
A RIGOROUS COMPLEXITY ANALYSIS OF THE (1 + 1)-
EVOLUTION STRATEGY FOR SEPARABLE FUNCTIONS WITH

BOOLEAN INPUTS

Stefan Droste, Thomas Jansen, and Ingo Wegener

FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany

droste, jansen, wegener@ls2.cs.uni-dortmund.de

Abstract

Evolutionary algorithms (EAs) are heuristic randomized algorithms which, by

many impressive experiments, have been proven to behave quite well for optimiza-

tion problems of various kinds. In order to improve our abilities in applying these

algorithms three approaches should be followed in parallel. First, experiments for

benchmark and practical problems have to be performed. Second, explanations

about the behavior of EAs can be obtained by an analysis based on reasonable

assumptions. Third, also a rigorous analysis without any unproven assumptions is

necessary to establish in future a theory of EAs. Here, for the �rst time, a rigorous

complexity analysis of the (1 + 1) evolutionary algorithm for separable functions

with Boolean inputs is given. Di�erent mutation rates are compared and the use

of the crossover operator is investigated. The main contribution is not the result

that the expected run time of the (1 + 1) evolutionary algorithm is �(n lnn) for

separable functions with n variables but the presentation of the methods how this

result can be proven rigorously.

1 INTRODUCTION

Many experiments have shown that evolutionary algorithms (EAs) are a useful tool for the

solution or approximate solution of optimization problems. Evolutionary algorithms are a

general algorithmic concept that includes genetic algorithms (GAs), evolution strategies

(ESs), and evolutionary programming (EP). For a description of the rich world of the

di�erent types of EAs we refer to the monographs of Fogel (1995), Goldberg (1989),

Rechenberg (1994), and Schwefel (1995).

It is a general experience with algorithmic tools and strategies (from divide-and-conquer,

branch-and-bound, dynamic programming, greedy algorithms to local search, simulated

annealing, plane cutting or tabu search) that the development of these tools and strategies

has to be guided by experiments and by theoretical analysis (e. g., see the monographs of

Cormen, Leiserson, and Rivest (1990) and Sedgewick (1991) or the handbook of theoretical

computer science (van Leeuwen (1990)). Such an analysis is quite simple for divide-and-

conquer algorithms and becomes very involved for more heuristic approaches. Then also

an analysis based on reasonable assumptions is of some interest. But those investigations

may be misleading. Only a rigorous analysis based on no assumptions leads to proven

results which can be the basis of a theory of EAs. In the present situation \theory" is far

1

behind \experimental knowledge". To build up a theory problems have to be investigated

which already are well understood from a practical point of view.

In this paper we present a contribution of the type described above. Separable functions

with Boolean inputs (GAs usually work on Boolean strings) are investigated.

De�nition 1: A function f : f0; 1gn ! IR is called separable if it can be written in the

form

f(x) = f(x1; : : : ; xn) =
X

1�i�n

gi(xi):

For a separable function it is possible to optimize each variable individually. This can be

done deterministically in linear time. But we analyze evolutionary algorithms which are

not adopted to the class of separable functions. Then we may concentrate w. l. o. g. on

the following situation.

� f has to be maximized (otherwise consider �f),

� gi(xi) = wixi for some wi 2 IR (the general case is gi(xi) = wixi+�i, since xi 2 f0; 1g,

and the constant term has no in
uence on the optimization process),

� the weights wi, 1 � i � n, are positive (otherwise replace xi by 1� xi),

� the weights are integers (real numbers may be approximated by rational ones which

can be multiplied by their smallest common denominator),

� the weights are sorted, i. e., w1 � � � � � wn.

Our assumptions imply that the all-one input (1; : : : ; 1) is the only solution of the opti-

mization problem.

M�uhlenbein and Schlierkamp-Voosen (1993a, 1993b) have argued that the crossover op-

erator does not help in this situation. Therefore, we mainly analyze the following (1 + 1)

evolutionary algorithm (EA).

Algorithm 2:

1. The mutation rate p(n) 2 (0; 1) is �xed.

2. Choose randomly an initial vector x 2 f0; 1gn.

3. Repeat the following step: Compute x0 by mutating independently each bit xi with

probability p(n) and replace x by x0 i� f(x0) � f(x).

We are interested in the expected number of steps until Algorithm 2 reaches the optimal

vector x� = (1; : : : ; 1) for the �rst time. The following two functions are of particular

interest.

De�nition 3: i) The function COUNT is the separable function where w1 = � � � =

wn = 1, i. e., COUNT (x1; : : : ; xn) = x1 + � � �+ xn.

2

ii) The function BIN is the separable function where wi = 2n�i, i. e., BIN interprets

(x1; : : : ; xn) as the binary representation of an integer.

These two functions are in the following sense the two extreme separable functions. The

Hamming distance H(x; x0) of x; x0 2 f0; 1gn is the number of indices i where xi 6= x0
i
.

A mutation step from x to x0 is successful for COUNT i� at least as many zeros
ip

to ones than vice versa. A successful mutation step does not increase the Hamming

distance to the optimal vector x�. A mutation step for BIN is successful i� the leftmost

ipping bit
ips from 0 to 1. E. g., x0 = (1; 0; : : : ; 0) can replace x = (0; 1; : : : ; 1) although

H(x�; x0) = n� 1 > 1 = H(x�; x). Hence, it should not be surprising that the analysis is

much simpler for COUNT than for BIN .

In Section 2 we argue why and how a heuristic analysis may lead to wrong results and

we refer to known results. In Section 3 we analyze the (1 + 1) evolutionary algorithm for

BIN with respect to the recommended mutation rate 1=n. In Section 4 we investigate

other mutation rates and in Section 5 all other separable functions. Finally, we consider

in Section 6 the use of larger populations and the crossover operator.

2 ON AHEURISTIC ANALYSIS OF EVOLUTION-

ARY ALGORITHMS

Salomon (1996) presents a lot of results on GAs, in particular for the case of a coordinate

rotation of benchmark functions. His analysis of Algorithm 2 for separable functions is

only a heuristic one. He argues as follows. \A mutation probability pm � 1=n implies that,

on average, a GA modi�es at most one parameter per o�spring. By this means, such GAs

decompose the optimization of a decomposable n-dimensional function into a sequence

of n independent one-dimensional tasks. Since the complexity of the one-dimensional

case is O(1), convergence in the n-dimensional case is given by the probability p that

all parameters xi, 1 � i � n, have been chosen at least once." Then it is a standard

calculation to prove that this happens for pm = 1=n, on average and with high probability,

in time �(n logn). (The notation � describes simultaneously a lower and an upper bound

of the same growth rate.)

Let us discuss the case of the mutation probability pm = 1=n. The random number

of mutating bits (in one step) is described by a binomial distribution with parameters n

(number of individuals) and 1=n (probability of \success"). This distribution converges for

increasing n to the Poisson distribution with parameter � = n(1=n) = 1 (for basic results

from probability theory see Feller (1968)). The average number of mutating bits equals

exactly 1. But it is wrong to conclude that we can consider, on average, the case where

always one bit tries to mutate. This is the correct analysis of another Algorithm 2� where

in Step 3 always one bit is chosen according to the uniform distribution and mutated. With

Algorithm 2� it is impossible to escape from local maxima. The evolutionary algorithm

often takes advantage from the fact that sometimes no bit and sometimes several bits
ip.

The Poisson distribution with parameter � = 1 takes the value k (number of
ipping bits)

3

with probability e�1=k!, i. e., probability e�1 � 0:368 for k = 0 and k = 1, e�1=2 � 0:184

for k = 2, e�1=6 � 0:061 for k = 3, and so on. In particular, the probability that more

than one bit
ips is not negligible.

We discuss the danger of non-rigorous reasoning. Nothing changes if no bit tries to
ip.

Hence, we have to consider only steps where at least one bit tries to
ip. Under the

assumption of one
ipping bit the random number of additional bits which try to
ip is

described by a binomial distribution with parameters n�1 and 1=n or, asymptotically, by

a Poisson distribution with parameter � = 1. Hence, the expected number of additional

ipping bits equals (n� 1)=n � 1.

Considering x = (0; 1; : : : ; 1) and the function COUNT , the �rst bit has to
ip if

something may change. But by the misleading argument that (on average) always another

bit tries to
ip we never reach the optimal vector x�. Considering the function BIN for

the same vector x the reasoning of Salomon (1996) implies that we only have to wait for

the �rst time where the �rst bit tries to
ip. The expected time of this event can easily be

calculated as n. If we argue that, on average, one other bit tries to
ip, after, on average,

n steps we obtain a vector with one 0 which, on average, is situated at position n=2. Then

we have to wait on average n steps until this bit tries to
ip. With probability 1=2 the

other
ipping bit is left from this bit and nothing happens and with probability 1=2 we

obtain another vector with one 0 which, on average, is at position (3=4)n. Following this

reasoning the average time to reach the optimal vector is �(n2).

We conclude that non-rigorous reasoning about probabilities may lead to correct and to

wrong results and we should really trust only rigorous proofs. We also have seen that

it is easier to argue about COUNT than about BIN . Rudolph (1997) proves that the

evolutionary algorithm with pm = 1=n converges in average time O(n lnn) for the function

COUNT but he could not analyze the behavior of the evolutionary algorithm for BIN

and other separable functions.

3 THE ANALYSIS OF THE (1 + 1) EVOLUTION-

ARYALGORITHM FORBIN ANDMUTATION

PROBABILITIES OF 1=n

We rigorously analyze the behavior of the (1 + 1) evolutionary algorithm (EA) with

mutation probability pm = 1=n for the function BIN . The lower bound works for all

separable functions.

Theorem 4: The (1 + 1) evolutionary algorithm with mutation probability pm = 1=n

needs on average at least n lnn�O(n ln lnn) steps until it reaches the optimal value of a

separable function with positive weights, if it starts at x = (0; : : : ; 0).

Proof: It is necessary that each bit
ips at least once. Hence, the average time until each

bit has tried to
ip at least once is a lower bound on the considered average time. If a

4

random variable X takes only positive integers, its mean value can be computed by

E(X) =
X

1�t<1

t � Prob(X = t) =
X

1�t<1

Prob(X � t):

Let X be the random variable describing the �rst point of time where each bit has tried to

ip. For each bit the probability that it did not try to
ip among the �rst t�1 trials equals�
1� 1

n

�
t�1

, the probability that it has tried to
ip equals 1�
�
1� 1

n

�
t�1

. The probability

that this happens for all n independent bits equals

�
1�

�
1� 1

n

�
t�1
�
n

. Hence,

Prob(X � t) = 1�

1�

�
1�

1

n

�t�1!n

and

E(X) =
X

1�t<1

"
1�

1�

�
1�

1

n

�t�1!n
#

� ((n� 1)(lnn� ln lnn))

1�

1�

�
1�

1

n

�(n�1)(ln n�ln lnn)!n!
:

It is well known that
�
1� 1

n

�n
� e�1 �

�
1� 1

n

�n�1
. Hence,

�
1�

1

n

�(n�1)(ln n�ln lnn)
� e�(lnn�ln lnn) =

lnn

n
and

1�

�
1�

1

n

�(n�1)(ln n�ln lnn)!n

�

1�

lnn

n

!n

� e� lnn =
1

n
:

Altogether,

E(X) � (n� 1)(lnn� ln lnn)

�
1�

1

n

�
= n lnn� O(n ln lnn)

2

Our estimations are quite tight. Indeed, the probability that X � n(lnn + ln lnn) is

approximately 1= lnn and the probability that X � 2n lnn only 1=n. But Theorem 4 says

nothing about an upper bound. There are two reasons which slow down the convergence

process. First, bits may try to
ip from 0 to 1 but the total weight of bits which at the

same time try to
ip from 1 to 0 is larger than the total weight of the bits which try to

ip from 0 to 1. Then the new vector x0 is not accepted. Second, bits can
ip from 1 to 0

(and afterwards have to
ip again from 0 to 1) in a successful step, since the total weight

of the bits which try to
ip from 0 to 1 is at least of the same size as the total weight of

the bits which try to
ip from 1 to 0. Altogether, there is no trivial good upper bound

on the average time until Algorithm 2 reaches the optimal vector.

5

Theorem 5: The (1 + 1) evolutionary algorithm with mutation probability pm = 1=n

needs for BIN on average not more than 2
�
e + e1=2

�
n lnn � 8:8n lnn steps to reach the

optimal vector (1; : : : ; 1).

Proof: Our analysis is independent from the initial vector. Let T be the random variable

which describes the point of time where the evolutionary algorithm reaches the optimal

vector x� = (1; : : : ; 1) for the �rst time. W. l. o. g. n is even. Then T = T1 + T2 where

the random variable T1 describes the �rst point of time when n=2 leading bits of x all

are 1 and T2 = T � T1 describes the remaining time until x� is reached. Because of the

de�nition of BIN leading ones never are replaced by zeros.

To estimate E(T1) we distinguish between successful steps (the new vector x0 is accepted

and one of the leading n=2 bits has changed) and the other unsuccessful steps (which only

may change the lower n=2 bits if the new vector x0 is accepted). Let Xi be the random

variable describing the �rst point of time where the �rst half of x contains at least i ones,

in particular X0 = 0. Then

T1 = Xn=2 = (X1 �X0) + (X2 �X1) + � � �+ (Xn=2 �Xn=2�1):

Let Yi be the random number of successful steps among the points of timeXi�1+1; : : : ; Xi

and Zi the random number of unsuccessful steps. Then

T1 = Y1 + Z1 + Y2 + Z2 + � � �+ Yn=2 + Zn=2:

First, we investigate Yi. For a successful step it is known that the leftmost
ipping bit

ips from 0 to 1. The distribution of the random number of further
ipping bits in

the left half is a binomial distribution with parameters n=2 � j < n=2 and 1=n, if xj
is the leftmost
ipping bit. In each case the average number of further
ipping bits is

less than 1=2. In order to get an upper bound on Yi we pessimistically assume that

all other
ipping bits
ip from 1 to 0. Let Dk describe the random di�erence in the

number of ones among the leading n=2 bits of x after and before the k-th successful step

among the steps Xi�1 + 1; : : : ; Xi. By our assumptions, Dk � 1 and E(Dk) � 1=2. Let

Sk = D1+ � � �+Dk. Then Yi is bounded above by S�, the smallest index k where Sk = 1.

The process S0; S1; S2; : : : is a random walk on the line starting at S0 = 0. In the �rst

step we move to S1 = D1, then to S1 +D2 = S2, and so on. Since Dk � 1, we reach 1 as

�rst point to the right of 0. Then the process stops and we are interested in the average

stopping time E(S�).

Our random walk is homogeneous with respect to time and place. Let D1 = d. Then

the distance to 1 equals 1 � d. Besides the �rst step we have to wait on average (1 �

d)E(S�) further successful steps to reach 1 for the �rst time (Theorem on Conditional

Expectations). Hence,

E(S�) = 1 +
X

�n=2+2�d�1

Prob(D1 = d)(1� d)E(S�)

= 1 + E(S�)� E(S�)
X

�n=2+2�d�1

d � Prob(D1 = d)

= 1 + E(S�)� E(S�)E(D1):

6

Now we can conclude that

E(S�) = 1=E(D1) � 2:

The last inequality on E(D1) has been proven above. The equality E(S�)E(D1) = 1 is

known in more general form in probability theory as Wald's equality. Altogether E(Yi) � 2

for all i.

If the probability that a step is successful equals p, the average time until we have k

successful steps equals k=p (mean of the negative binomial distribution). Again we work

with conditional probabilities. Then

E(Yi + Zi) =
X
k

Prob(Yi = k)E(Yi + ZijYi = k)

=
X
k

Prob(Yi = k)k=p = E(Yi)=p � 2=p:

Hence, we look for a lower bound on the probability that a step is successful. During the

steps Xi + 1; : : : ; Xi+1 the number of ones in the left half of x is bounded above by i. A

su�cient condition for a step to be successful is that all bits equal to 1 do not try to
ip

and exactly one of the bits equal to 0 tries to
ip. The probability of this event equals, if

r � i � n=2� 1 is the actual number of ones,

n=2� r

1

!
1

n

�
1�

1

n

�n=2�1
=

1

n
(n=2� r)

�
1�

1

n

�(n�2)=2
�

1

n
e�1=2(n=2� i):

Altogether we have

X
1�i�n=2

E(Yi + Zi) � 2
X

0�i�n=2�1

�
1

n
e�1=2 (n=2� i)

��1
= 2e1=2n

X
1�i�n=2

1

i
� 2e1=2n lnn:

The last estimation of the harmonic series follows from the estimation 1+ 1
2
+ � � �+ 1

n=2
�

ln(n=2)+
 for the Eulerian constant
 � 0:58 and the fact that ln(1=2) = � ln 2 � �0:69.

Finally, we have to investigate the second phase. The analysis of the number of successful

steps is the same as before. In the analysis of the probability of a successful step we have

to replace
�
1� 1

n

�n=2�1
by

�
1� 1

n

�n�1
to guarantee that no bit of the left half tries to

ip. With
�
1� 1

n

�n�1
� e�1 we get the upper bound 2en lnn on the average time of the

second phase. Summing up the upper bounds on E(T1) and E(T2) we obtain the desired

bound. 2

4 THE ANALYSIS OF OTHERMUTATION RATES

In Section 3 we have analyzed the (1 + 1) evolutionary algorithm for the most often

recommended mutation probability pm = 1=n. What happens if we decrease or increase

this mutation probability? If pm = c=n for some constant c, we still can prove that the

7

average run time is �(n lnn). The proof of Theorem 4 can be done in the same way and

for the upper bound it is su�cient to partition x to dce + 1 parts of equal size. But we

might expect that the behavior becomes worse if the mutation probability changes a lot.

If it becomes too small, we have to wait too long until all bits have tried to
ip. If it

becomes too large, the probability of successful steps becomes too small, since a lot of

bits try to
ip at the same time. We rigorously prove that these ideas are correct.

Theorem 6: The (1 + 1) evolutionary algorithm with mutation probability pm = 1
n�(n)

,

where �(n) ! 1 for n ! 1, needs on average
(�(n)n lnn) steps until it reaches the

optimal value of a separable function with positive weights, if it starts at x = (0; : : : ; 0).

Proof: Like in the proof of Theorem 4 let X be the random variable describing the �rst

point of time where each bit has tried to
ip. If Prob(X � t) � c for some constant c and

all t � �(n)n lnn� lnn, then the theorem follows. Let t = (n�(n)� 1) lnn. Then
1�

1

n�(n)

!
t

� e� lnn =
1

n
and

Prob(X � t+ 1) = 1�

0
@1�

1�

1

n�(n)

!t
1
A
n

� 1�

�
1�

1

n

�n
� 1� e�1:

2

Theorem 7: The (1+1) evolutionary algorithm with mutation probability pm = �(n)=n,

where �(n) !1 for n !1, needs on average e
(�(n))n lnn =
(�(n)n lnn) steps until

it reaches for BIN the optimal value, if it starts at x = (x1; : : : ; xn) where xi = 1, if

i � n=2, and xi = 0, if i > n=2.

Proof: Because of the de�nition of BIN a step only can be successful, if none of the

leading n=2 bits tries to
ip. The probability that a step is successful is, therefore, bounded

above by
�
1� �(n)

n

�n=2
= e�
(�(n)). We prove that the average number of successful

steps is
(n(lnn)=�(n)). Hence, the average total run time is

�
(e
(�(n))n lnn)=�(n)

�
=

e
(�(n))n lnn.

For the lower bound on the number of successful steps it is su�cient to remark that each

of the n=2 not leading bits has to
ip in at least one successful step. Similarly to the

proof of Theorem 6 we choose t = (n=�(n)� 1) lnn. Then
1�

�(n)

n

!t

�
1

n
and

Prob(X � t + 1) = 1�

0
@1�

1�

�(n)

n

!t
1
A
n=2

� 1�

�
1�

1

n

�n=2
� 1� e�1=2:

Since we only are considering n=2 bits the outer exponent is here n=2 instead of n leading

to the constant 1� e�1=2 instead of 1� e�1. 2

8

5 THE (1+1) EVOLUTIONARYALGORITHM FOR

OTHER SEPARABLE FUNCTIONS

Because of the results of Section 4 we only consider the case of mutation probabilities

pm = c=n for some constant c. Is it possible to use the technique of the proof of Theorem 5?

There we could assume that in the second phase the n=2 leading bits stay �xed on their

value 1. This argument relies heavily on the special de�nition of BIN . But, if c < 1,

we can get rid of the second phase and can use the ideas of the proof of Theorem 5.

Surprisingly, an analysis is easier for c < 1 than for the usual case c = 1.

Theorem 8: The (1+1) evolutionary algorithm with mutation probability pm = c=n for

some c < 1 needs for separable functions on average O(n lnn) steps to reach the optimal

vector.

Proof: We start as in the proof of Theorem 5 but consider only one phase. Then

T = Y1 + Z1 + Y2 + Z2 + � � �+ Yn + Zn:

First, we investigate Yi. If a step is successful, then at least one bit
ips from 0 to 1.

Pessimistically, we assume that no other bits
ip from 0 to 1. The random number of bits

which try to
ip from 1 to 0 is not larger than given by the binomial distribution with

parameters n and c=n. Hence, for Dk (see the proof of Theorem 5) we get Dk � 1 and

E(Dk) � 1 � n(c=n) = 1 � c which is a constant larger than 0. We conclude by Wald's

equality that E(S�) = 1=E(D1) � (1� c)�1. Hence, E(Yi + Zi) � (1� c)�1=pi, where pi
is a lower bound on the probability that a step is successful before the process produces

a vector with i ones. Similarly to the proof of Theorem 5 we obtain for some positive

constants c1 and c2 the following estimations.

pi+1 �

n� i

1

!
c

n

�
1�

c

n

�n�1

= c

�
1�

c

n

�n�1 n� i

n
� c1

n� i

n
and

X
1�i�n

E(Yi + Zi) � c2n
X

1�i�n

1

i
= O(n lnn):

2

It would be annoying if we could not cope with the case c = 1.

Theorem 9: The (1 + 1) evolutionary algorithm with mutation probability pm = 1=n

needs for separable functions on average O(n lnn) steps to reach the optimal vector.

Proof: The analysis of the �rst phase of the process until the number of ones reaches for

the �rst time �n for some constant � < 1 follows the lines of the proofs of Theorem 5

and Theorem 8. We only have to remark that the number of bits
ipping from 1 to

9

0 in successful steps can be estimated above by a random variable which is binomially

distributed with parameters �n and 1=n. Hence, Dk � 1 and E(Dk) � 1��n(1=n) = 1��

which is a constant larger than 0. For our purpose � = 9=10 is appropriate.

Up to now we have used the number of ones in x as \value" of x and we have measured

the progress of the evolutionary algorithm by this value instead of the �tness function f .

Sometimes it was useful to distinguish between the n=2 leading bits and the other n=2

bits. Here we use a mixture of these two approaches. Let

val(x) := 2
X

1�i�n=2

xi +
X

n=2<i�n

xi:

Remember that the weights are sorted. Hence, we believe that a one among the leading

bits is more \important" than a one among the other bits. Moreover, the value function

val is simple enough to be analyzed.

Again, we �rst investigate successful steps and measure the progress with respect to val.

We de�ne a random walk on the line such that the random variable describing this random

walk grows slower than the function val for the evolutionary algorithm. Let us consider

a successful step and let xi be the leftmost bit which
ips from 0 to 1.

Case 1: i � n=2. Pessimistically, we assume that no other bit
ips from 0 to 1 and

that the bits
ipping from 1 to 0 are chosen independently with probability 1=n. Because

f(x0) � f(x) for successful steps we are overestimating the number of new zeros. We like

to apply again Wald's equality. To ensure that val increases at most by 1 we assume that,

if by the described process no bit
ips from 1 to 0, we choose a bit from the second half and

let it
ip from 1 to 0. What do we know about val(x0)� val(x)? This di�erence increases

by 2, since xi
ips from 0 to 1. The random number of bits of the �rst (resp. second)

half
ipping from 1 to 0 is bounded above by a random variable which is binomially

distributed with parameters n=2 and 1=n. Hence, in both cases the average number of

bits is bounded by 1=2. Under this assumption the probability that no bit
ips from 1 to

0 is
�
1� 1

n

�n
or approximately e�1. Hence, we overestimate the average number of bits

of the �rst half which
ip from 1 to 0 by 1=2 and for the second half by 1=2+ e�1. Hence,

E (val(x0)� val(x)) � 2�
1

2
� 2�

�
1

2
+ e�1

�
� 1 >

1

10

is bounded below by a positive constant.

Case 2: i > n=2. By assumption, all bits
ipping from 0 to 1 are in the second half of

x. Let k be the number of zeros in x. For a successful step we have f(x0) � f(x). Since

the weights are sorted, each bit
ipping from 0 to 1 allows at most one bit in the �rst

half
ipping from 1 to 0. Perhaps all other bits of the second half may
ip from 1 to 0.

Hence, the worst case with respect to val is the case where xn=2+1 = � � � = xn=2+k = 0,

w1 = � � �wn=2 = � � � = wn=2+k = n, and wn=2+k+1 = � � � = wn = 1. Let j be the number of

bits
ipping from 0 to 1. Then the following bounds hold on the number of bits
ipping

from 1 to 0:

10

{ at most j bits from the �rst half can
ip but no bit from the second half.

{ at most j � 1 bits from the �rst half can
ip and all bits from the second half.

We work under the assumption that xn=2+1
ips from 0 to 1. Let B1 be the random

number of bits of the �rst half which
ip from 1 to 0, B2 the random number of bits

among xn=2+2; : : : ; xn=2+k which
ip from 0 to 1, and let B3 be the random number of bits

among xn=2+k+1; : : : ; xn which
ip from 1 to 0.

By the considerations at the beginning of the proof we can assume that k � n=10. Hence,

E(val(x0)� val(x)) =
X

0�j�n=10

Prob(B2 = j)E(val(x0)� val(x)jB2 = j):

Now we distinguish the both scenarios considered above. In the �rst case

E(val(x0)� val(x)jB2 = j) = j + 1� 2E(B1jB1 � j + 1)

and in the second case

E(val(x0)� val(x)jB2 = j) = j + 1� 2E(B1jB1 � j)� E(B3):

It is obvious that E(B3) � 1=2. Furthermore, E(B1jB1 � j) � E(B1jB1 � j + 1) �

E(B1) � 1=2, E(B1jB1 � 0) = 0, and

E(B1jB1 � 1) = Prob(B1 = 1jB1 � 1) = Prob(B1 = 1)=Prob(B1 � 1):

We know that

Prob(B1 = 0) =

�
1�

1

n

�n=2
and

Prob(B1 = 1) =
n

2
�
1

n
�

�
1�

1

n

�n=2�1
=

1

2

�
1�

1

n

�n=2�1
:

Altogether

E(B1jB1 � 1) =

1
2

�
1� 1

n

�n=2�1
�
1� 1

n

�n=2
+ 1

2

�
1� 1

n

�n=2�1 = 1

2
�
1� 1

n

�
+ 1

� 0:43;

if n � 3. Now for the �rst case

E(val(x0)� val(x)) � Prob(B2 = 0)(1� 2 � 0:43) +
X

1�j�n=10

Prob(B2 = j) � 0

= 0:14Prob(B2 = 0) � 0:14e�1=10 > 0:1

and for the second case

E(val(x0)� val(x)) � Prob(B2 = 0) � (1� 0:5)

+
X

1�j�n=10

Prob(B2 = j) (j + 1� 2E(B1jB1 � j)� 0:5)

� e�1=10 + 0� 0:5 > 0:1:

11

Now, by Wald's equality the average time that our random walk starting at some point

a = val(x) reaches for the �rst time a + 1 is a constant. Starting with at least (9=10)n

ones the \value" has to increase by at most (2=10)n. The probability of success can be

estimated as before by the probability that no 1 tries to
ip and at least one 0 tries to

ip. If the value function is d away from the maximal value (3=2)n, there are at least d=2

zeros in x. Hence, we have to consider each of the cases of k zeros, 0 � k � n, twice.

This leads to a further factor 2 and altogether to the upper bound O(n lnn). 2

6 ONMOREGENERAL EVOLUTIONARYALGO-

RITHMS

First, we discuss the parallel evolution of a lot of species. This does not help much. If

we consider the mutation probability pm = 1=n, our standard calculations show that the

probability that all bits have tried to
ip within 1
2
n lnn steps is bounded by e�n

1=2
which

is exponentially small. Even if we evolve polynomially many species the probability of a

successful one is exponentially small.

Another possibility is the use of the crossover operator. We consider uniform crossover

and can refer to M�uhlenbein and Schlierkamp-Voosen (1993a, 1993b) and make only some

remarks. Let x and x0 be two vectors of length n. Since there are no variables building

natural groups, it is natural to create two children y and y0 in the following way. The bit

yi equals xi with probability 1=2 and x0
i
with probability 1=2, y0

i
is equal to the remaining

bit. If xi = x0
i
, also yi and y0

i
get this value. Let k be the number of indices i where

xi 6= x0
i
. Then the number of ones in y among these positions is binomially distributed

with parameters k and 1=2. The average value is k=2 and by Cherno�'s bounds the value

is very close to k=2 with very high probability. Hence, the children tend to be of equal

quality and for separable functions the sum of their �tness values is equal to the sum of

the �tness values of their parents. If we choose among two parents and their two children

the two �ttest ones this is one parent and one child. If the parents are almost of the same

quality, then so are the children. Otherwise, the �tter child typically is not �tter than the

�tter parent. A more detailed analysis can prove that the (1 + 1) evolutionary algorithm

is adequate for separable functions.

CONCLUSION

We have presented probability theoretical tools to rigorously analyze evolutionary al-

gorithms. We have shown how one can de�ne probabilistic models, in particular random

walks, which are easier to analyze than evolutionary algorithms and which are de�ned in

such a way that results on these models imply results on evolutionary algorithms. We

rigorously have proved that the (1 + 1) evolutionary algorithm needs O(n lnn) steps for

separable functions and the mutation probability pm = 1=n. We also have proved that

much larger or smaller mutation probabilities are worse than the typically used probability

of 1=n.

12

References

B�ack, T. (1993). Optimal mutation rates in genetic search. Proc. of Fifth Int. Conf.

on Genetic Algorithms (S. Forrest, ed.). Morgan Kaufman, San Mateo, CA, 2{8.

Cormen, T.H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Al-

gorithms. MIT Press / McGraw-Hill.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications.

Wiley.

Fogel, D.B. (1995). Evolutionary Computation: Toward a New Philosophy of Ma-

chine Intelligence. IEEE Press.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley.

M�uhlenbein, H. and Schlierkamp-Voosen, D. (1993a). Predictive models for the

breeder genetic algorithm I. Evol. Comput. 1, 25{50.

M�uhlenbein, H. and Schlierkamp-Voosen, D. (1993b). The science of breeding and

its application to the breeder genetic algorithm. Evol. Comput. 1, 335{360.

Rechenberg, I. (1994). Evolutionsstrategie '94. Frommann-Holzboog.

Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Ph.D.

thesis. Verlag Dr. Kova�c, Hamburg.

Salomon, R. (1996). Re-evaluating genetic algorithm performance under coordinate

rotation of benchmark functions. A survey of some theoretical and practical aspects

of genetic algorithms. Bio Systems 39, 263{278.

Schwefel, H. P. (1995). Evolution and Optimum Seeking. Wiley.

Sedgewick, R. (1991). Algorithms. Addison-Wesley.

van Leeuwen, J. (1990) (Ed.). Handbook of Theoretical Computer Science. Elsevier,

MIT Press.

13

