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Abstract

In many scientific and technological endeavors, a three-dimensional solid must be
reconstructed from digitized point data. This paper presents three solutions to the
problem of reconstructing smooth surfaces using triangular tiles. The presented al-
gorithms differ in their strategic approach. Here, two deterministic algorithms and
one non-deterministic CI (computational intelligence) strategy will be described.
In order to compare triangulations, two quality criteria will be introduced.

1.1 Motivation

Practical applications of tactile or optical scanning methods generate huge sets of
many thousands of weakly structured three-dimensional point co-ordinates. These
are usually very hard to handle using common CAD systems. CAD systems are ex-
pecting smooth Bézier surfaces, NURBS (uniform rational B-splines) or B-splines
rather than a large set of discrete points. Due to approximation theoretical and
practical reasons, it is not useful to span a complete surface with only one spline.
In order to use tensor product surfaces, discrete regions in the three-dimensional
data set have to be determined. The main problem in surface reconstruction is
the partitioning of the set of digitized point data into subsets that resemble the
construction logic employed by a CAD-designer.

One way towards that admittedly lofty mission is the approximation of digitized
three-dimensional data via triangulations. The algorithms introduced here deter-
mine smooth triangulations from digitized point sets.

The first two algorithms are deterministic and make use of the line structure of
the digitized point data sets. They result in rather good surface qualities and need
only a short processing time. Due to the fact that triangulation is a difficult mul-
timodal optimization problem, i.e. there exist several suboptimal solutions, the
a-look-ahead algorithm compares the quality of different solutions to avoid getting



caught in local minima. The shortest path strategy finds better but usually still
suboptimal solutions in O(n log(n))-time.

Although many deterministic algorithms show high performance, an optimal tri-
angulation usually cannot be found using only local information. CI (computa-
tional intelligence) methods present a new approach towards global optimization
problems. CI covers the fields of Fuzzy Logic (FL), Neural Networks (NN) and
Evolutionary Algorithms (EA).

An EA approach towards the global optimization problem of triangulation will be
introduced here. The potential of the algorithm to avoid getting caught in local
optima can be shown. This strategy does not make use of local information like
the line structure of a given point set.

In order to compare the quality of triangulations objectively, smoothness criteria
have to be defined. Here, the maxz-min criterion and the total absolute curvature
criterion will be introduced.

1.2 Characterizing the Quality of Triangulations

In the literature, several triangulation quality criteria can be found [1, 2, 3]. Look-
ing at a shaded triangulation, it is very easy to distinguish between smooth and
jagged surfaces. Typically, in computer graphics, two objective quality definitions
for triangulations are used: triangle-based criteria and edge-based criteria.
Triangle-based criteria follow the rule of maximization or minimization, respec-
tively, the angles of each triangle. The so-called maz-min angle criterion prefers
short triangles with obtuse angles.

Definition: (maz-min angle criterion) For each triangle T' in a triangulation A,
let m(T) be the smallest angle in T, and let m(A) = minpea m(T). We de-
fine C'(A,A) = m(A) — m(A) to be a metric for comparing triangulations. The
triangulation A is better than triangulation A with respect to C provided that
C(AA) < 0.

Under this criterion, an optimum triangulation is one whose smallest angle is max-
imal. It is known that a triangulation is optimal with respect to the max-min angle
criterion if and only if it is a Delaunay triangulation [3].

Edge-based criteria describe curvature-relations of triangles that share one com-
mon edge. Making use of the classic differential geometry, v. Damme and Alboul
[4] propose the total absolute curvature (tac) criterion. The main idea of this cri-
terion is to measure the curvature of a triangulated surface in a discrete point by
calculating the sum of the 3D-angles of the triangles sharing this point.

Definition: (total absolute curvature (tac) criterion) Let P be a point with d
neighborhood points Ny, ..., Ny (Ngy1 = Np). A point belongs to the neighborhood
of P, if it is a vertex of a triangle that shares the common point P. Let «;,



t =1,...,d be the 3D-angles of the triangles around P. Then the total absolute
curvature is defined to be:

d
tac(P) =27 =«
i=1

In order to compare triangulations, a total order depending on different met-
rics has to be defined. For triangle-based methods, a quality vector M(T) :=
(m(Ty),...,m(Ty)) € RN, where m(T;) is a triangle-based criterion (like the max-
min-criterion) applied to the triangle T;, has to be calculated. For edge-based
criteria, a quality vector may look like: M (T) := (m(ey),...,m(ey)) € RM, where
e; are the edges of a triangulation A. A quality vector using the tac-criterion can
be written like: M(T) := (tac(P),...,tac(P,)) € R', where P, are the interior
points of a digitized surface.

A total relation for comparing two triangulations 7" and 7" can be defined via the
p-norm:

M(T) <, M(T") Z|m )PP < ( Z|m )|P)L/P
where m(t;) is the i—th element of the vector M (T), d the number of elements in 7.

1.3 Triangulation Strategies

After the definition of two quality criteria and a total relation on triangulations,
we have objective tools to compare triangulation strategies with each other. Typ-
ically, there exist two ways of solving optimization problems. Depending on com-
plexity and knowledge about the structure of a problem, either deterministic or
non-deterministic optimization algorithms can be used. Deterministic strategies
are very efficient when the solution can be given explicitly and the complexity of
the problem is polynomial. If there exists no explicit knowledge about the ”path”
towards an optimum but optima can be characterized efficiently, non-deterministic
algorithms are a good choice.

Concerning the typical line structure of digitized point data, Keppel [5] calculates
the number of possible triangulations between two lines with each m and n points,
respectively, to be
(n 4+ m)!
n! m!
Thus, the algorithmical complexity of the triangulation problem is exponential.

Both deterministic algorithms described here make use of the line structure of
the digitized point data. This structure can be transformed into a corresponding
matrix, which was first mentioned by Fuchs et al. [6]. An entry m;; = w;; in
this matrix corresponds to an edge between to points a; and b; taken from the



digitalizing lines (ai,...,a,) € (R*)™ and (by,...,bn) € (R*)™. The weight w;
characterizes the quality of an edge by any arbitrary quality criterion (e.g. see 1.2).
Any other entry in the matrix should be chosen appropriately.

Making use of this definition, Friedhoff has proposed the so called a-look-ahead-
strategy [7]. The main idea of this method is to find an optimal path in the ”Fuchs
matrix”. This path corresponds to an optimal triangulation between each two
lines of digitized point data. The difficulty in finding an optimum is that only local
quality information at each point is evaluated in order to gain a globally optimal
triangulation. The a-look-ahead-strategy chooses the ”cheapest” path in the ma-
trix by selecting the minimum sum from two weighted paths with length a. The
algorithm has O(n)-algorithmic complexity. Therefore, the a-look-ahead-strategy
produces triangulations in a very short time. Choosing o = n, the algorithm
shows O(n?) complexity. Unfortunately, ”well-shaped” triangulations can only be
expected when the lines run approximately parallel in the 3D-space.

The shortest-path algorithm proposed first in this article finds a minimal path
through the ”Fuchs matrix” using Dijkstra’s O(n log(n))-time algorithm [8]. The
algorithmical complexity of the shortest-path algorithm is O(m? log(m?)), where
m is the maximum number of points in all lines. This strategy is guaranteed to
calculate the shortest path between two points of a weighted graph using an ad-
jacency list and a priority queue. The adjacency list contains the corresponding
edges of each vertex. The priority queue is realized via a heap structure containing
the weights of each edge. The solution of this strategy is always better or equal to
the solution discovered by the a-look-ahead-strategy.

The problems arising from evaluating local information is common to both strate-
gies.

1.4 Cl-method for Optimization of Triangulations

Bezdek subsumed the fields of Fuzzy Logic, Neural Networks and Evolutionary Al-
gorithms under the notion of Computational Intelligence (CI) [9]. The common
nature of this class of universal adaptive algorithms is that they work subsym-
bolically. That is, in contrary to the methods of classic symbol-oriented Artificial
Intelligence algorithms, they solve problems numerically. The foundation of Evo-
lutionary Algorithms (EA) has been laid in the early Fifties. The notion of EA
subsumes the class of inherently parallel and iterative algorithms which are software
analogies of processes and structures of organic evolution. The Genetic Algorithms
(GA), as proposed by Holland [10], Evolutionary Programming (EP) of Fogel et
al. [11] and the Evolutionary Strategies (ES) of Schwefel and Rechenberg [12, 13]
belong to this class. Simulated Annealing (SA) is another optimization strategy
which is a software analogy of the annealing process of hot metals [14].

GAs are typically used for solving classification tasks. EPs can solve time series
prediction tasks using finite automata. ES are typically used for solving vector-
optimization tasks in the R". ES also serve very well in structural optimization.



At the Department of Machining Technology (ISF), first experiments have been
made in order to optimize triangulations with this class of algorithms.

SA algorithms base on the concept of annealing, which is derived from materials
science, where it is used to describe the process of eliminating lattice defects in
crystals by a procedure of heating, followed by slow cooling. SA proceeds anal-
ogously. One considers an ensemble of arrangements weighted by the Bolzmann
factor exp(—%), where E is the cost function (often called fitness or quality crite-
rion) and T is a parameter that plays the role of the temperature. On lowering the
value of T, the existence of unfavorable arrangements becomes less and less likely
until, hopefully, the optimal solution remains at 7" = 0.

The advantage of EA methods compared with deterministic strategies is that the
way towards the solution of a complex problem does not have to be described
explicitely. Here, a quality criterion, adequate evolutionary operators (mutation,
selection, recombination for instance) and an encoding of the cost function domain
have to be defined.

Following Schumaker, the encoding of the function domain has been chosen to be
a vector of edges that corresponds to an arbitrary triangulation [3]. When using
an EA, an initial triangulation is needed. One of the algorithms described above
can be used to yield this triangulation.

An edge-exchange operator in the 2D-space has been defined to serve as a mutation
operator. It flips an edge within a convex polygon of four points. The polygon has
to meet the condition that three of the four points are not collinear [1, 3]. The
advantage of the application of a 2D-operator lies in the fact that special cases
can be ignored which appear when edges are flipped in 3D-space. Hence, a simple
projection of the digitized 3D points into 2D-space has to be performed. The mu-
tation operator flips an edge by randomly choosing elements of the edge vectors in
an equally distributed way.

Another advantage of EAs is the applicability of different fitness functions while
the function domain remains the same. Here, the tac criterion (see 1.2) has been
used. Following the selection scheme of a SA, the algorithm keeps solutions that
show an improvement after each mutation step. A vector that shows no improve-
ment survives selection due to the actual temperature. The idea of keeping vectors
that do not show an improvement is to escape from local minima by random steps.
The non-deterministic algorithm presented here does not depend on any structural
information within the given point data set. The only condition that has to be
fulfilled is that the digitized surface must not show re-entrant angles, that is the
surface can be projected to a 2D-plane uniquely.

1.5 Comparison of the Optimization Algorithms

Comparing deterministic with non-deterministic strategies it is noticeable that de-
terministic methods give regular triangulation structures. This can be seen in
figure 1 (right-hand side) where the symmetric mesh structure of the triangulated



surface of a segment of a connecting rod — generated by the shortest-path strat-
egy — is shown. Smooth surfaces appear in figure 1 where the digitalizing lines run
nearly parallel in 3D-space. A rough surface structure appears in steep regions of

Figure 1: Shortest-path strategy

the surface. This is due to the fact that the deterministic algorithms described
here optimize a triangulation only locally between two digitalization lines. This
corresponds to the feature of deterministic strategies of finding only suboptimal
solutions usually. The non-deterministic SA does not need a specific line represen-
tation. Thus, optimal triangles can be calculated by just considering the tac fitness

Figure 2: Simulated annealing

function. One can see from the mesh structure in figure 2 (right-hand side) that it
seems more appropriate to choose obtuse-angle triangles for approximating plane
surfaces. The SA selects long triangles with acute angles to fit regions with high
curvature values. This CI method allows to find smooth surfaces which even satisfy
optical demands of smoothness. For application tasks, the trade-off between qual-
ity and time has to be taken into account. The SA triangulation of the connecting



rod (14,339 points, 3,000 iterations) takes 156 minutes. The shortest-path method
takes only 15 seconds for the same problem.

Non-deterministic methods represent new ways of optimizing triangulations. The
structures built from triangles by self-organization effects in the SA context en-
able the formulation of new approximation-theoretical statements that may help
to develop even more efficient algorithms.
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