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Reducing the Number of Inference Steps for Multiple-Stage
Fuzzy IF-THEN Rule Bases∗

Stephan Lehmke, Karl-Heinz Temme, and Helmut Thiele

We present a theoretical result concerning the foundations of fuzzy in-
ference systems which use multi-stage fuzzy IF-THEN rule bases, i. e. col-
lections of fuzzy IF-THEN rules in which the conclusion of one rule, say
the fuzzy set G in the rule IFF THENG, may appear as the premise of an-
other rule, say IFG THEN H . This result immediately leads to a method
for modifying a fuzzy IF-THEN rule base in order to reduce the number
of IF-THEN rules and the number of inference steps needed to obtain the
final inference result.

Two of the authors of this paper have investigated under which circum-
stances the classical rule of syllogism may be applied, i. e. under which
assumptions concerning the inference mechanism and the structure of the
overall rule base the two rules IF F THENG and IFG THENH may be re-
placed by the single rule IFF THENH .

Several preconditions have to be placed on the inference mechanism and
the structure of the rule base to yield the validity of the classical syllogism
rule, especially if the premises of other rules in the rule base overlap with
the fuzzy sets F or G (which will be the case in almost any applicable fuzzy
rule base). It turns out that these preconditions are very strong and reduce
the usability of this method as a tool for rule base ‘compression’ consider-
ably.

In the present paper, we discuss a method by which the two rules
IFF THEN G and IFG THEN H are replaced by a rule of the form
IFF ′ THENH , where F ′ is calculated from F and G.

Keywords. fuzzy IF-THEN rule bases, chaining, multiple-stage inference, infer-
ence with fuzzy inputs, syllogism

1 Introduction

The increasing maturity of fuzzy inference systems is bringing about two effects which
in some manner enforce one another. On the one hand, the complexity of applications
increases, on the other hand, research on fuzzy inference systems is going on and thus
such systems are increasingly better understood. Consequently, not only is there de-
mand from the applications to build more and more complex fuzzy inference systems,
but also better means to do so are being developed.

Prompted by this development, several new concepts had to be integrated into the the-
ory of fuzzy inference. This paper is concerned with the relationship of two of these

∗Long version of a paper originally published in Seventh International Fuzzy Systems Association World
Congress (IFSA ’97), Prague, Czech Republic, June 25–29, 1997, vol. I, pages 172–177
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concepts, inference with fuzzy inputs and multiple-stage fuzzy IF-THEN rule bases.
Both are well established in the domain of fuzzy expert systems, but are also begin-
ning to gain importance in the field of fuzzy control (see for instance D. DRIANKOV,
R. PALM, and H. HELLENDOORN [3]; G. C. MOUZOURIS and J. M. MENDEL [8]).

Inference with fuzzy inputs means that the input to a fuzzy inference system is not a
trivial representation of a crisp value from the input universe by a singleton fuzzy set,
but a ‘true’ fuzzy set on the input universe. In fuzzy expert systems such a fuzzy set
may be obtained in the form of a fuzzy term (like ‘moderately high temperature’), in
fuzzy control it might result from a mathematical representation of sensor accuracy (or
rather, inaccuracy).

We speak of multiple-stage fuzzy IF-THEN rule bases if a fuzzy term occurring in the
conclusion of a fuzzy IF-THEN rule, say the fuzzy set G in the rule IFF THENG, may
appear as the premise of another IF-THEN rule, say IF G THEN H . For a fuzzy in-
ference system, this means that the result of one inference step is used as the input of
another inference step. Several such inference steps may have to occur before the final
result of the fuzzy inference system is obtained.

If the fuzzy inference system is unable to process fuzzy inputs, multiple-stage infer-
ences are often carried out by inserting a defuzzification step between two inference
steps. This means that the semantic coupling of the inference steps is ‘loosened’, which
can result in undesirable side effects, and furthermore the inference result becomes de-
pendent on the defuzzification method in an unintuitive way.

If the fuzzy inference system is able to process fuzzy inputs, we can immediately use
the fuzzy set resulting from one inference step as the input of the next one, yielding a
much tighter semantic coupling of the inference steps, which has many benefits.

In this paper, we investigate one benefit of this tight semantic coupling, namely the
oportunity to reduce the number of rules in the rule base and the number of inference
steps.

Two of the authors of the present paper have investigated under which circumstances
the classical rule of syllogism may be applied, i. e. under which assumptions concern-
ing the inference mechanism and the structure of the overall rule base the two rules
IFF THENG and IFG THENH may be replaced by the single rule IFF THEN H (see
K.-H. TEMME and H. THIELE [14, 15]; the subject has also been investigated by
D. RUAN and others [9–13] and also by S. GOTTWALD [4, 5]).

Several preconditions have to be placed on the inference mechanism and the structure
of the rule base to yield the validity of the classical syllogism rule, especially if the
premises of other rules in the rule base overlap with the fuzzy sets F or G (which will
be the case in almost any applicable fuzzy rule base). It turns out that these precon-
ditions are very strong and reduce the usability of this method as a tool for rule base
‘compression’ considerably.

In the present paper, we discuss a method by which the two rules IFF THEN G and
IFG THENH are replaced by a rule of the form IFF ′ THENH , where F ′ is calculated
from F and G. The method can be applied whenever the inference system is of MAM-
DANI style. As no preconditions have to be placed on the structure of the rule base, this
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method is of considerable practical relevance.

1.1 Notational Conventions

We denote the real unit interval, i. e. the set of all real numbers r with 0 5 r 5 1 by
〈0,1〉.

Let U be an arbitrary non-empty set called universe. Fuzzy sets on U are mappings
F : U → 〈0,1〉. We denote the (crisp!) set of all fuzzy sets on U by F(U ).

Given binary operations κ,α : 〈0,1〉 × 〈0,1〉 → 〈0,1〉, we define a generalized intersec-
tion and union operation κ∩, α∪ on fuzzy sets as follows, given fuzzy sets F,G ∈ F(U )
and x ∈ U .

(F κ∩ G)(x) =def κ(F(x),G(x))

(F α∪ G)(x) =def α(F(x),G(x))

In the case κ = min,α = max, we get the common fuzzy set intersection ∩ and union ∪
as defined by L. A. ZADEH [18].

The classical (see [18]) subset relation j for fuzzy sets F,G ∈ F(U ) is defined as fol-
lows:

F j G =def for every x ∈ U , F(x) 5 G(x).

We define the height hgt(F) of a fuzzy set F ∈ F(U ) by

hgt(F) =def SuplF(x) x ∈ Uq .

Functional operators on U are mappings Φ : F(U ) → F(U ). The product Φ°Ψ of two
functional operators on U is defined as follows.

Φ ° Ψ(F) =def Ψ(Φ(F)) (F ∈ F(U ))

1.2 Fuzzy IF-THEN Rules and Rule Bases

Let a fixed universe U be given. A fuzzy IF-THEN rule is a syntactic construct of the
form

IFF THENG,(1)

where F (called premise) and G (called conclusion) are fuzzy sets on the universe U .

Remark
Choosing premise and conclusion simply as fuzzy sets on a common universe U is a
convention to simplify the following mathematical investigations. In applications, IF-
THEN rules are usually of a more complex structure. We lose no expressive power by
our convention, however.
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The use of logical expressions involving fuzzy sets on a common universe can be in-
corporated by application of set operations on these fuzzy sets. Take, for instance, the
fuzzy IF-THEN rule

IFF1 AND F2 THENG1 or G2,

where F1,F2,G1,G2 are fuzzy sets on a common universe U . We gain a fuzzy IF-THEN
rule of the type (1) by defining F =def F1 ∩F2 and G =def G1 ∪G2, where ∩,∪ are appro-
priately defined fuzzy set-theoretical operators (see for instance L. A. ZADEH [18]).

The use of fuzzy sets on several different universes in the definition of fuzzy IF-THEN
rules is covered by the well-known principle of cylindrical extension.

A fuzzy IF-THEN rule base is a finite collection of fuzzy IF-THEN rules. We denote a
fuzzy IF-THEN rule base R consisting of n fuzzy IF-THEN rules by

R :
IF F1 THEN G1

...
IF Fn THEN Gn

Of course, F1,… ,Fn,G1,… ,Gn are all fuzzy sets on the universe U .

For simplicity, in the following we shall always assume two fuzzy IF-THEN rule bases

R1 :

IF F1 THEN G1
...

IF Fn THEN Gn

R2 :

IF G1 THEN H1
...

IF Gn THEN Hn

to be given such that inference is done first with rule base R1 (given some input fuzzy
set F on U ) and then with R2, taking as input the output of the inference with rule
base R1. It is easy to see that we lose no expressive power by this simplification. Of
course, before carrying out an inference step we have to identify those rules which have
to be considered, and we can assume that R1,R2 consist exactly of these relevant rules
(maybe out of a larger rule base).

That the conclusions G1,… ,Gn occurring in R1 have to be identical with the premises
of the rules in R2 is a constraint which in fact can be relaxed (see section 4).

2 The MAMDANI Case

In this section, we discuss a very common and well-known fuzzy inference mechanism.
A slight generalization of this inference mechanism is discussed in the next section.

In the ‘classical’ fuzzy inference mechanism, we associate with a fuzzy IF-THEN rule

IFF THENG(2)

an interpretation RF,G in the form of a binary fuzzy relation (see L. A. ZADEH [19]) on
U , i. e. RF,G : U ×U → 〈0,1〉.

RF,G(x,y) =def min(F(x),G(y)) (x,y ∈ U )
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For an input fuzzy set F ′ onU , we compute an output fuzzy set G′ onU by the following
formula, for y ∈ U .

G′(y) =def Sup{min eF ′(x),RF,G(x,y)j x ∈ U}(3)

This formula is derived from the compositional rule of inference (see L. A. ZADEH

[20]). The resulting inference method is also called MAMDANI-inference because it
was used in the first documented application of a fuzzy controller (see E. H. MAMDANI

and S. ASSILIAN [6]).

Given a fuzzy relation R : U ×U → 〈0,1〉, formula (3) immediately gives rise to the
definition of a functional operator ΦR mapping F ′ to G′, as follows, for y ∈ U .

ΦR(F ′)(y) =def Supmmin bF ′(x),R(x,y)g x ∈ Ur(4)

Given a rule base

R :
IF F1 THEN G1

...
IF Fn THEN Gn

(5)

we have to obtain a combined inference result from all the rules. There are two well-
known principles to achieve this:

1. First, carry out the inference for each rule separately, using (for rule number i)
the operator ΦRFi,Gi as defined in (4). Then, aggregate the inference results into
the final output (Principle FITA: First inference then aggregation).

2. First, aggregate the interpretations RF1,G1 ,… ,RFn,Gn into a combined fuzzy re-
lation RR. Then, carry out the inference for the relation RR, using the oper-
ator ΦRR , generating the final output (Principle FATI: First aggregation then
inference).

In the MAMDANI case, the maximum operator is always used for aggregation.

These principles give rise to the definition of two functional operators on U , FITA and
FATI. For the definition of FATI, we need the combined fuzzy relation RR. This rela-
tion is defined as the union of the fuzzy relations interpreting the single rules (we regard
a binary fuzzy relation on U as a fuzzy set on U ×U ).

RR =def RF1,G1 ∪ ⋅⋅ ⋅ ∪ RFn,Gn

For an input fuzzy set F ′ on U , we define

FITAR(F ′) =def ΦRF1 ,G1 (F ′) ∪ ⋅⋅ ⋅ ∪ ΦRFn,Gn
(F ′)

FATIR(F ′) =def ΦRR (F ′)

In the MAMDANI case discussed in this section, we get the following theorem, well-
known from the literature:

Theorem 1
For every rule base R, FITAR = FATIR.
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So, for this section it is sufficient to consider only one of the inference principles. We
(arbitrarily) choose the principle FITA for the rest of this section.

The matters which were sketched above for the convenience of the reader are discussed
in very much detail by H. THIELE in [16].

Given two rule bases

R1 :

IF F1 THEN G1
...

IF Fn THEN Gn

R2 :

IF G1 THEN H1
...

IF Gn THEN Hn

(6)

we are now interested in the result of the two-stage inference on R1 and R2, i. e. in the
functional operator

FITAR1 °FITAR2 .

Obviously, for an input fuzzy set F ′ on U , eFITAR1 °FITAR2j (F ′) is the result of first

executing the inference operator FITAR1 on F ′ and then executing FITAR2 on the in-
ference result of FITAR1.

Our goal is to specify a rule base R1,2 such that FITAR1 °FITAR2 = FITAR1,2. This
means that instead of executing two inference steps, first using the rule base R1 and
then the rule base R2, we wish to execute only one inference step on the rule base R1,2.

In [14, 15], two of the authors of the presented paper have investigated cases in which
we can use the following rule base1.

R
C
1,2 :

IF F1 THEN H1
...

IF Fn THEN Hn

(7)

This method is of course easy and convenient in several ways. First, it is trivial to cal-
culate the new rule base RC

1,2 from the given rule bases R1 and R2. Secondly, not only
the number of inference steps, but also the overall size of the rule base is reduced by
one half, significantly reducing the computational cost of the inference procedure.

However, in [14, 15], rather tight assumptions had to be made about the inference
method, and the MAMDANI inference does not meet these assumptions. Indeed,
D. DRIANKOV and H. HELLENDOORN [2] give some simple counterexamples to the
validity of this straightforward reduction procedure in the MAMDANI case.

In this paper, we consider a more subtle procedure for generating the rule base R1,2

which still results in a reduction of the number of inference steps and the overall size
of the rule base by one half. For every i ∈ k1,… ,np, we define a new fuzzy set Fi′ by

Fi′ =def (F1 ∩ Fi,1) ∪ ⋅⋅ ⋅∪ (Fn ∩ Fi,n)

where for every x ∈ U and i, j ∈ k1,… ,np,

Fi, j(x) =def hgt(G j ∩ Gi).(8)

1Here, “C” stands for “chaining”.
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The new rule base R1,2 is then defined by

R1,2 :
IF F1′ THEN H1

...
IF Fn′ THEN Hn

(9)

Remarks
Definition (9) gives rise to the following remarks:

1. As defined in (8), the fuzzy set Fi, j is constant over the whole universe U . It is
used to clip the fuzzy set Fj at the height of the intersection Gi ∩G j. The clipping
is done by the intersection

Fj ∩ Fi, j.

2. Alternatively to R1,2 as defined above, we could consider the following larger
rule base R1,2′, which we give in set notation:

R1,2′ =def mIFFj ∩ Fi, j THENHi i, j ∈ k1,… ,npr .(10)

By the fact that ∪ is used for the aggregation of inference results in the MAM-
DANI case, we can prove that R1,2 is equivalent to R1,2′ in the sense that both
rule bases define the same functional operator.

Proposition 2
For all rule bases R1 and R2 of the form (6), FITAR1,2 = FITAR1,2′.

Proof
By expanding definitions, we get for F ′ : U → 〈0,1〉 and y ∈ U :

FITAR1,2 ′(F ′)(y) = FATIR1,2 ′(F ′)(y)

= ΦRR1,2 ′
(F ′)(y)

= Sup
R
S
T
min F

HF ′(x),RR1,2 ′(x,y)IK x ∈ U
U
V
W

,

where RR1,2′(x,y) is given by

RR1,2′(x,y) = eRF1∩F1,1,H1 ∪ ⋅⋅ ⋅ ∪ RFn∩F1,n,H1 ∪ ⋅⋅ ⋅∪ RFn∩Fn,n,Hn j (x,y)

= max eRF1∩F1,1,H1(x,y),… ,RFn∩F1,n,H1(x,y),… ,RFn∩Fn,n,Hn(x,y)j .

For every i ∈ k1,… ,np, we get

max eRF1∩Fi,1,Hi(x,y),… ,RFn∩Fi,n,Hi(x,y)j
= max(min((F1 ∩ Fi,1)(x),Hi(y)),… ,min((Fn ∩ Fi,n)(x),Hi(y)))

= min(max((F1 ∩ Fi,1)(x),… , (Fn ∩ Fi,n)(x)),Hi(y))

= min(((F1 ∩ Fi,1) ∪ ⋅⋅ ⋅∪ (Fn ∩ Fi,n))(x),Hi(y))
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= RFi′,Hi (x,y).

It follows that

RR1,2′(x,y) = max F
HR

F1′,H1(x,y),… ,RFn′,Hn(x,y)IK
= F
HR

F1′,H1 ∪ ⋅⋅ ⋅∪ RFn′,HnI
K (x,y)

= RR1,2(x,y),

thus

FITAR1,2′(F ′)(y) = Sup{min eF ′(x),RR1,2(x,y)j x ∈ U}
= ΦRR1,2

(F ′)(y)

= FATIR1,2(F ′)(y)

= FITAR1,2(F ′)(y).

�

3. It is of course interesting to ask whether

R1,2′ = RC
1,2 ∪RO

1,2,

using the “chained” rule base from (7) and some additional rule base RO
1,2 con-

sidering the “overlap” between the fuzzy sets Gi.

In the rule base R1,2′, we ‘almost’ get the rules from RC
1,2. If i = j, then

Gi ∩G j = Gi and thus, for every i ∈ k1,… ,np, we have in R1,2 a rule of the form

IFFi ∩ Fi,i THENHi,

where Fi ∩ Fi,i is Fi clipped at the height of Gi. Thus, RC
1,2 is contained in R1,2′

if for every i ∈ k1,… ,np, hgt(Fi) 5 hgt(Gi). This is always true if Gi is normal
in the sense that hgt(Gi) = 1 holds.

Example 1 We consider the following rule bases:

R1 :
IF F1 THEN G1

IF F2 THEN G2

IF F3 THEN G3

R2 :
IF G1 THEN H1

IF G2 THEN H2

IF G3 THEN H3

where the fuzzy sets are given as illustrated in the following diagrams, for a suitable
universe U :

0

0.5

1.0

U

F1 F2 F3

0

0.5

1.0

U

G1 G2

G3

0

0.5

1.0

U

H1 H2 H3
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We obtain the new rule base

R1,2 :
IF F1′ THEN H1

IF F2′ THEN H2

IF F3′ THEN H3

(11)

where the fuzzy sets Fi′ are given as illustrated in the following diagrams:

0

0.5

1.0

U

F1

0

0.5

1.0

U

F2

0

0.5

1.0

U

F3

Of course, we have to justify definition (9) by a theorem.

Theorem 3
For all rule bases R1 and R2 of the form (6), FITAR1 °FITAR2 = FITAR1,2.

Proof
By expanding definitions , we get for F ′ : U → 〈0,1〉 and z ∈ U :

FITAR1 °FITAR2(F ′)(z)

= F
HΦ

RG1 ,H1 eFITAR1(F ′)j∪ ⋅⋅ ⋅∪ ΦRGn,Hn eFITAR1(F ′)jIK (z)

= max

F
G
G
G
G
H

Sup{min eFITAR1(F ′)(y),min(G1(y),H1(z))j y ∈ U} ,
...
Sup{min eFITAR1(F ′)(y),min(Gn(y),Hn(z))j y ∈ U}

I
J
J
J
J
K

.

We concentrate on the term enclosed in the supremum for some i ∈ k1,… ,np.

min eFITAR1(F ′)(y),min(Gi(y),Hi(z))j

= min

F
G
G
G
G
H

max

F
G
G
G
H

Suplmin(F ′(x),min(F1(x),G1(y))) x ∈ Uq ,
...
Suplmin(F ′(x),min(Fn(x),Gn(y))) x ∈ Uq

I
J
J
J
K
,min(Gi(y),Hi(z))

I
J
J
J
J
K

= min

F
G
G
G
G
G
H

Sup

R
|
|
S
|
|
T

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K

x ∈ U

U
|
|
V
|
|
W

,min(Gi(y),Hi(z))

I
J
J
J
J
J
K
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= Sup

R
|
|
S
|
|
T

min

F
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,min(Gi(y),Hi(z))

I
J
J
J
J
K

x ∈ U

U
|
|
V
|
|
W

.(12)

For the term enclosed in the supremum, we get

min

F
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,min(Gi(y),Hi(z))

I
J
J
J
J
K

= max

F
G
G
G
H

min bmin(F ′(x),min(F1(x),G1(y))),min(Gi(y),Hi(z))g ,
...
min bmin(F ′(x),min(Fn(x),Gn(y))),min(Gi(y),Hi(z))g

I
J
J
J
K

(13)

= max

F
G
G
G
H

min bmin(F ′(x),min(F1(x),min(G1(y),Gi(y)))),Hi(z)g ,
...
min bmin(F ′(x),min(Fn(x),min(Gn(y),Gi(y)))),Hi(z)g

I
J
J
J
K

(14)

= min

F
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
H

max

F
G
G
G
H

min(F1(x),min(G1(y),Gi(y))),
...
min(Fn(x),min(Gn(y),Gi(y)))

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

(15)

We apply the supremum ranging over y, yielding

Sup

R
|
|
|
S
|
|
|
T

min

F
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
H

max

F
G
G
G
H

min(F1(x),min(G1(y),Gi(y))),
...
min(Fn(x),min(Gn(y),Gi(y)))

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

y ∈ U

U
|
|
|
V
|
|
|
W

= min

F
G
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
G
H

Sup

R
|
|
S
|
|
T

max

F
G
G
G
H

min(F1(x),min(G1(y),Gi(y))),
...
min(Fn(x),min(Gn(y),Gi(y)))

I
J
J
J
K

y ∈ U

U
|
|
V
|
|
W

,Hi(z)

I
J
J
J
J
J
K

I
J
J
J
J
J
J
K

(16)
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= min

F
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
H

max

F
G
G
G
H

Suplmin(F1(x),min(G1(y),Gi(y))) y ∈ Uq ,
...
Suplmin(Fn(x),min(Gn(y),Gi(y))) y ∈ Uq

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

= min

F
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
H

max

F
G
G
G
H

min(F1(x),Suplmin(G1(y),Gi(y)) y ∈ Uq),
...
min(Fn(x),Suplmin(Gn(y),Gi(y)) y ∈ Uq)

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

(17)

= min

F
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
H

max

F
G
G
G
H

min(F1(x),hgt(G1 ∩ Gi)),
...
min(Fn(x),hgt(Gn ∩ Gi))

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

= min cF ′(x),min bFi′(x),Hi(z)gh

= min F
HF ′(x),RFi ′,Hi(x, z)IK .

Now, we can assemble the different parts of the proof, yielding

FITAR1 °FITAR2(F ′)(z)

= max

F
G
G
G
G
H

Sup{min eFITAR1(F ′)(y),min(G1(y),H1(z))j y ∈ U} ,
...
Sup{min eFITAR1(F ′)(y),min(Gn(y),Hn(z))j y ∈ U}

I
J
J
J
J
K
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= max

F
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
H

Sup

R
|
|
|
|
S
|
|
|
|
T

Sup

R
|
|
|
S
|
|
|
T

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(G1(y),H1(z))

I
J
J
J
J
J
K

x ∈ U

U
|
|
|
V
|
|
|
W

y ∈ U

U
|
|
|
|
V
|
|
|
|
W

,

...

Sup

R
|
|
|
|
S
|
|
|
|
T

Sup

R
|
|
|
S
|
|
|
T

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(Gn(y),Hn(z))

I
J
J
J
J
J
K

x ∈ U

U
|
|
|
V
|
|
|
W

y ∈ U

U
|
|
|
|
V
|
|
|
|
W

I
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K

= max

F
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
H

Sup

R
|
|
|
|
S
|
|
|
|
T

Sup

R
|
|
|
S
|
|
|
T

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(G1(y),H1(z))

I
J
J
J
J
J
K

y ∈ U

U
|
|
|
V
|
|
|
W

x ∈ U

U
|
|
|
|
V
|
|
|
|
W

,

...

Sup

R
|
|
|
|
S
|
|
|
|
T

Sup

R
|
|
|
S
|
|
|
T

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(Gn(y),Hn(z))

I
J
J
J
J
J
K

y ∈ U

U
|
|
|
V
|
|
|
W

x ∈ U

U
|
|
|
|
V
|
|
|
|
W

I
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K

= max

F
G
G
G
G
H

Sup{min eF ′(x),RF1 ′,H1 (x, z)j x ∈ U} ,
...
Sup{min eF ′(x),RFn ′,Hn (x, z)j x ∈ U}

I
J
J
J
J
K

= max F
HΦ

RF1 ′,H1 (F ′)(z),… ,ΦRFn ′,Hn
(F ′)(z)IK

= FITAR1,2(F ′)(z).

Thus, the theorem is proved. �
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From the proof of theorem 3, we can observe the following corollary. For every
i ∈ k1,… ,np, we define a new fuzzy set Hi′ by

Hi′(x) =def (H1 ∩ Hi,1) ∪ ⋅⋅ ⋅∪ (Hn ∩ Hi,n)

where for every z ∈ U and i, j ∈ k1,… ,np,

Hi, j(z) =def hgt(G j ∩ Gi).(18)

Then, we define a new rule base R∗
1,2 by

R∗
1,2 :

IF F1 THEN H1′
...

IF Fn THEN Hn′
(19)

Corollary 4
For all rule bases R1 and R2 of the form (6), FITAR1 °FITAR2 = FITAR

∗
1,2.

Proof
We proceed as in the proof of theorem 3, yielding

FITAR1 °FITAR2(F ′)(z)

= max

F
G
G
G
G
H

Sup{min eFITAR1(F ′)(y),min(G1(y),H1(z))j y ∈ U} ,
...
Sup{min eFITAR1(F ′)(y),min(Gn(y),Hn(z))j y ∈ U}

I
J
J
J
J
K

= max

F
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
H

Sup

R
|
|
|
|
S
|
|
|
|
T

Sup

R
|
|
|
S
|
|
|
T

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(G1(y),H1(z))

I
J
J
J
J
J
K

x ∈ U

U
|
|
|
V
|
|
|
W

y ∈ U

U
|
|
|
|
V
|
|
|
|
W

,

...

Sup

R
|
|
|
|
S
|
|
|
|
T

Sup

R
|
|
|
S
|
|
|
T

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(Gn(y),Hn(z))

I
J
J
J
J
J
K

x ∈ U

U
|
|
|
V
|
|
|
W

y ∈ U

U
|
|
|
|
V
|
|
|
|
W

I
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K
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= Sup

R
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
T

Sup

R
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
T

max

F
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
H

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(G1(y),H1(z))

I
J
J
J
J
J
K

,

...

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(Gn(y),Hn(z))

I
J
J
J
J
J
K

I
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K

x ∈ U

U
|
|
|
|
|
|
|
|
V
|
|
|
|
|
|
|
|
W

y ∈ U

U
|
|
|
|
|
|
|
|
|
V
|
|
|
|
|
|
|
|
|
W

For the term inside the supremum, we obtain

max

F
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
H

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(G1(y),H1(z))

I
J
J
J
J
J
K

,

...

min

F
G
G
G
G
G
H

max

F
G
G
G
H

min(F ′(x),min(F1(x),G1(y))),
...
min(F ′(x),min(Fn(x),Gn(y)))

I
J
J
J
K
,

min(Gn(y),Hn(z))

I
J
J
J
J
J
K

I
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K

= max

F
G
G
G
G
G
G
G
G
G
G
G
H

max

F
G
G
G
H

min bmin(F ′(x),min(F1(x),G1(y))),min(G1(y),H1(z))g ,
...
min bmin(F ′(x),min(Fn(x),Gn(y))),min(G1(y),H1(z))g

I
J
J
J
K
,

...

max

F
G
G
G
H

min bmin(F ′(x),min(F1(x),G1(y))),min(Gn(y),Hn(z))g ,
...
min bmin(F ′(x),min(Fn(x),Gn(y))),min(Gn(y),Hn(z))g

I
J
J
J
K

I
J
J
J
J
J
J
J
J
J
J
J
K
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= max

F
G
G
G
G
G
G
G
G
G
G
G
H

max

F
G
G
G
H

min bF ′(x),min(F1(x),min(min(G1(y),G1(y)),H1(z)))g ,
...
min bF ′(x),min(Fn(x),min(min(Gn(y),G1(y)),H1(z)))g

I
J
J
J
K
,

...

max

F
G
G
G
H

min bF ′(x),min(F1(x),min(min(G1(y),Gn(y)),Hn(z)))g ,
...
min bF ′(x),min(Fn(x),min(min(Gn(y),Gn(y)),Hn(z)))g

I
J
J
J
K

I
J
J
J
J
J
J
J
J
J
J
J
K

= max

F
G
G
G
G
G
G
G
G
G
G
G
H

max

F
G
G
G
H

min bF ′(x),min(F1(x),min(min(G1(y),G1(y)),H1(z)))g ,
...
min bF ′(x),min(F1(x),min(min(G1(y),Gn(y)),Hn(z)))g

I
J
J
J
K
,

...

max

F
G
G
G
H

min bF ′(x),min(Fn(x),min(min(Gn(y),G1(y)),H1(z)))g ,
...
min bF ′(x),min(Fn(x),min(min(Gn(y),Gn(y)),Hn(z)))g

I
J
J
J
K

I
J
J
J
J
J
J
J
J
J
J
J
K

= max

F
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
H

min

F
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
H

F1(x),max

F
G
G
G
H

min(min(G1(y),G1(y)),H1(z))),
...
min(min(G1(y),Gn(y)),Hn(z)))

I
J
J
J
K

I
J
J
J
J
K

I
J
J
J
J
J
K

,

...

min

F
G
G
G
G
G
H

F ′(x),min

F
G
G
G
G
H

Fn(x),max

F
G
G
G
H

min(min(Gn(y),G1(y)),H1(z))),
...
min(min(Gn(y),Gn(y)),Hn(z)))

I
J
J
J
K

I
J
J
J
J
K

I
J
J
J
J
J
K

I
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K

.

From this point, we proceed exactly as in the proof of theorem 3, step (15). �

Example 2 For the rule base from example 1, we obtain the new rule base

R∗
1,2 :

IF F1 THEN H1′
IF F2 THEN H2′
IF F3 THEN H3′

(20)

where the fuzzy sets Hi′ are given as illustrated in the following diagrams:

15



0

0.5

1.0

U

H1

0

0.5

1.0

U

H2

0

0.5

1.0

U

H3

3 A Generalization of the M AMDANI Case

We discuss a generalization of the MAMDANI inference, where the minimum is re-
placed by a binary operator κ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉.

We associate with a fuzzy IF-THEN rule

IFF THENG

an interpretation RF,G
κ in the form of a binary fuzzy relation on U , i. e.

RF,G
κ : U ×U → 〈0,1〉.

RF,G
κ (x,y) =def κ(F(x),G(y)) (x,y ∈ U )(21)

Given a fuzzy relation R : U ×U → 〈0,1〉 and a binary operator κ : 〈0,1〉×〈0,1〉 → 〈0,1〉,
we define a functional operator ΦR

κ taking a fuzzy set F ′ : U → 〈0,1〉 to G′ : U → 〈0,1〉,
as follows, for y ∈ U .

ΦR
κ(F ′)(y) =def Supmκ bF ′(x),R(x,y)g x ∈ Ur(22)

Given a rule base

R :

IF F1 THEN G1
...

IF Fn THEN Gn

the operators FATI and FITA are defined as in section 2, using the functional operator
ΦR

κ . We still use the maximum operator for aggregation, that is, the combined fuzzy
relation RRκ is defined exactly as in section 2, by

RRκ =def RF1,G1
κ ∪ ⋅ ⋅ ⋅ ∪ RFn,Gn

κ

For an input fuzzy set F ′ on U , we define

FITARκ (F ′) =def ΦR
F1 ,G1
κ

κ (F ′) ∪ ⋅⋅ ⋅ ∪ ΦRFn,Gn
κ

κ (F ′)

FATIRκ (F ′) =def ΦRRκ
κ (F ′)

Again, we can cite the following theorem from the literature:

16



Theorem 5
If κ is non-decreasing wrt. the second argument, then for every rule base R,
FITARκ = FATIRκ .

Again, we (arbitrarily) choose the principle FITA for the rest of this section.

Given two rule bases

R1 :

IF F1 THEN G1
...

IF Fn THEN Gn

R2 :

IF G1 THEN H1
...

IF Gn THEN Hn

(23)

we define a new rule base R1,2 as follows.

For every i ∈ k1,… ,np, we define a new fuzzy set Fi′ by

Fi′ =def (F1 κ∩ Fi,1) ∪ ⋅⋅ ⋅∪ (Fn κ∩ Fi,n)(24)

where for every x ∈ U and i, j ∈ k1,… ,np,

Fi, j(x) =def hgt(G j κ∩ Gi).

The new rule base R1,2 is then defined by

R1,2 :

IF F1′ THEN H1
...

IF Fn′ THEN Hn

(25)

We can then formulate the following theorem:

Theorem 6
For all rule bases R1 and R2 of the form (23) and every κ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉, if κ
is non-decreasing, associative and continuous, then FITAR1

κ °FITAR2
κ = FITAR1,2

κ .

Proof
The proof is analogous to the proof of theorem 3. Here, we only note the points where
we need the respective properties of κ.

By expanding definitions, we get for F ′ : U → 〈0,1〉 and z ∈ U :

FITAR1
κ °FITAR2

κ (F ′)(z)

= max

F
G
G
G
G
G
G
H

Sup
R
S
T
κ F
HFITAR1

κ (F ′)(y),κ(G1(y),H1(z))IK y ∈ U
U
V
W

,

...

Sup
R
S
T
κ F
HFITAR1

κ (F ′)(y),κ(Gn(y),Hn(z))IK y ∈ U
U
V
W

I
J
J
J
J
J
J
K

.

17



For the term enclosed in the supremum, we get the following equation for every
i ∈ k1,… ,np. We only have to employ the continuity and non-decreasingness of κ in
step (12).

κ F
HFITAR1

κ (F ′)(y),κ(Gi(y),Hi(z))IK

= Sup

R
|
|
S
|
|
T

κ

F
G
G
G
G
H

max

F
G
G
G
H

κ(F ′(x),κ(F1(x),G1(y))),
...
κ(F ′(x),κ(Fn(x),Gn(y)))

I
J
J
J
K
,κ(Gi(y),Hi(z))

I
J
J
J
J
K

x ∈ U

U
|
|
V
|
|
W

.

For the term enclosed in the supremum, we get, by employing the non-decreasingness
of κ in steps (13) and (15) and the associativity of κ in steps (14) and (15),

κ

F
G
G
G
G
H

max

F
G
G
G
H

κ(F ′(x),κ(F1(x),G1(y))),
...
κ(F ′(x),κ(Fn(x),Gn(y)))

I
J
J
J
K
,κ(Gi(y),Hi(z))

I
J
J
J
J
K

= κ

F
G
G
G
G
G
H

F ′(x),κ

F
G
G
G
G
H

max

F
G
G
G
H

κ(F1(x),κ(G1(y),Gi(y))),
...
κ(Fn(x),κ(Gn(y),Gi(y)))

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

.

By employing the non-decreasingness and continuity of κ in steps (16) and (17), we
obtain

Sup

R
|
|
|
S
|
|
|
T

κ

F
G
G
G
G
G
H

F ′(x),κ

F
G
G
G
G
H

max

F
G
G
G
H

κ(F1(x),κ(G1(y),Gi(y))),
...
κ(Fn(x),κ(Gn(y),Gi(y)))

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

y ∈ U

U
|
|
|
V
|
|
|
W

= κ

F
G
G
G
G
G
H

F ′(x),κ

F
G
G
G
G
H

max

F
G
G
G
H

κ(F1(x),hgt(G1 κ∩ Gi)),
...
κ(Fn(x),hgt(Gn κ∩ Gi))

I
J
J
J
K
,Hi(z)

I
J
J
J
J
K

I
J
J
J
J
J
K

= κ cF ′(x),κ bFi′(x),Hi(z)gh

= κ F
HF ′(x),RFi ′,Hi

κ (x, z)IK .

The rest of the proof is identical to the proof of theorem 3. �
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Remark
The assumptions made in the theorem above wrt. κ include the case that κ is a t-norm.

Again, we obtain the following corollary. For every i ∈ k1,… ,np, we define a new
fuzzy set Hi′ by

Hi′(x) =def (H1 κ∩ Hi,1) ∪ ⋅⋅ ⋅∪ (Hn κ∩ Hi,n)

where for every z ∈ U and i, j ∈ k1,… ,np,

Hi, j(z) =def hgt(G j κ∩ Gi).(26)

Then, we define a new rule base R∗
1,2 by

R
∗
1,2 :

IF F1 THEN H1′
...

IF Fn THEN Hn′
(27)

Corollary 7
For all rule bases R1 and R2 of the form (23) and every κ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉, if κ

is non-decreasing, associative and continuous, then FITAR1
κ °FITAR2

κ = FITA
R

∗
1,2

κ .

Proof
Identical to the proof of corollary 4. �

4 Conclusions

It should be obvious that theorem 6 offers a powerful tool for reducing the size and the
complexity of multiple-stage fuzzy IF-THEN rule bases for some common inference
systems. Still, it is interesting to discuss some further results and directions for future
research.

4.1 Additional results

Additionally to the two main theorems 3 and 6, we can obtain the following interesting
results. As theorem 3 is a special case of theorem 6, we shall refer only to theorem 6
in the following.

4.1.1 Combination of Arbitrary Rule Bases

To maintain the connection with the chaining results from [14, 15], we have so far as-
sumed the given rule bases to be of the form (23), i. e. we have assumed that the con-
clusions of the first rule base are exactly the premises of the second.
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Inspection of the proof of theorem 6 yields that in fact, the theorem is independent of
this assumption. That is, we can assume two rule bases

R1 :

IF F1 THEN G1
...

IF Fn THEN Gn

R2 :

IF G1′ THEN H1
...

IF Gm′ THEN Hm

(28)

to be given where n,m are positive integers and G1,… ,Gn,G1′,… ,Gm′ are arbitrary
fuzzy sets on U , and define a new rule base R1,2 as follows.

For every i ∈ k1,… ,mp, we define a new fuzzy set Fi′ by

Fi′ =def (F1 κ∩ Fi,1) ∪ ⋅⋅ ⋅∪ (Fn κ∩ Fi,n)

where for every x ∈ U and i ∈ k1,… ,mp, j ∈ k1,… ,np,

Fi, j(x) =def hgt(G j κ∩ Gi′).(29)

The new rule base R1,2 is then defined by

R1,2 :
IF F1′ THEN H1

...
IF Fm′ THEN Hm

(30)

We can then formulate the following theorem:

Theorem 8
For all rule bases R1 and R2 of the form (28) and every κ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉, if κ
is non-decreasing, associative and continuous, then FITAR1

κ °FITAR2
κ = FITAR1,2

κ .

Proof
Identical to the proof of theorem 6. �

With theorem 8, we have obtained the most general result, enabling us to reduce prac-
tically every multiple-stage inference of MAMDANI style.

Of course, an analogous result to corollary 7 can also be proved.

4.1.2 Reduction of More than Two Steps

Obviously, if we are given rule bases with more than two stages, then the reduction
process may be iterated. By the result of theorem 8, we are completely free respecting
the order of reduction steps.

Thus, we can conclude that whenever inference is carried out in the (generalized)
MAMDANI style presented here, every multi-stage rule base may be reduced to a
single-stage rule base.
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4.1.3 Criteria for Chainability

In [14,15], chainability of rule bases interpreted by FITA has been defined as follows:

Definition 1
Given two rule bases

R1 :

IF F1 THEN G1
...

IF Fn THEN Gn

R2 :

IF G1 THEN H1
...

IF Gn THEN Hn

we define the following rule base:

R
C
1,2 :

IF F1 THEN H1
...

IF Fn THEN Hn

We say that R1 and R2 are chainable wrt. κ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉
=def FITAR1

κ °FITAR2
κ = FITA

R
C
1,2

κ .

Different criteria for chainability have been derived in [14,15], but so far the (general-
ized) MAMDANI case has not been characterized. Using the result of theorem 6, we can
now formulate criteria for the chainability in the (generalized) MAMDANI case. First
of all, we obtain

Lemma 9
For all rule bases R1 and R2 of the form (28) and every κ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉, if κ
is non-decreasing, associative and continuous, then R1 and R2 are chainable wrt. κ if

and only if FITA
R

C
1,2

κ = FITAR1,2
κ (where R1,2 is defined by (25)).

By inspection of the rule bases RC
1,2 and R1,2, we can derive more convenient criteria.

We concentrate on the following criterium:

Lemma 10
For all rule bases R1 and R2 of the form (28) and every κ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉, if κ
is non-decreasing, associative and continuous, then R1 and R2 are chainable wrt. κ if
for every i ∈ k1,… ,np, Fi′ = Fi (where Fi′ is defined by (24)).

Proof
Trivially, RC

1,2 = R1,2 in this case. �

Of course FITA
R

C
1,2

κ = FITAR1,2
κ is a weaker condition than RC

1,2 = R1,2, that is, there

may be cases when RC
1,2 ≠ R1,2, but still FITA

R
C
1,2

κ = FITAR1,2
κ . This is the reason for

replacing the “if and only if” condition in Lemma 9 by “if” in Lemma 10.

21



If RC
1,2 ≠ R1,2, but FITA

R
C
1,2

κ = FITAR1,2
κ holds, this is a sign that there is some ‘redun-

dancy’ in the rule bases R1,R2. Thus by accepting the stronger condition RC
1,2 = R1,2,

we are saying that all information present in R1,R2 is actually needed.

The criterion Fi′ = Fi for every i ∈ k1,… ,np is already easily testable: we simply cal-
culate Fi′ and compare.

For a faster testing procedure, we can derive a simpler criterion, under certain additional
assumptions.

Lemma 11
1. For i ∈ k1,… ,np, if Gi is normal, then Fi j Fi′.

2. For i ∈ k1,… ,np, Fi′ j Fi holds if and only if for every j ∈ k1,… ,np,
Fj κ∩ Fi, j j Fi.

Proof
Trivial from the definitions. �

Thus, a criterion for Fi′ = Fi is derived by the combination of items 1 and 2 of the lemma
above. Especially criterion 2 is very strong, however. Indeed, inspection of the criteria
derived so far leads to the result that apart from trivial borderline cases, chainability
for MAMDANI style inference systems will only be achieved if all the Gi are normal
and for all i, j ∈ k1,… ,np with i ≠ j, Gi and G j do not overlap (compare example 1), a
condition which can hardly be met.

This situation is different for the generalized MAMDANI case, however, because if κ is
chosen to be, for instance, a t-norm other than the minimum, criterion 2 of Lemma 11
is less strong because every t-norm lies below the minimum and thus Fj κ∩Fi, j is likely
to be smaller than Fj ∩ Fi, j, making it more easy to fulfill criterion 2.

If chainability is desired, it is thus advisable to consider generalized MAMDANI infer-
ence systems, for instance bold inference, using the bold t-norm for κ.

4.2 Further Research

The “generalized” MAMDANI case presented here is actually not very general. In appli-
cations, often different t-norms are employed for the interpretation of a rule as a fuzzy
relation (equation (21)) and for the definition of the inference operator (equation (22)).
Inspection of the proof of theorem 6 yields that our reduction method is likely not to
be applicable to this case in full generality (see especially step (14) in the proof of the-
orem 3). We have to develop additional criteria under which the reduction method is
applicable in more general cases of inference procedures.

Furthermore, in section 4.1.3 we did not derive an “if and only if” criterion for chain-
ability which can be checked by inspection of a rule base. However, starting from
lemma 9, it may be possible to obtain such a result.
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