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Abstract. The standard choice for mutating an individual of an evolu-
tionary algorithm with continuous variables is the normal distribution. It

is shown that there is a broad class of alternative mutation distributions

o�ering local convergence rates being asymptotical equal to the conver-
gence rates achieved with normally distributed mutations. Such mutation

distributions must be factorizing and the absolute fourth moments must

be �nite. Under these conditions an asymptotical theory of the conver-
gence rates of simple evolutionary algorithms can be established for the

entire class of distributions.

1 Introduction

The standard choice to represent mutations in evolutionary models dealing with
continuous quantities is the normal distribution. This choice is usually justi�ed
by the central limit theorem: Since mutations in nature are caused by a variety
of physical and chemical in
uences that are not identi�able or measurable to
a degree that allows for a deterministic model, these in
uences are considered
as independent random perturbations whose normed sum approaches a normal
random variable in the limit, provided that the �rst two absolute moments of
the distributions of these random perturbations are �nite and that the so{called
Lindeberg condition is obeyed. Therefore it is not surprising that evolutionary al-
gorithms with continuous search space model mutations by normally distributed
random variables as well. But the biological original needs not necessarily be
the best choice when mutations play the role of an exploration operator|as it
is the case in evolutionary algorithms (EAs). It was noted several times [1, 2, 3]
that mutation distributions with slowly (i.e., not exponentially) decreasing tails
should o�er a larger probability to escape from local optima (also see �g. 1 &
2). Although this claim is certainly correct if the variance is held �xed, it is still
an open question whether this theoretical property carries over to practical EAs
employing an auto{adaptive adjustment of the variances. But this question will
not be addressed here. Instead, it is investigated to which extent non{normal
mutation distributions may a�ect the local convergence behavior of evolutionary
algorithms.

Two simple evolutionary algorithms will be studied here: The (1+1){EA and
the (1; �){EA. The �rst one generates a single o�spring by mutation and accepts
the o�spring only if it is better than the parent, whereas the latter one generates



Fig. 1. The shape of some symmetrical univariate distributions with zero mean and

unit variance.

distribution density function

Normal exp(�x2=2)=p2 �
Logistic � sech2(� x=

p
12)=

p
48

Laplace exp(�jxjp2)=p2
Student (d=5) 8 (1 + x2=3)�3=

p
27 �2

Table 1. Probability density functions of some symmetrical univariate distributions

with zero mean and unit variance.

� � 2 o�spring independently with the same mutation distribution and chooses
the best o�spring among the � o�spring to serve as new parent (regardless of
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Fig. 2. The decay of the right tails of the symmetric Normal, Logistic, Laplace, and

Student distribution. The tails of the �rst three distributions decline exponentially

whereas the tail of the Student distribution (with 5 degrees of freedom) follows a
power law.

the quality of the old parent). If � 2 IRn denotes the current position of the EA
in the search space, then a mutation is modeled by adding a random vector Z
that must ful�ll some conditions (details will follow shortly). Thus, an o�spring
X is represented by the random variable X = � + Z.

The test problem is the minimization of the objective function f(x) = x0 x

with x 2 IRn. It will be assumed that n is large (n � 100). This test function
re
ects to some extent the case of a local optimum, and it is usually used to assess
the local convergence behavior of evolutionary algorithms. To be comparable to
previous work, this common practice is followed here.
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2 Asymptotical Results

The fundamental assumption made in the remainder is that it will be postulated
that the product moments of random vector Z do exist up to order 4. Further
conditions on Z are given in the de�nition below which speci�es the distribution
class of random vector Z.

De�nition1. The distribution of random vector Z is termed a mutation distri-

bution if E[Z ] = 0. In this case, random vector Z is called a mutation vector.
A mutation distribution is said to be factorizing if the joint probability density
function of the mutation vector Z can be written as

fZ(z1; : : : ; zn) =

nY
i=1

fZi
(zi)

with fZ1
(�) = : : : = fZn

(�) where n denotes the dimension. 2

Let Z possess a factorizing mutation distribution. Since the random objective
function value of an o�spring is given by

f(� + Z) =

nX
i=1

(�i + Zi)
2

each of the summands above is mutually independent to the remaining ones.
As a consequence, the objective function value is representable by a sum of
independent random variables. If such a sum is appropriately normed, then its
distribution converges to some limit distribution as n ! 1. This fact will be
exploited to develop an asymptotical theory with regard to the convergence rates.
In order to obtain the desired norming constants some preparatory results are
necessary.

Lemma2. Let Z be a symmetrical random variable with E[Z2k�1 ] = 0 for
k 2 IN and set X = � +Z with � 2 IR. Then E[X2 ] = �2 + E[Z2 ] and V[X2 ] =
4 �2 E[Z2 ] + V[Z2 ]. 2

The proof of this lemma is trivial and therefore omitted while the next result is
an immediate consequence of the lemma above.

Proposition3. Let Z1; : : : ; Zn be independent and identically distributed sym-
metrical random variables with E[Z2k�1

i ] = 0 for i = 1; : : : ; n and k 2 IN. If
Xi = �i + Zi and Sn =

Pn
i=1X

2
i then

E[Sn ] = k�k2 + nE[Z2
1 ]

V[Sn ] = 4 k�k2 E[Z2
1 ] + nV[Z2

1 ]

where � 2 IRn and k � k denotes the Euclidean norm. 2
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The central limit theorem (see [4], p. 262) ensures that the distribution of the
appropriately normed random scalar product Sn = X

0

X = kXk2 converges
weakly to the standard normal distribution. Thus, since

Sn � E[Sn ]

V[Sn ]1=2
�! N � N (0; 1)

as n!1 one obtains

Sn � E[Sn ] + V[Sn ]
1=2 � N

= k�k2 + nE[Z2 ] + (4 k�k2 E[Z2 ] + nV[Z2 ] )1=2 � N: (1)

Let �2 = V[Z ] = E[Z2 ] and suppose that V[Z2 ] = a �4 = aV[Z ]2 for some
a > 0. Then the random variable Sn=k�k2 can be written as

Sn

k�k2
� 1 +

1

n

"

2 +

�
4 
2 +

a 
4

n

�1=2

� N

#
(2)

where 
 = n �=k�k. After having established this approximation one can begin
to calculate the expected asymptotical progress rates for the (1+1){EA and the
(1; �){EA provided that the objective function is f(x) = kxk2. At �rst consider
the (1 + 1){EA. Assume the current position is � 2 IRn. Since the (1 + 1){EA
only accepts improvements the relative progress is given by

E

�
max

�
k�k2 � k� + Zk2

k�k2
; 0

��
= E

�
max

�
1�

Sn

k�k2
; 0

��
:

It will be useful to normalize the relative progress by the dimension n. This
quantity will be called normalized progress. Owing to eqn. (2) one obtains the
normalized progress

E

�
max

�
n

�
1�

Sn

k�k2

�
; 0

��
� E[maxf�
2 + 


p
4 + a 
2=n �N; 0g ] : (3)

Proposition4. Let �2 = V[Z ] = E[Z2 ] and suppose that V[Z2 ] = a �4 =
aV[Z ]2 for some a > 0. If n� 1 then the expected normalized progress rate of
the (1 + 1){EA is asymptotically given by

h(
; a; n) = 2 


r
1 +

a 
2

4n
'

�



2

r
4n

4n+ a 
2

�
� 
2 �

�
�



2

r
4n

4n+ a 
2

�

with 
 = n �=k�k and where '(�) and �(�) denote the probability density and
distribution function of the standard normal distribution, respectively.

Proof: Let W = �
2 +

p
4 + a 
2=n �N with N � N (0; 1). The expected nor-

malized progress as given in eqn. (3) becomes E[maxfW; 0g ]. Since maxfW; 0g =
W � 1(0;1)(W ), where 1A(x) is the indicator function of set A, one obtains

E[maxfW; 0g ] = E[W �1(0;1)(W ) ] =

1Z
0

w



p
4 + a 
2=n

'

 
w + 
2



p
4 + a 
2=n

!
dw
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where '(�) is the probability density function of the standard normal distribu-
tion. The determination of the integral yields the desired result. 2

In principle, the same kind of approximation was presented in [5] for the special
case of normally distributed mutations. Additionally, it was argued that the term
a 
2=n in eqn. (3) becomes small for large n so that this term can be neglected.

As a consequence, the random variable W reduces to fW = �
2 + 2 
 � N and
the expected normalized progress becomes

~h(
) = 2 
 � '(
=2) � 
2 ��(�
=2)

attaining its maximum ~h(
�) = 0:404913 at 
� = 1:224 which is exactly the
same result established 20 years earlier by Rechenberg [6]. Since all factoriz-
ing mutation distributions (with �nite absolute moments) in Proposition 4 only
distinguish from each other by the constant a, an analogous argumentation for
an arbitrary factorizing mutation distribution leads to the result that the nor-
malized improvement is asymptotically equal for all factorizing mutation distri-
butions. Evidently, this kind of approximation is too rough to permit a sound
comparison of the progress o�ered by di�erent factorizing mutation distributions.

distribution a 
� h(
�; a; 100)

Normal 2 1.24389 0.40801

Logistic 16/5 1.25648 0.40992

Laplace 5 1.27639 0.41289

Student (d = 5) 8 1.31273 0.41811

Table 2. Optimal expected normalized progress rates for the (1 + 1){EA for some
factorizing mutation distributions in case of dimension n = 100 under the assumption

E[ maxfn (1� Sn=k�k2); 0g ] � h(
; a; n).

Table 2 summarizes the optimal expected normalized progress rates for some
factorizing mutation distributions under the assumption that the approximation
of Proposition 4 is exact. The surprising observation which can be made from
Table 2 is that the normal distribution is identi�ed as yielding the least progress
compared to the other distributions, provided that the assumption h(
; a; n) �
E[maxfn (1�Sn=k�k2); 0g ] holds true. The validity of this assumption, however,
deserves careful scrutiny since the norming constants an = E[Sn ] and b2n =
V[Sn ] used in the central limit theorem do not necessarily represent the best
choice for a rapid approach to the normal distribution. In fact, there may exist
constants �n, �n obeying �n � bn and �n � an = o(bn) that lead much faster
to the limit [7, p. 262]. As a consequence, it may happen that the ranking of
the distributions in Table 2 is reversed after using these (unknown) constants.
Thus, unless the error of the approximation of Proposition 4 has been quanti�ed,
this kind of approximation is also too rough to permit a sound ranking of the
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mutation distributions. Nevertheless, the small di�erences in Table 2 provide
evidence that (at least for n � 100) every factorizing mutation distribution o�ers
a local convergence rate being comparable to that of a normal distribution.

The quality of the approximation in Proposition 4 can be checked in case
of normally distributed mutations. As shown in [5], the random variable Vn =
Sn=k�k2 follows a noncentral �2 distribution with probability density function

fVn(v; �) =
�2

2
v(n�2)=4 exp

�
�
�2 (v + 1)

2

�
In=2�1(�

2
p
v) � 1(0;1)(v)

where Im(�) denotes the mth order modi�ed Bessel function of the �rst kind
and where � = k�k=� is the noncentrality parameter. Since Vn > 0 one obtains
maxfn (1� Vn); 0g = n (1� Vn) � 1(0;1)(Vn) and hence

g(n; �) = E[maxfn (1� Vn); 0g ] = n

1Z
0

(1� v) fVn (v; �) dv : (4)

This integral can be evaluated numerically for any given n and �. Since � = k�k=�
and 
 = n �=k�k it remains to maximize the function g(n; �) = g(n; n=
) with
respect to 
 > 0. For example, in case of n = 100 a numerical optimization leads
to 
� = 1:224 with g(n; n=
�) = 0:4049. Figures 3 & 4 show that the optimal
variance factor 
� and the optimal normalized progress g(n; n=
�) quickly stabi-
lizes for increasing dimension n. In fact, the theoretical limits are almost reached
for n = 30.

A similar investigation might be made for other mutation vectors Z with
factorizing mutation distributions, if the distribution of Sn =

Pn
i=1(�i � Zi)

2

were to be known. But this does not seem to be the case. For this reason and
realizing that the knowledge of the true limits is of no practical importance, it
is refrained from taking the burden of determining the density of Sn for other
mutation vectors.

Even numerical simulations do not easily lead to a statistically supported
ranking: Although the average of the outcomes of random variable

Y = maxfn (1� Sn=k�k
2); 0g

is an unbiased point estimator of the expectation, there is neither a standard
parametric nor standard nonparametric test permitting a statistically supported
decision which mean is the largest among the random variables Y generated from
di�erent mutation distributions. For example, the parametric t{test presupposes
at least approximative normality of Y whereas the nonparametric tests require

the continuity of the distribution function of Y . Neither of these requirements is
ful�lled, so that it would be necessary to develop a specialized test for this kind
of random variables. This is certainly beyond the scope of this paper.

Instead, the attention is devoted to the expected progress rates of the (1; �){
EA. Since this EA generates � � 2 o�spring independently with the same dis-
tribution and accepts the best among them, the expected progress is simply

E[ max
i=1;:::;�

fk�k2 � k� + Zik
2g ] :
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Fig. 3. The optimal variance factor 
� in case of normal mutation vectors for increasing

dimension n.

Following the lines of Proposition 4 and owing to eqn. (2) the normalized ex-
pected progress is approximately

h(
; a; n) = �
2 + 

p
4 + a 
2=n � E[N�:� ] (5)

where N�:� denotes the maximum of � independent and identically distributed
standard normal random variables. Let c� = E[N�:� ]. Then the optimal expected
normalized progress rate of the (1; �){EA is attained at


� =

 
2 c2�

1� a c2�=n+
p
1� a c2�=n

!1=2
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Fig. 4. The optimal normalized progress g(n; n=
�) in case of normal mutation vectors

for increasing dimension n.

which reduces to ~
� = c� as n!1. In general, the relation h(
�; a; n) > c2� is
valid. Moreover, h(
; a + �; n) > h(
; a; n) for arbitrary 
 > 0 and � > 0 which
follows easily from eqn. (5). Consequently, the expected progress becomes larger
for increasing a > 0, provided that the approximation given in (2) holds with
equality. But it has been seen in case of the (1+ 1){EA that this approximation
does not permit a sound ranking of the distributions. At this point there might
arise the question for which purpose the approximations presented in this paper
are good for at all. The answer is given in the next section.
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3 Conclusions

Under the conditions of the central limit theorem an asymptotical theory of the
expected progress rates of simple evolutionary algorithms has been established.
If the mutation distributions are factorizing and possess �nite absolute moments
up to order 4, then each of these distributions o�er an almost equally fast ap-
proach to the (local) optimum. The optimal variance adjustment w.r.t. fast local
convergence is of the type �k = 
 kXk �x�k=n for each of the distributions con-
sidered here. This implies that the self{adaptive adjustment of the \step sizes"
originally developed for normal distributions needs not be modi�ed in case of
other factorizing mutation distributions. In the light of the theory developed in
[8] it may be conjectured that these results carry over to population{based EAs
without crossover or recombination.

Finally, notice that Student's t{distribution with d degrees of freedom con-
verges weakly to the normal distribution as d ! 1 whereas it is called the
Cauchy distribution for d = 1. All results remain valid for d � 5. Lower values
of d cannot be investigated within the framework presented here, since it was
presupposed that the absolute moments of Z are �nite up to order 4. If these
moments do not exist the central limit theorem does not hold true. Rather, then
there emerges an entire class of limit distributions [9] as already mentioned in
[1]. But this case is beyond the scope of this paper and it remains for future
research.
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