average �tness of the population.

But in the case when Ft(S) is greater than 1 the corrected estimate (10) will be smaller

than (8). This leads to problems in the analysis and understanding of genetic algorithms

due to the fact that schemata with above average �tness will not have the attraction in the

optimization process of genetic algorithms as proposed in the literature. The di�erence

will not only be the asymptotic limits when Ft(S) diverges against in�nty. It is more

important that the understandings based on the schema theorem are inuenced by this

behavior. So up to now the author is not able to prove either the implicit parallelism of

order O(n3) as observed in [Gol89] and [BD93] or the building block hypothesis whose

proofs use the incorrect calculation of �S
S;S

and �S
S;S

.
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Figure 4: Visualisation of the dependency between Et+1(S) and Ft(S)

Even if it is unclear if these understandings can be proven it is the author's opinion that

they point in the correct direction for the understanding of genetic algorithms. But to be

usable it is needed that some assumptions are made and that they are interpreted with

the correct abstraction.

For the building block hypothesis it has to be remarked that the building blocks neither

are visible to the genetic algorithm so that they can be used in the optimization process

nor can they be separated from the applied genetic operators and selection operators.

Another argument against the building block hypothesis raises from the fact that the

schemata which can be combined to form better schemata do not have to exist. So the

building block hypothesis \isn't incorrect, if taken only as an empirical observation from

the optimization process. But if the hypothesis is regarded as a rational for how the GA

processes solutions then cause and e�ect are reversed"([Bey97] p:3). Additionally it has

to be remarked that the building block hypothesis has a trapdoor due to three elementary

facts:

� Schemata with an order of o(s) are descriptions of hyperplanes with 2M�o(s) ele-

ments. But the more elements a hyperplane has the closer its (static) average

�tness will be to 1. Regarding this with the dynamics of genetic algorithms it is

clear that the average �tness of a schema of a population will converge faster to 1

the lower its order is. But a schema being usable for the building block hypothesis

should have an average �tness greater than 1 and due to this its order must be great.

� Even schemata with great length can have low order so that the length of a schema

cannot be as important for the building block hypothesis as its order can be. Al-

though like the order the length has to be great to describe schemata with above

average �tness because only in this case the corresponding hyperplanes will have

few elements.

� The equality (11) implies that even the average �tness of schemata which are de-

scribed by the building block hypothesis changes and this will inuence their im-

portance for the building block hypothesis.
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The misunderstanding with the so-called implicit parallelism is based on the fact that

every genetic object is an instance of 2M schemata and that there exist 3M schemata.

\Leaving aside that the n3-counting argument is questionable, implicit parallelism is cer-

tainly not unique to GAs. The counting argument is mainly based upon the number of

schemata owned by an individual string of lengthM"([Bey97] p:3). Also the processing of

n3 schemata can be misunderstood that a genetic algorithm is more e�ective the greater

its populations are. But there is not only the upper limit of 3M schemata which can

be processed although there is no knowledge if genetic algorithms are able to reduce the

number of schemata being processed dramatically when the genetic algorithm proceeds.

This would be a more sophisticated indicator for an e�cient working of genetic algorithms

on schemata.

3.4 Explanation for the behavior of genetic algorithms

It is the author's opinion that the optimization process of genetic algorithms is based

on antagonistic e�ects and aspects and that the quality of genetic algorithms depends

on how well these can be combined. In a more general way it could be said that \the

behavior of an evolving population is governed by a complicated interplay of a few major

genetic and population forces"([vNCM97] p:8) and the way they are allowed to interact

with each other. These forces are the genetic drift, the selection and genetic operators,

and last but not least the replacement strategies.

Even if we are not able to describe the e�ects of these interacting forces for all genetic

algorithms in detail we can do so for standard genetic algorithms. For them the genera-

tional replacement is one of the weakest forces because this replacement strategy is unable

to reject any genetic object which will be created or selected from the current popula-

tion. For the selection operators we have to separate the proportional from the uniform

selection due to their di�erent e�ects. The proportional selection increases the frequence

of �tter genetic objects. Therefore the population will converge to a homogeneous popu-

lation which consists of the best genetic object that has been found. In contrast to this,

the uniform selection increases the frequence of frequent genetic objects such that the

current population will converge to a homogeneous population which consists of the most

frequent genetic object in the current population. But only if the currently best genetic

object is also the currently most frequent genetic object the two selection operators will

yield the same homogenous population.

The mutation and crossing-over are forces that drive genetic mixing between genetic ob-

jects. The e�ect of the crossing-over of the parents selected by proportional and uniform

selection operators respectively will be that the created o�spring will have the opportunity

of having above average �tness and frequent alleles. In contrast to this the mutation which

is applied on proportionally selected genetic objects only will increase the exploration of

regions with above average �tness. These e�ects are static behaviors but are also depend-

ing on the crossing-over-rate PC . In short term it can be noted that the crossing-over

is a mechanism for merging di�erent qualities and implies that the population will con-

verge to homogeneity and in contrast to this the mutation is a mechanism for establishing
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inhomogeneity and implies that the population keeps exploring the search space.

The genetic drift is a result of sampling uctuations induced by the �nite size of the

population. It is the sum of not well understood random uctuations which will be

stronger when the other forces { especially the replacement strategy { are weaker and

therefore the population will tend to premature convergence.

4 Variant of genetic algorithms

Because there are several articles in which it is assumed that o�springs are generated

from two proportionally selected parents, we regard this special case. For these genetic

algorithms we compare the estimate of the schema theorem with the expected frequency

for instances of a schema and apply lemma 2 for estimating an lower bound. Before going

further, we �rst modify the genetic algorithms described in subsection 2.3 to our purpose.

As explained before everything remains unchanged except (6) which has to be replaced

by

G00(t;i) = � (SP (Pt) ;SP (Pt)) : (12)

4.1 Estimate of the schema theorem

Like in subsection 3.2 we �rst want to show, that the schema theorem gives wrong estim-

ates for the expected frequency of instances of schemata in certain cases. For this we use

the following proposition.

Proposition 4: It exists a �nite population Pt 2 IP so that the expected frequency of

instances Et+1(S) of a schema S in the successor population Pt+1 of the previous described

genetic algorithm ful�lls

Et+1(S) < (1 � PM )
o(S)

Nt(S)Ft(S)

 
1 �

PC l(S)

M � 1
(1 �Nt(S))

!
:

Proof: Let us assume that we have a population Pt consisting of 100 genetic objects;

80 copies of the genetic object g = (0; : : : ; 0) and 20 copies of the genetic object g0 =

(1; : : : ; 1). We assume that the �tness function ful�lls F(g) = 1=6 and F(g0) = 1. It

follows that

Ft(g) =
F(Pt; g)

F(Pt;G)
=

1

2
:

If we regard the schema S = (�; 0; : : : ; 0) we easily achieve that l(S) = M � 2 and

o(S) = M�1. With the assumption of PM = 0 and PC = 1 estimate (8) can be simpli�ed

to

Et+1(S) � (1 � PM)
o(S)

Nt(S)Ft(S)

 
1�

PC l(S)

M � 1
(1�Nt(S))

!

=
4

10

�
1�

M � 2

M � 1

2

10

�
=

4

10

8M + 6

10(M � 1)
=

32M + 24

100(M � 1)
:
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Using �(g; g; g) = 1 � �(g0; g0; g) = 1 and �(g; g0; g) = �(g0; g; g) = 1
2(M�1)

we are able to

show that

Et+1(S) =
X
a2 IG

0
@X
b2 IG

(�(a; b; S)SP (Pt; a)SP (Pt; b))

1
A

= SP (Pt; g)SP (Pt; g)�(g; g; g) + SP (Pt; g
0)SP (Pt; g

0)�(g0; g0; g)

+SP (Pt; g
0)SP (Pt; g)�(g

0; g; g) + SP (Pt; g)SP (Pt; g
0)�(g; g0; g)

= Nt(g)Ft(g)Nt(g)Ft(g) + 2(1 �Nt(g)Ft(g))Nt(g)Ft(g)
1

2(M � 1)

=
16

100
+

24

100(M � 1)
=

16M + 8

100(M � 1)
<

32M + 24

100(M � 1)

because of the de�nition of the population Pt and the assumption M > 1. 2

4.2 Revised estimate

As for the genetic algorithm described in subsection 2.3 we show a lower bound for the

expected frequency for instances of a schema.

Theorem 5: The expected frequency of instances of a schema S in the successor popu-

lation for the genetic algorithm assumed in this subsection is

Et+1(S) � (1� PM )
o(S)

Nt(S)Ft(S)

 
1�

PC l(S)

M � 1
(1 �Nt(S)Ft(S))

!
(13)

= (1� PM )
o(S)

Nt(S)Ft(S)

 
1�

PC l(S)

M � 1
(1 �Nt(S))

!

+ (1� PM )
o(S)

Nt(S)
2Ft(S)

PC l(S)

M � 1
(Ft(S)� 1)

Proof: The proof of this theorem is mostly identical to the proof of theorem 3. If the

successor population Pt+1 is generated from independent identically distributed genetic

objects G1; : : : ;Gn it follows that Et+1(S) � E�(11(G12S)). So it remains to show the

estimate for the genetic object

G = �PM (G0)

with G0 = �PC (G
00;G000) ;

G00 = � (SP (Pt) ;SP (Pt)) ;

and G000 = SP (Pt) :

For estimating E(11(G002S)) we use the lemma 2, the estimates (2) and the estimates for

the proportional selection operators (4) and achieve

E(11(G002S)) = �S
S;S

+ SP (Pt; S)
�
�S
S;S

� �S
S;S

�
+ SP (Pt; S)

�
�S
S;S

� �S
S;S

�
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Figure 5: (1� PM )
o(S)

Nt(S)
2Ft(S)

PC l(S)
M�1

(Ft(S)� 1) in dependency to Ft(S) and Nt(S)

+SP (Pt; S)SP (Pt; S)
�
�SS;S � �S

S;S

�
+ SP (Pt; S)SP (Pt; S)

�
�S
S;S

� �S
S;S

�

= Nt(S)
2Ft(S)

2

 
1 � 2

M � 1 � l(s)

2(M � 1)

!
+Nt(S)Ft(S)

 
2
M � 1� l(s)

2(M � 1)

!

= Nt(S)Ft(S)

 
M � 1 � l(S)

M � 1
+Nt(S)Ft(S)

l(S)

M � 1

!

= Nt(S)Ft(S)

 
1�

l(S)(1�Nt(S)Ft(S))

M � 1

!

and for the genetic object G000 we know E(11(G0002S)) = Nt(S)Ft(S). Using these results

and the estimate (3) we are able to show that

E(11(G02S)) = PCE(11(G002S)) + (1� PC)E(11(G0002S))

= Nt(S)Ft(S)

 
1�

PC l(S)(1�Nt(S)Ft(S))

M � 1

!

is valid and using the equality (1) we easily see

E(11(G2S)) = E

�
11(G2S^G02S) + 11(G2S^G02S)

�
� �PM

S

S
E
�
11(G02S)

�

= (1 � PM )
o(S)

Nt(S)Ft(S)

 
1 �

PC l(S)(1�Nt(S)Ft(S))

M � 1

!

which completes the proof. 2

For the visualisation of the di�erence between the estimate 8 of the schema theorem

and the estimate (13) in the Figure 5 the constants (1� PM )
o(S)

= PC = 0:95, M = 40,

l(S) = 5 and the equality (11) are used. To emphase their di�erent behaviour a schematic

visualisation is given in Figure 6 additionally.

Even if for these algorithms the schema theorem is only greater than the estimate (13)

if Ft(S) is smaller than 1 it's the authors opinion, that the criticism given in subsection
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(1 � PM )o(S)

(1 � PM )o(S) PC l(S)
M�1

1 Ft(S)

asymp. limits

estimate (13)
schema theorem

Figure 6: Visualisation of the dependency between Et+1(S) and Ft(S)

3.3 are correct. This is mainly based on the fact that the building block hypothesis is a

static description for a dynamic e�ect and that the implicit parallelism is a description

for an e�ect which occur in each parallel (search-)algorithm.

5 Conclusions

By using equality (9) it is not hard to show that a greater lower bound than (10) exists

although an analog estimate to equality (9) could be used for calculating an upper bound

for the frequency of instances of a schema. But as a matter of fact the exacter the

estimate is the complexer the estimate would be. Due to this we evade exacter estimates

and present a simpler estimate pointing into the right direction for the revision of the

schema theorem and the understandings of its derived statements. Additionally it is

possible to calculate with equality (9) the frequency of instances of schemata when other

genetic algorithms are used. But this is out of the scope of this article. The same is valid

for the case when genetic operators are used which generate more than one o�spring or

use more than two parent individuals or when selection operators are used which select

more than one genetic object at one time. Even if the presented modeling could easily be

extended to these cases the modeling is omitted in this article but is grasped in [Men96].
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