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ABSTRACT

On the one hand, people admire the often strikingly

e�cient results of organic evolution. On the other

hand, however, they decry mutation and selection to

be a rather prodigal, ine�cient trial-and-error strat-

egy. Taking into account the parallel information

processing in a heterogeneous population and sex-

ual propagation with recombination as well as the ge-

netic control of the reproduction accuracy, computer

simulated evolution reveals a couple of interesting,

sometimes surprising, properties of nature's learning-

by-doing algorithm. Survival of the �ttest, Spencer's

r�esum�e of Darwin's view, turns out to be a bad ad-

vice if taken literally. Individual death, forgetting,

and even regression show up to be necessary ingre-

dients of the life game. Whether the process should

be named gradualistic or punctualistic, is a matter of

the observer's point of view.

Keywords: Evolutionary algorithms, hillclimbing,

survival of the �ttest, self-adaptation, internal model

of the environment, requisite variety, groping in the

dark.

1. INTRODUCTION

Evolution can be looked at from a large variety of po-

sitions. Beginning with the closest physico-analytic

viewpoint, one might focus attention to the molec-

ular and cellular processes. A more distant point

of view centers on the behavior of populations and

species. Another di�erence emerges from whether

one emphasizes the homeostatic aspect of some kind

of adaptation to a given environment, which is more

relevant in the short term, or the macroscopic view

of a development to the more complex, sometimes

called higher, in the long term. Not many dare to use

the euphemistic word better here, and some even do

not like at all the term progress in connection with

organic evolution. But how does such an attitude

match with the silent presupposition that homo sapi-

ens sapiens is the crown of creation and imitating a

single brain of that species could help in solving most

di�cult real-world problems?

The instruments used here, will be a macroscope and

a time accelerator. Moreover, for methodological rea-

sons, an optimistic point of view will be shared by

comparing macro-evolution with iterative optimiza-

tion, or, more cautiously, with stepwise meliorization

techniques, i.e., hill-climbing or ridge-following proce-

dures. By means of a simple algorithmic formulation

of the main evolutionary principles, it is possible to

reveal some properties of the process that in some

cases are striking at the �rst glance. These �ndings

may not only be helpful for better understanding nat-

ural intelligence but also be bene�cial for global long-

term planning and other groping-in-the-dark situa-

tions.

2. ORGANIC EVOLUTION

Eigen [1] once modeled the replication of RNA matri-

ces in the primordial soup by means of the following

set of nonlinear ordinary di�erential equations. Let

xi be the concentration of species i 2 [1; n = 4N ] with

N denoting the number of nucleotide bases (there are

4 di�erent types of them) that form the backbone of

an RNA macromolecule. The course over time of the

concentrations is most simply described by

_xi = xi(AiQ� E) +

nX
j=1

j 6=i

wijxj; (1)

where the coe�cients Ai may be termed fertilities,

E the mortality, Q = (1 � p)N the probability that

string i is correctly replicated despite mutation rate

p per base, and wij the transition probabilities from

sort j to sort i. The sum over all n concentrations

being
Pn

i=1 xi = 1, leads to nonlinear dynamics with

all its consequences.

Maynard Smith [2] reduced this system of n di�eren-

tial equations down to just two by considering a best

�tted master species (index m) and the averaged mu-

tants (index j) only. Neglecting reverse mutations



(thus all improvements!) from type j to type m, he

got two simple relations:

_xm = xm(AmQ� E);

_xj = xj(Aj �E) + xmAm(1� Q): (2)

The system as a whole, called quasi-species if 0 �
xj < 1, is in equilibrium if E = xmAm + xjAj , be-

cause then _xm + _xj = 0. Asking for conditions that

yield a stable quasi-species with _xm = 0 and _xj = 0,

and using the approximation ln(1�z) � �z for z � 1,

one �nds the inequality

N <
ln Am

Aj

p
=

ln s

p
: (3)

Assuming a selection advantage (as Maynard Smith

calls the ratio of the two reproduction rates) of s = 3

and a mutation rate of p = 0:01 as observed (at least)

for interactions between paired nucleotides, the model

above constrains stable RNA lengths to N < 110, not

enough for encoding enzymes additionally to some

proteins. But enzymes are necessary to control the

reproduction process, especially to repair defective

codons (base triplets encoding an amino acid each

according to the redundant genetic code) and thus

reduce the environmentally caused pre-mutations to

suitable values for larger genomes. The Q� phage, a

very simple virus withN � 4500, is able to reduce the

actual mutation rate to p � 0:0005, thus operating

close to its error bound for s = 10. The obvious gap

in explaining its emergence has been termed Eigen's

paradox [2].

A simple question may be allowed here. Why do

people tend to translate the term �tness into rela-

tive reproduction rates Ai instead of relative selection

rates Ei? If the environment plays the rôle of the se-

lector, and that is how I interpret Darwin's natural

selection principle, then it tests the newborn indi-

viduals and gives them or gives them not a chance

to become parents of the next generation. Equal

death rates E, but di�erent birth rates Ai, maymodel

what is called mating selection in case of sexual re-

production, but are not adequate for modeling envi-

ronmental selection. And before introducing sexual

propagation one should not omit the earlier achieve-

ment of multicellularity. The latter may be looked

at as a natural method of avoiding Hamming cli�s

in the genotype/phenotype mapping, thus smoothing

the �tness landscape. Think of a tissue originating

from a mother cell by several consecutive cell divi-

sions. Even if the �rst cell were genetically either

black or white, the tissue could give rise to a grey

phenotype by means of somatic mutations occurring

during the copy processes. Genetically controlled so-

matic mutation rates would be able to smooth a tran-

sition from genetically black to genetically white, or

vice versa, by �rst increasing the error rate and later,

after the corresponding gene has switched, decreasing

it again.

Just slightly changing Eq. (1) into

_xi = xi(AQ� Ei) +

nX
j=1

j 6=i

wijxj; (4)

i.e., using identical fertilities and di�erent mortalities

instead of the opposite, asking the same questions,

and imposing the same assumptions as above, yields

an at �rst glance similar result:

N <
ln

Ej
Em

p
=

ln ~s

p
: (5)

But now it has a di�erent meaning. The fraction

~s, now really resembling a selection pressure, may

become much larger than the reproduction ratio s.

Just imagine two spawners carrying many thousands

of eggs. None of the one, but nearly all of the other fe-

male �sh may become adult and have progeny them-

selves. The stronger selection now supports longer

stable genomes, encoding of enzymes, and thus en-

dogenously adapting the error rate. And, by the way,

the model according to Eq. (4) leads away from the

often pinpointed tautology within the maxim survival

of the �ttest. The fact of a larger (surviving) progeny

of �tter ancestors has become an e�ect of (environ-

mental) selection instead of a cause.

3. ARTIFICIAL EVOLUTION

At the beginning of the computer era, people ex-

pected miracles from the sheer number of iterations

that should be possible in the near future to solve

even hard problems. Ashby's homeostat [3] was an

automaton �nding back to a feasible state by a se-

quence of random trials, uniformly distributed over a

given parameter space. Many people have made the

mistake of thinking of mutations as such pure ran-

dom trials. A couple of them was malignant. They

wanted to show that evolution theory never will be

able to explain how nature found a way to complex

living beings (with N � 109) within only 1017 sec-

onds, the age of our globe. Montroll's random walk

[4] paradigm, on the other hand, neglects the selection

principle of evolution. Both mutation and selection

(chance and necessity, or exploration and exploita-

tion) are the �rst principles, which, of course, have to

be programmed properly.

Broadly accepted hereditary evidence has led to say-

ing: The apple does not fall far o� of the tree. A

better model of variations from one generation to



the next, at least for multi-cellular individuals { an

early evolutionary achievement with no simple geno-

type/phenotype mapping { may be a normal or Gaus-

sian distribution for phenotypic changements between

generations, its maximum being centered at the re-

spective ancestor's position. The rôle of chance in

such a model is not explicative, however, but only

descriptive. An important question now is the suit-

able size of the standard deviation � of the changes,

which may be addressed as mean mutation step size

from one generation to the next. This kind of ques-

tion arises with all optimization or meliorization pro-

cedures.

Modeling the selection principle is far more easy, as

it seems �rst. Some evolution programmers, taking

survival of the �ttest literally, forgot to limit their

arti�cial individuals' life span: According to a given

selection criterion, a descendant is rejected if its vi-

tality is less than that of its ancestor, the ancestor

otherwise. This scheme may be called a (1+1) or two

membered Evolution Strategy (ES in the following).

Technically, the evolving entity is a feasible solution

to an optimization problem, which corresponds to a

vital individual in biology. Rechenberg [5] has de-

rived theoretical results for the convergence velocity

of that process in an n-dimensional continuous pa-

rameter space, though the �rst applications used dis-

crete parameters. Most important was his �nding

that for an endless ridge following situation as well as

for a minimum (or maximum) approaching situation

the convergence rate is inversely proportional to the

number n of decision variables. Distances growing

with the square root of n, the number of iterations or

generations needed to proceed along the shortest path

between two arbitrary points in the search space, in-

creases with O(n3=2) only, and not exponentially as

in the case of simple Monte-Carlo strategies.

This type of creeping random search strategy (see,

e.g., Brooks [6], Schumer and Steiglitz [7], or Rastri-

gin [8]) was �rst devised for experimental optimiza-

tion, where measurement inaccuracies drop out one-

variable-at-a-time and gradient-following procedures

due to their inability of non-local operation. Some

kind of pole-vaulting strategy would be more helpful

in case of multimodal, noisy, and fractal landscapes.

Bremermann's simulated evolution [9] does not dif-

fer so much from Rechenberg's as, e.g., G.E.P. Box's

Evolutionary Operation EVOP [10] does, an experi-

mental design technique, and the so-called Simplex

and Complex strategies of Nelder and Mead [11] and

M.J. Box [12] for numerical optimization. Whereas

random trials are vividly rejected by G.E.P. Box, he

centers several experiments (principally at the same

time) in a deterministic way around the position of

the current best point in a low-dimensional parameter

sub-space. The best of all then is taken as the center

of the next trial series. Nelder and Mead, and M.J.

Box, using a polyhedron for placing the trials, reject

the worst position and �nd a new one by re
ecting

the worst with respect to the center of the remaining

points of the simplex or complex, thus making use

of the knowledge gathered by several (parallel) trial

solutions.

The �rst concept above may be called a (1 + �),

the latter a (� + 1) evolutionary scheme (also called

steady-state or extinction of the worst strategy), � de-

noting the number of parents, � the number of chil-

dren within one generation. More general, therefore,

is a (�+�) ES with � ancestors having � descendants

altogether, the � best of all �+� arti�cial beings be-

coming parents of the next generation. The fact that

individual lives are limited in time, is re
ected by the

(�; �) version, introduced in the early Seventies [22].

Now the � parents are no longer considered in forming

the next generation, thus � > �, a surplus of births,

is a must. It was Malthus' pessimistic consequence of

that fact, which Darwin contrasted with his view of

natural selection, by the way. Of course, the extinc-

tive or non-elitist comma-version ES may loose the so

far best position and thus diverge, at least temporar-

ily. Mean convergence in the long run becomes more

di�cult to prove, but theoretical results about ESs

have been steadily improved during the last decade

(see, e.g., B�ack [14], Beyer [15], and Rudolph [16]).

We now know that the selection pressure, i.e. �=�,

supports the progress rate only logarithmically. Lin-

ear speedup with the population size can be achieved

only if the problem to be solved is complex enough,

recombination by means of mimicking sexual propa-

gation is used, and the mutation variance �2 is opti-

mally adapted. There are missing links, however, es-

pecially with respect to the self-adaptation of the mu-

tation strength(s). All observations in the following,

therefore, were found by computer simulation only.

It must be mentioned here of course that there exist

other Evolutionary Algorithms (EA), i.e., Genetic Al-

gorithms (GA) and Evolutionary Programming (EP),

to name at least the most prominent and often ap-

plied instantiations. Two observations are interest-

ing, if not striking: Firstly, the basic concepts of ES,

GA, and EP have been created independently, more

than thirty years ago, and at di�erent places. Sec-

ondly, though the founders meanwhile have found to-

gether during an ever increasing number of interna-

tional conferences { Evolutionary Computation now

forms one of the pillars of the discipline Computa-

tional Intelligence [13], the other pillars being arti�-

cial Neural Networks and Fuzzy Logic { the under-

lying models of evolution still di�er from each other.

EP [17] [18] intends to model the birth and death of



species and thus cannot include recombination. Ex-

ploration is modeled by Gaussian mutations, and se-

lection is performed by tournaments among random

subsets of � old and � new species, resembling the

competition for a common pool of limited resources,

i.e., the struggle for life. The evolving entity within

GAs [19] [20], on the other hand, is the genome, typi-

cally represented by a binary string. The main source

of variation is crossover of two parental strings (bit


ip mutations are rare additional events to recover

single zeros or ones that may get lost in small popu-

lations). Exploitation is performed similar to Eigen's

RNA model above, i.e., by means of �tness propor-

tional mating selection alone. No additional environ-

mental selection can take place, since � equals � in

the canonical GA. The current state of a�airs is best

summarized in the Handbook of Evolutionary Com-

putation [21].

4. SELF-ADAPTATION OF STRATEGY

PARAMETERS

As for all optimization techniques, the appropriate

step size adjustment is of crucial importance. Rechen-

berg found that there is a window of one decade only

for �, within which the (1+1) ES shows a reasonable

convergence velocity. He devised a simple rule for ex-

ogenously adjusting a near optimum performance of

the process, i.e., to control the success frequency ps
such that it lies in the vicinity of one success among

�ve trials { a clear sign of pole-vaulting. If the ob-

served rate shows up with ps > 1=5, then � (the same

for all dimensions) should be increased, otherwise de-

creased if ps < 1=5. This advice is good for many

but not all situations. Moreover, it does not give any

hints to adapt the standard deviations of the phe-

notypic changements individually. Some may be too

large, others too small, at the same time. Only within

the multimembered strategy, one can include the step

size � or even di�erent standard deviations �i (muta-

tion rates in case of discrete variables) into the set of

the individuals' genes and adapt them on-line by mu-

tating and recombining the corresponding �i as well

as the object variables xi (for more details see[22]).

There is some evidence that besides repair enzymes

also mutator genes exist that enhance mutations at

some gene loci.

Let us look �rst at the case of just one common step

size � for changing all xi. Within a (1; �) ES the cor-

rect step size turns out to be even more important

than within a (1+�) version. In the �rst case regres-

sion takes place instead of progress when the step size

is too large, whereas stagnation is the worst case in

the latter. At a �rst glance, therefore, survival of an

ancestor (elitist selection) might be a good advice.

Simulation results, however, teach the contrary to be

true. This is the �rst surprise.

Fig. 1 demonstrates the di�erence between a (1+10)

and a (1,10) ES when minimizing the function F1 =Pn
i=1 x

2
i . The number of variables was taken as large

as n = 30 in order to avoid improper conclusions.

In lower dimensional cases nearly every strategy may

achieve good results. One common� for varying all xi
is changed itself by mutation, i.e., by multiplying the

ancestor's value with a random number drawn from

a logarithmic normal distribution in order to avoid

exogenous drift. The (1; 10) strategy with extinctive

(some call it truncation) selection turns out to be

superior. An explanation for this surprising fact is

the following: An individual may, by chance, inherit

a good set of xi together with a � that is not suitable

for the next generation transition.

Figure 1: Endogenous learning of the mutation

strength (one common standard deviation �) for

function F1 with n = 30 variables.

a) (1+10) Evolution Strategy (ES); b) (1,10) ES.

The progress is measured in terms of lg(F (0)=F (g)),

where F (0) denotes the start value, F (g) the current

value of the objective function at generation g.

Displayed is just one typical run for each variant,

since averaging over many runs smoothes away the

stagnation and recession wiggles.

The (1 + �) scheme tends to preserve such genome

and thus leads to periods of stagnation. Within a

(1; �) ES the good position, occasionally won with an

unsuitable step size, is lost, together with the latter,

during the next generation. This short term regres-

sion, however, enhances the long term velocity of the

whole process by a stronger selection with respect to

the suitable step size (strategy parameter). Simply

speaking: Forgetting is as important as learning, or

the �rst must be seen as a necessary integral part of



the latter. One might interpret the fact of an inherent

�nite life span (preprogrammed maximumnumber of

cell divisions) of living beings as an appropriate mea-

sure of nature to overcome the di�culties of unde-

served success. Forgetting obsolete knowledge is even

more crucial in a changing environment, the normal

case in nature.

5. COLLECTIVE LEARNING OF PROPER

SCALINGS

In many cases it is not su�cient to adapt one com-

mon step size for all object variables. For an objective

function like F2 =
P30

i=1 ix
2
i , for example, individual

standard deviations �i, appropriately scaled, could

speed up the progress rate considerably. To achieve

this kind of 
exibility within the multimembered evo-

lution strategy, each individual is characterized by a

set of n step sizes in addition to the n object vari-

ables. They are mutated by multiplication with two

random factors, one being common for all step sizes

as before, the other acting individually. Thus, a gen-

eral and speci�c scalings can be learned at the same

time. Operating with a (1; �) strategy { however large

� may be { leads to a second surprise: This kind of

process does not work at all, it gets stuck prematurely

by approaching a relative optimum in a lower dimen-

sional space. The reason is rather simple: As said

above, the convergence rate is inversely proportional

to n, the dimension of the search space. Descendants

operating in a subspace by sharply reducing some of

the step sizes have a short term advantage. Select-

ing the �ttest descendant to become the one and only

parent of the next generation, is counterproductive in

the long term, as was the survival of the ancestor.

Figures 2 and 3 demonstrate how to overcome the dif-

�culty. If more than one { not only the best, but also

inferior { descendants get a chance to have progeny

and recombination by sexual propagation takes place,

i.e., mixing of the information gathered by di�erent

individuals during the course of evolution, then stag-

nation can be overcome. Now the convergence rate

steeply goes up with the population size. On a con-

ventional one-processor computer the parallelism of

that scheme cannot be realized, but multi-processor

machines and networks of computers operating in

parallel are more and more widespread. That is why

all �gures show the progress over the number of gen-

erations, not over sequential computing time.

The overwhelming success of recombination (plus req-

uisite variety) demonstrated here, may explain the

early appearance of sexual propagation on earth { in

the realm of plants already. But it is unlikely that

only the additional variability provokes the success.

Figure 2: Learning of the scaling I.

a) ( 1, 10) ES, no recombination,

b) ( 3, 10) ES with recombination,

c) ( 6, 30) ES with recombination,

d) (15,100) ES with recombination.

Figure 3: Learning of the scaling II.

a) ( 1,100) ES, no recombination,

b) (15,100) ES without recombination,

c) (15,100) ES with recombination,

a) and b) with pre�xed optimum scalings,

c) with autoadaptive scaling (3c equals 2d).

A better explanation might be the following: The typ-

ical situation during the meliorization process is ridge

following. Within a population some individuals have

a position on one side, others on the other side of the

ridge. Mixing genetic information is a means of rid-

ing the ridge more e�ciently. A similar argument

holds for mixing the step sizes: Individuals on one

side of the ridge have internal models (made up of

the set of step size relations) of the response surface



that are di�erent from those on the other side. Even

if both models are wrong for the long term, since both

may be locally adapted only (if the model learned is

not a law of nature), some mean model (or better:

hypothesis) may turn out to be more useful for the

future. Simply speaking, one may say that natural

intelligence is distributed.

Now the question of the appropriate selection pres-

sure prevails: How many of the descendants should

be selected as new parents. The answer { at least

for the objective function chosen { is given by Fig.

4. All other conditions being held constant, includ-

ing the number of descendants � = 100 within one

generation, only �, the number of parents and with

them the selection pressure, was changed. Four cases

were investigated for function F2:

Figure 4: Comparing progress rates per 1000 genera-

tions of di�erent (�; 100) ESs over �, the number of

parents.

a) Pre�xed optimum scaling (�
(0)
i = c=

p
i),

b) Pre�xed arbitrary scaling (�
(0)
i = ~c),

c) Adaptive scaling with recombination,

d) Same as c), but without recombination.

Whereas in both cases a) and b) � = 1 is the best

choice, it is better, even necessary, to increase � far

beyond one in situations where the proper scaling of

the variables has to be learned by adapting di�erent

mutation strengths (case c). The diagram moreover

demonstrates the e�ectivity of the collective learning

process. Under proper conditions nearly the same

convergence rate as with total knowledge of the opti-

mum scaling can be achieved { counterintuitively by

relying on individuals and their internal models that

are by far not the best ones. This is the third sur-

prise. Too strong selection pressure not only slows

down the meliorization process, it may even lead to

divergence (not shown in Fig. 4) under non-elitist

selection conditions.

6. LEARNING OF A METRIC AND THE

EPIGENETIC APPARATUS

Topologies of vitality response surfaces normally are

not as simple as assumed above. The next possi-

ble complication is to incline the main axes of the

hyper-ellipses which form the subspaces F = const:

Now scaling alone does not help in achieving optimum

performance. It becomes necessary to change two or

more, sometimes even all, variables at the same time

(GA researchers have called this awkward situation

epistasis). What can nature do, what has it done,

to overcome the di�culty? In many cases one has

found that a single gene in
uences several phenotypic

characteristics (pleiotropy) and vice versa (polygeny).

These are the two sides of the same coin, which is cor-

relation, the perhaps best known example of it being

allometric growth. The transmission mechanism be-

tween genotype and phenotype, called epigenetic ap-

paratus, in a �rst order may be approximated by lin-

ear correlation. In addition to individual step sizes,

now correlation coe�cients or angles of inclination of

an n-dimensional ellipse, forming the surface of con-

stant probability density of a mutation, have to be

learned.

Figure 5: Learning of a metric.

a) ( 1,100) ES with constant non-optimal scaling,

b) (15,100) ES under same conditions, i.e., without

recombination,

c) (15,100) ES with recombination and adaptive

individual step sizes,

d) (15,100) ES as before, with additional learning of

linear correlations between the phenotypic mutations.



Fig. 5 shows �rst results for the objective function

F3 =
Pn

i=1

�Pi
j=1 xj

�2
. Four cases were simulated,

three of them corresponding to those of Fig. 3. In

both cases c) and d), recombination, i.e., averaging

both object and strategy parameters of two parents,

was used. It is obvious that these sampling condi-

tions bear a variety of possibilities with respect to

the mutabilities of step sizes and correlation angles

so that simulations c) and d) might not yet repre-

sent the best choices. Nevertheless, the results show

how much may be gained in terms of progress velocity

by on-line learning of a simple internal model of the

topology of the environment, the real world for the

simulated evolutionary process. In most cases such

a model will not be a correct theory, but simply a

useful local or temporal hypothesis. A closer look

reveals that even none of the better individuals ever

learns the correct model of its environment. But if

the population size is not too small, they behave as

if { collectively: The fourth surprise.

7. GROPING IN THE DARK

Up until now all �gures showing the evolutionary

progress over time or generations were drawn for ob-

jective function values only every 50th generation and

for the mean of the population, moreover. If we take

a closer look by picking out one of the decision vari-

ables, e.g. x15 in function F2, and look at it at every

generation (Fig. 6), then the picture reveals more

details.

Figure 6: Time cut of one of the variables.

It depends on the density of the historical record

whether we may speak of a gradual or a punctual-

istic process (see, e.g., Stanley [23]). Due to the fact

that the objective function depends on many variable

attributes, a single one of them must not resemble

the progress as a whole. Great success in one di-

rection forgives regression in others { at least in a

nonlinear world. And, for sure, looking at some ar-

bitrary cut of the time record, one might get the im-

pression of stochastically disturbed long waves with a

more or less �xed period. Even more aggregated sub-

objectives, like the GNP of a nation, could exhibit

such behavior, if the underlying process operates left

of the maximum of curve c) in Fig. 4. A similar

argument holds in case of several competing criteria

between which a compromise has to be found. EAs

have been applied to such multicriteria optimization

problems, too. In nature the situation arises as soon

as there are di�erent predators of one prey species.

8. CONCLUSIONS

Many people today, when speaking about long term

planning, environmental forecasting, technology as-

sessment etc., are embarrassed by the degree of our

ignorance. Very often then they speak of the uncer-

tainties involved. But looking more precisely, isn't

it a fact that there are, at the same time and with

access to the same data, di�erent certainties, i.e., dif-

ferent interpretations of the past and di�erent aspi-

rations for the future, or, in other words, di�erent

internal models of the world? In the light of the sim-

ulation results above, one should appreciate, not re-

gret, that. Due to the �ndings of a rather new �eld of

science, i.e. nonlinear dynamics, we must admit that

knowledge about the long-term future is principally

unavailable for an open dissipative system operating

far o� of equilibria. We really are groping in the dark

[24]. Therefore we should not try to establish one

best model of the world, but make the best of the

di�erent individual ones of the ridge we are trying to

follow without clairvoyance. Even if all of them were

wrong they might as well be worthwhile to be recom-

bined with each other. Instead of relying upon too

strong competition, which leads to stagnation as we

have seen, we better should agree upon cooperative

exploration and exploitation.
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