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On Closure Operators in Fuzzy Algebras and Fuzzy Deductive Systems∗

Helmut Thiele

The starting point of this paper is the classical well-known theorem due to
G. BIRKHOFF, P. HALL, and J. SCHMIDT which establishes a one-to-one cor-
respondence between compact closure operators, inductive closure operators,
inductive closure systems, and closure operators generated in universal alge-
bras (and generated in deductive systems, respectively). In the paper presented
we make first steps in order to generalize this important theorem to the fuzzy
set theory and fuzzy algebra (and fuzzy deductive systems, respectively).

Keywords Compact Closure Operators, Inductive Closure Operators, Inductive Closure
Systems, Universal Algebras, Deductive Systems, Fuzzification

1 Introduction

For arbitrary crisp sets A and B by A∩B, A∪B, and ArB we denote the usual intersection,
union, and difference of A and B, respectively, furthermore Aj B means that A is a subset
of B. For an arbitrary system A of sets by ∩A and ∪A we denote the intersection and
the union of all sets ofA, respectively. If we have a family (Ai i ∈ I) of sets Ai, then we write

∩i∈I Ai and ∪i∈I Ai. The cardinal number of A is denoted by cardA, the power set of A
by P(A), the empty set by ∅, and the empty sequence of elements of a set by e. Hence we
define A0 =def kep. An =def the set of all sequences of elements of A with the length n where
n is an integer with n= 1. Finally, we define A∗ =def ∪n∈NAn whereN = k0,1, ⋅ ⋅ ⋅p.

For compact denotation in the following we shall use sometimes the symbolic of pred-
icate calculus, i. e. ∀x as “for every x”, ∃x as “there is an x”, ∧ as “and”, ∨ as “or”, → as
“if - then”, ↔ as “if and only if”, ¬ as “not”.

Remember the definition of a complete lattice

L = [L, ⋅∧, ⋅∨,0,u]

with the domain L, the intersection operator ⋅∧, the union operator ⋅∨, the zero element 0, and
the unit element u.

Remember that by the definition

x≺= y =def x ⋅∧y = x (x,y ∈ L)

there is introduced a partial order on L. For K j L by infK and supK we denote the infimum
and the supremum of K with respect to ≺=, respectively. A set Cj L is said to be a chain of
L if and only if

∀x∀y cx,y ∈ C → x≺= y ∨ y≺= xh .

Let5 be the natural ordering of real numbers. For an arbitrary set S of real numbers by InfS
and SupS we denote the infimum and the supremum of S with respect to5, respectively. By
〈0,1〉 we denote the set of all real numbers r with 05 r 5 1.

Let U be an arbitrary non-empty set called universe. A fuzzy set F on U is a mapping
F : U → 〈0,1〉, i. e. we do not distinguishbetween a fuzzy set F and its membership function
µF . The set of all fuzzy sets on U is denoted by FP(U).

∗Long version of a paper originally published in 28th InternationalSymposium on Multiple-Valued Logic (ISMVL
’98), Fukuoko, Japan, May 27–29, 1998
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We introduce the empty fuzzy set ///© onU and the universal fuzzy set ///U onU , respectively,
for every x ∈ U defined by

///©(x) = 0
and ///U(x) = 1 .

As usual we define the support supp(F) of a fuzzy set F on U by

supp(F) = lx x ∈ U ∧ F(x) > 0q .

A fuzzy set F is said to be finite and a singleton if and only if supp(F) is finite and
cardsupp(F) = 1, respectively.

For F,G ∈ FP(U) as usual we put

F vG =def ∀x cx ∈ U → F(x)5 G(x)h

and for x ∈ U we define

(F uG)(x) =def min aF(x),G(x)f
(F tG)(x) =def max aF(x),G(x)f .

Furthermore, for arbitrary Fj FP(U), x ∈ U we put

(INFF)(x) =def InflF(x) F ∈ Fq
(SUPF)(x) =def SuplF(x) F ∈ Fq .

Remark
The operations u,t, INF,SUP are defined in the “standard sense” and used throughout the
paper presented. In a forthcoming paper we shall discuss the case if min and max are re-
placed by an arbitrary t-norm τ and an s-Norm (t-conorm) σ, respectively. Furthermore,
INF and SUP should be replaced by the quantifier Qτ and Qσ, respectively (see [16–19]).

Finally, remember the following

Theorem 1

L = [P(U),∩,∪,∅,U]

and

L = [FP(U),u,t, ///©, ///U]

are complete lattices.

In the following chapters 2 and 3 we repeat some facts more or less well-known from
lattice theory and universal algebra.
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2 A Bijection between Closure Operators and
Closure Systems of Complete Lattices

Let L = [L, ⋅∧, ⋅∨,0,u] be a complete lattice. Assume that ϕ : L → L and C j L.

Definition 1
1. ϕ is said to be monotone on L =def ∀x∀y(x,y ∈ L ∧ x≺= y → ϕ(x) ≺= ϕ(y))

2. ϕ is said to be embedding on L =def ∀x(x ∈ L → x≺= ϕ(x))

3. ϕ is said to be closed on L =def ∀x(x ∈ L →ϕ(ϕ(x)) ≺= ϕ(x))

4. ϕ is said a closure operator of L =def ϕ fulfils the conditions 1, 2, and 3.

Definition 2
C is said to be a closure system of L =def ∀D(DjC → infD ∈ C)

Definition 3
1. SET(ϕ) =def mc c ∈ L ∧ ϕ(c)≺= cr
2. FCT(C)(x) =def infmy x≺= y ∧ y ∈ Cr

Lemma 2
If ϕ is monotone on L, then SET(ϕ) is a closure system of L.

Proof
Assume

D j SET(ϕ), i. e.(1)

∀d(d ∈ D →ϕ(d)≺= d)(2)

We have to prove

ϕ(infD)≺= infD.(3)

In order to prove (3) it is sufficient to show

∀d(d ∈ D →ϕ(infD)≺= d)(4)

From d ∈ D we get

infD≺= d(5)

hence by monotonicity of ϕ

ϕ(infD)≺= ϕ(d)(6)

hence by (2) we obtain (4). �

Lemma 3
If ϕ is embedding and closed on L, then

∀x(x ∈ L → FCT(SET(ϕ))(x)≺= ϕ(x))
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Proof
By definition 3 we have

FCT(SET(ϕ))(x)

= infmy x≺= y ∧ y ∈ SET(ϕ)r
= infmy x≺= y ∧ ϕ(y)≺= y ∧ y ∈ Lr

(1)

In order to prove lemma 3 it is sufficient to show

∃y0(y0 ∈ L ∧ x≺= y0 ∧ ϕ(y0)≺= y0).(2)

We put

y0 =def ϕ(x).(3)

Then we get

ϕ(x) ∈ L,(4)

x≺= ϕ(x) by embedding of ϕ,(5)

ϕ(ϕ(x)) ≺= ϕ(x) by closedness of ϕ,(6)

hence lemma 3 holds.

�

Lemma 4
If ϕ is monotone on L, then

∀x(x ∈ L → ϕ(x)≺= FCT(SET(ϕ))(x))

Proof
For every x ∈ L we have to prove

ϕ(x)≺= infmy y ∈ L ∧ x≺= y ∧ ϕ(y)≺= y)r .(1)

In order to prove (1) it is sufficient to show

∀y(y ∈ L ∧ x≺= y ∧ ϕ(y)≺= y →ϕ(x) ≺= y)(2)

From x≺= y by monotonicity of ϕ we get ϕ(x) ≺= ϕ(y), hence ϕ(x) ≺= y because of ϕ(y)≺= y.
�

Theorem 5
If ϕ is a closure operator of L, then

FCT(SET(ϕ)) = ϕ

Proof
By lemma 3 and lemma 4 �

Corollary 6
SET is an injection from the set of all closure operators ofL into the set of all closure systems
of L.

Proof
By lemma 2 and theorem 5 �
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Lemma 7
For every subset C j L,

1. FCT(C) is embedding and

2. FCT(C) is monotone.

Proof
Trivially on the basis of definition 3 �

Lemma 8
For every subset C j L,
if C is a closure system of L, then

1. FCT(C) is a closure operator and

2. SET(FCT(C))jC.

Proof
ad 1 Because of lemma 7 it is sufficient to show that FCT(C) is closed, i. e.

∀x(x ∈ L → FCT(C)(FCT(C)(x))≺= FCT(C)(x).(1)

On the basis of definition 3 it is sufficient to show

infmy FCT(C)(x)≺= y ∧ y ∈ Cr≺= FCT(C)(x)(2)

In order to prove (2) it is sufficient to show

∃y(|FCT (C)(x)≺= y ∧ y ∈ C ∧ y≺= FCT(C)(x))(3)

We put

y =def FCT(C)(x) .(4)

In order to prove (3) it is sufficient to show

FCT(C)(x) ∈ C .(5)

But, (5) holds because C is a closure system.

ad 2 We have to show

∀x(x ∈ L ∧ x ∈ SET(FCT(C)) →x ∈ C)(6)

For x ∈ L we assume

x ∈ SET(FCT(C)),(7)

hence by definition of SET

FCT(C)(x)≺= x(8)

Because of lemma 7, FCT(C) is embedding, i. e.

x≺= FCT(C)(x),(9)

hence from (8) and (9) we get

FCT(C)(x) = x .(10)
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Furthermore, by definition 3 we have

FCT(C)(x) = infmy x≺= y ∧ y ∈ Cr(11)

Now, we assumed that C is a closure system, hence

infmy x≺= y ∧ y ∈ Cr ∈ C,(12)

hence by (10) we get x ∈ C.

�

Lemma 9
For every subset C j L,

C j SET(FCT(C)) .

Proof
Assume

x ∈ C(1)

In order to prove

x ∈ SET(FCT(C)),(2)

using the definition of SET it is sufficient to show

FCT(C)(x)≺= x,(3)

hence by definition of FCT it is sufficient to show

infmy x≺= y ∧ y ∈ Cr≺= x .(4)

But (4) holds because of x ∈ C. �

Theorem 10
If C is a closure system of L, then SET(FCT(C)) = C.

Proof
By lemma 8 and lemma 9 �

Corollary 11
1. SET is a bijection from the set of all closure operators of L onto the set of all closure

systems of L.

2. FCT is the inversion of the mapping SET.

Proof
By theorem 5 and theorem 10 �

Now, we are going to add some concepts of topology.

Definition 4
1. ϕ is said to be a a topological mapping on L

=def ∀x∀y(x,y ∈ L →ϕ(x ∨ y) ≺= ϕ(x) ∨ ϕ(y))

2. C is said to be a topological set of L
=def ∀X(X jC ∧ X is finite ∧ X is not empty →SupX ∈ C)
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Lemma 12
If ϕ is a topological mapping on L, then SET(ϕ) is a topological set of L.

Proof
Let X be an arbitrary non-empty finite subset of L. Because ϕ is a topological mapping, we
get

ϕ(supX)≺= suplϕ(x) x ∈ Xq(1)

Now, we assume additionally that

X j SET(ϕ), i. e. ∀x(x ∈ X → ϕ(x)≺= x),(2)

hence we get

suplϕ(x) x ∈ Xq ≺= supX,(3)

consequently (1) and (3) imply

ϕ(supX) ≺= supX, i. e. supX ∈ SET(ϕ)(4)

�

Lemma 13
If C is a closure system of L and C is a topological set of L, then FCT(C) is a topological
mapping on L.

Proof
We have to prove

∀x∀y cx,y ∈ L →FCT(C)(x ⋅∨y) ≺= FCT(C)(x) ⋅∨FCT(C)(y)h(1)

In order to prove (1) it is sufficient to show

infmz x ⋅∨y≺= z ∧ z ∈ Cr≺= infmz x≺= z ∧ z ∈ Cr ⋅∨ infmz y≺= z ∧ z ∈ Cr(2)

Because C is a closure system of L, we have

infmz x≺= z ∧ z ∈ Cr ∈ C(3)

and

infmz y≺= z ∧ z ∈ Cr ∈ C,(4)

hence, because C is a topological set of L, we get

infmz x≺= z ∧ z ∈ Cr ⋅∨ infmz y≺= z ∧ z ∈ Cr ∈ C(5)

Thus, in order to prove (2), it is sufficient to show

x ⋅∨z≺= infmz x≺= z ∧ z ∈ Cr ⋅∨ infmz y≺= z ∧ z ∈ Cr(6)

But (6) follows from

x≺= infmz x≺= z ∧ z ∈ Cr(7)

and

y≺= infmz y≺= z ∧ z ∈ Cr .(8)

�
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Theorem 14
If ϕ is a closure operator of L, then
ϕ is a topological mapping on L if and only if SET(ϕ) is a topological set of L.

Proof
ad 1 (E) Trivial by lemma 12

ad 2 (D) By theorem 5 we have

ϕ = FCT(SET(ϕ)) .(1)

Hence by lemma 13 it is sufficient to show that

SET(ϕ) is a closure system of L(2)

and

SET(ϕ) is a topological set of L .(3)

But, (2) holds because of lemma 2. Furthermore, (3) is an assumption in case consid-
ered.

�

Theorem 15
If C is a closure system, then
C is a topological set of L if and only if FCT(C) is a topological mapping of L.

Proof
ad 1 (E) Trivially by lemma 13

ad 2 (D) Because C is a closure system, by theorem 10 we get

C = SET(FCT(C)),(1)

hence by lemma 12, it is sufficient to show that

FCT(C) is a topological mapping of L .(2)

But, (2) holds by assumption in case considered.

�

3 On Compactness of Classical Closure Operators.
Algebraic Closure Operators. The Theorem of
G. BIRKHOFF, P. HALL, and J. SCHMIDT.

We continue with the formulation of the fundamentel theorem due to G. BIRKHOFF, P.
HALL, and J. SCHMIDT which is important in many branches of algebra and which gives an
algebraic characterization of the (classical) monotonic reasoning (see [9], also [6]). In par-
ticular, by this theorem the range of applicability of ZORNs lemma is well defined (see [9]).

In order to formulate this theorem, we fix an arbitrary non-empty set U and consider the
complete lattice

L = [P(U),∩,∪,∅,U]
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whereP(U) is the power set of U , ∩ and ∪ are the set-theoretical intersection and union of
subsets of U , respectively. Furthermore, ∅ denotes the empty set, and the set U plays the
role of the unit element of L.

Because L is a complete lattice all the considerations, concepts, and results of chapter 2
can be applied to L.

For a mapping Φ :P(U) →P(U) and a system CjP(U) of subsets of U we define the
following well-known fundamental concepts:

Definition 5
1. Φ is said to be compact on L

=def ∀X∀y dX jU ∧ y ∈ Φ(X) → ∃Xfin(Xfin j X ∧ Xfin is finite ∧ y ∈ Φ(Xfin))i

2. Φ is said to be strongly compact on L

=def ∀X∀y
F
G
H
X jU ∧ y ∈ X ∧ y ∈ Φ(X) →

∃Xsing(Xsing j X ∧ cardXsing 5 1 ∧ y ∈ Φ(Xsing))

I
J
K

3. Φ is said to be inductive on L

=def ∀K
F
HKjP(U) ∧K /= 0 ∧K is a chain → Φ(∪K)j∪lΦ(K) K ∈ KqIK

4. C is said to be inductive on L

=def ∀K
F
HKj C∧K /= 0 ∧K is a chain →∪K ∈ C

I
K

In order to describe the generation of closure operators by universal algebras and deduc-
tive systems, respectively, we introduce the followingnotions. Let n be an integer with n= 0
and assume that X jU .

Definition 6
1. ω is said to be a (total) n-ary operation on U if and only if ω is a mapping

ω : Un → U (n= 0) .

If n is not specified, we will speak of a finitary operation on U .

2. A = [U,Ω] is said to be a (total) algebra on U if and only if Ω is a set of finitary
operations on U .

3. For given X jU we put

Ω(X) =def
R
S
T
y

there exists an integer n= 0, an n-ary operation ω ∈ Ω
and x1, … , xn ∈ X such that y = ω(x1, … , xn)

U
V
W

4. X jU is said to be Ω-closed if and only if Ω(X) j X .

Definition 7
1. ΦC(X) =def ∩mC X jC ∧C ∈ Cr
2. ΦΩ(X) =def ∩oC X jC jU ∧ Ω(C)jCt
3. CΦ =def mC C jU ∧ Φ(C)jCr
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4. CΩ =def oC CjU ∧ Ω(C)jCt

For many applications, in particular in logic, it is convenient to generalize the notion of
determininistic finitary operation introduced by definition 6 to the concept of finitary non-
deterministic, partial operation (see [9]). With respect to applications in logic, we prefer
the term deduction rule in this case.

Definition 8
1. d is said to be an n-ary deduction rule on U if and only if

d jUn ×U (n= 0) .

If n is not specified, then d is called a finitary deduction rule on U .

2. ϑ = [U,D] is said to be a deductive system on U if and only if D is a set of finitary
deduction rules on U , i. e. if DjU∗ ×U .

3. For given X jU we put

D(X) =def
R
S
T
y

there exists a natural number n= 0,n-ary deduction rule
d ∈ D and x1, … , xn ∈ X such that [x1, … , xn; y] ∈ d

U
V
W

.

4. X jU is said to be D-closed if and only if D(X)j X .

5. ΦD(X) =def ∩nC X jC jU ∧ D(C)jCs
6. CD(X) =def nC CjU ∧ D(C)jCs

Remark
The definitions of ΦC , ΦΩ, and ΦD correspond to the definition of FCT(C) (see definition
3). Analogously, the definitions of CΦ, CΩ, and CD correspond to the definition of SET(C))
(see definition 3).

Now, we are able to formulate the theorem due to G. BIRKHOFF, P. HALL, and
J. SCHMIDT:

Theorem 16
If Φ is a closure operator on L, then the following propositions 1, 2, 3, 4, and 5 are pairwise
equivalent:

1. Φ is compact on L.

2. Φ is inductive on L.

3. CΦ is inductive on L.

4. there exists a set Ω of finitary operations on U such that Φ = ΦΩ.

5. there exists a set D of finitary deduction rules on U such that Φ = ΦD.

Remarks

1. Concerning history, we want to mention that the role of compactness in studying logi-
cal consequence operators was discovered and investigated by A. TARSKI in [11–13]
and emphasized by K. SCHRÖTER in [10]. A. MALCEV introduced the model the-
oretic version of compactness and established its applicability in several branches of
algebra (see [8]).

2. The equivalence of 3 and 4 was first proved by J. SCHMIDT in [9], but accord-
ing to P. COHN in [6], page 81, is an unpublished result of P. HALL, and probably
G. BIRKHOFF knew this result (at least part of it) even eearlier (see [1–4]).
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3. The equivalence of 1 and 3 was also discovered by J. SCHMIDT and first proved in [9].
He also pointed out the importance of inductive systems of sets for applying ZORN’s
lemma, where it should be mentioned that the notion of inductiveness can already be
found in [5].

4. A proof for the equivalence of 3 and 5 can also be found in [9], with the only difference
that the term “finitary deduction rule” is not used there.

5. The equivalence of 2 and 3 is added in this paper. A proof can be carried out easily
by using the methods developed in [9].

6. Using the concept of Clone (see [6], for instance) we can prove the following mod-
ification of theorem 16: In proposition 4 and 5 Ω and D can be taken to be clones
of operations and deduction rules, respectively, where a clone of deduction rules is
defined in the same way as a clone of operations. If we intend to construct a clone
of operations (or deduction rules) by a given compact closure operator Φ, we shall
see that the existance of the projection operations follows from the reflexivity of Φ,
whereas the monotonicity and the closedness of Φ together imply that the system of
operations (deduction rules) is closed with respect to compositions.

Starting with a closure system, we can prove the following

Theorem 17
If C is a closure system of L, then the following propositions 1, 2, 3, 4, and 5 are pairwise
equivalent:

1. C is inductive on L

2. ΦC is inductive on L

3. ΦC is compact on L

4. there exists a set Ω of finitary operations on U such that C = CΩ

5. there exists a set D of finitary deduction rules on U such that C = CD.

Combining the algebraic with the topological concept we obtain the following (possibly
not very well-known) theorems:

Theorem 18
If Φ is a closure operator on L, then the following propositions 1, 2, 3, 4, 5, and 6 are pair-
wise equivalent:

1. Φ is compact and topological on L;

2. Φ is strongly compact on L;

3. Φ is inductive and topological on L;

4. CΦ is inductive and topological on L;

5. there exists a set Ω of 1-ary operations on U such that Φ = ΦΩ;

6. there exists a set D of 1-ary deduction rules of U such that Φ = ΦD.

Theorem 19
If C is a closure system of L, then the following propositions 1, 2, 3, 4, and 5 are pairwise
equivalent:

1. C is inductive and topological on L

2. ΦC is inductive and topological on L

11



3. ΦC is strongly compact on L

4. there exists a set Ω of 1-ary operations on U such that C = CΩ

5. there exists a set D of 1-ary deduction rules on U such that C = CD.

4 On Closure Operators generated in Fuzzy
Algebras and in Fuzzy Deductive Systems

Now, we intend to “fuzzify” the concepts and results of chapter 3.

We remember that

L = [FP(U),u,t, ///©, ///U]

is a complete lattice where FP(U) is the set of all fuzzy sets on U , furthermore,u and t de-
note the intersection and union of fuzzy sets based on the minimum and maximum function,
respectively, and finally, ///© and ///U are the empty and the universal fuzzy set on U , respec-
tively.

Thus, all considerations of chapter 2 can be applied to the complete lattice L.

For formulating the following definition we assume that Ψ : FP(U) → FP(U),
ϑj FP(U), and I is a prime minimum-ideal from 〈0,1〉.

Definition 9
1. Ψ is said to be compact on L

=def ∀F∀y

F
G
G
G
H

F ∈ FP(U) ∧ y ∈ U

→ ∃Ffin

F
G
H
Ffin ∈ FP(U) ∧ Ffin v F ∧ Ffin is finite

∧ Ψ(F)(y)5Ψ(Ffin)(y)

I
J
K

I
J
J
J
K

2. Ψ is said to be strongly compact on L

=def ∀F∀y

F
G
G
G
H

F ∈ FP(U) ∧ y ∈ U

→ ∃Fsing

F
G
H
Fsing ∈ FP(U) ∧ Fsing v F ∧ Fsing is a singleton

∧ Ψ(F)(y)5Ψ(Fsing(y)

I
J
K

I
J
J
J
K

3. Ψ is said to be inductive on L

=def ∀K cKj FP(U) ∧K /= 0 ∧K is a chainΨ(SUPK)v SUPlΨ(K) K ∈ Kqh

4. ϑ is said to be inductive on L

=def ∀K cKj C∧K /= 0 ∧K is a v -chain → SUPK ∈ Ch

Now, we are going to define the concept of an n-ary fuzzy operation on U and of an n-ary
fuzzy deduction rule on U .

Definition 10
1. π is said to be a (total) n-ary I-fuzzy operation on U

=def a) π : Un ×U → 〈0,1〉 and
b) ∀x1 ⋅ ⋅ ⋅∀xn (x1, … , xn ∈ U → ∃y (y ∈ U ∧ π(x1, … , xn,y) ∈ I)
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c) ∀x1 ⋅ ⋅ ⋅xn∀y∀y′
F
G
H

x1, … , xn,y,y′ ∈ U
∧ π(x1, … , xn,y) ∈ I ∧ π(x1, … , xn,y′) ∈ I → y = y′

I
J
K

If n is not specified we will speak of a (total) finitary I-fuzzy operation on U with
respect to I.

2. F = [U,Π] is said to be a (total) I-fuzzy operation on U
=def Π is a set of (total) finitary I-fuzzy operations on U .

3. For a given fuzzy set F ∈ FP(U) we put

Π(F)(y) =def Sup
R
S
T

min(F(x1), … , F(xn),π(x1, … , xn; y))
n ∈ N ∧ x1, … , xn,y ∈ U ∧ π ∈ Π ∧ π is n-ary

U
V
W

4. F is said to be Π-closed
=def Π(F)v F

5. ΨΠ(F) =def INFoG G ∈ FP(U) ∧ F v G ∧ Π(G)v Gt

Now, we are going to fuzzify the concept of deduction rule.

Definition 11
1. δ is said to be an n-ary fuzzy deduction rule on U

=def δ : Un ×U → 〈0,1〉 .

2. If n is not specified, we will speak of a finitary fuzzy deduction rule on U . If
x1, … , xn,y ∈ U , then we interpret the real number

δ(x1, … , xn,y)

as the logical value that the fuzzy deduction rule δ has the output y for the inputs
x1, … , xn.

3. ϑ = [U,∆] is said to be a fuzzy deductive system on U
=def ∆ is a set of finitary fuzzy deduction rules on U .

4. For a given fuzzy set F ∈ FP(U) we put

∆(F)(y) =def Sup
R
S
T

min(F(x1), … , F(xn),δ(x1, … , xn; y))
n ∈N∧ x1, … , xn; ∈ U ∧ δ ∈ ∆ ∧ δ is n-ary

U
V
W

5. F is said to be ∆-closed
=def ∆(F)v F

6. Ψ∆(F) =def INFoG G ∈ FP(U) ∧ F vG ∧ ∆(G)vGt

Because every n-ary I-fuzzy operation can be considered as a special case of an n-ary
fuzzy deduction rule, we formulate the following definitions, lemmata, and theorems only
for finitary fuzzy deduction rules.

Lemma 20
The mapping

∆ : FP(U) → FP(U)

is monotone on L.

13



Proof
For F,G ∈ FP(U) assume

F vG .(1)

We have to prove

∆(F)v ∆(G), i. e.(2)

∀y ey ∈ U → ∆(F)(y)5 ∆(G)(y)j .(3)

By definition of ∆ we have

∆(F)(y) = Sup
R
S
T

min bF(x1), … , F(xn),δ(x1, … , xn,y)g
n ∈N∧ δ ∈ ∆ ∧ δ is n-ary ∧ x1, … , xn ∈ U

U
V
W

(4)

hence by monotonicity of min and Sup from (1) we get (3). �

Theorem 21
1. The set oF F ∈ FP(U) ∧ ∆(F)v Ft of all ∆-closed fuzzy sets F on U is a closure

system of the lattice L.

2. Ψ∆ is a closure operator of the lattice L.

Proof
ad 1 By theorem 1, lemma 20, and lemma 2.

ad 2 By theorem 1, theorem 21, and lemma 8.

�

Definition 12
1. ∆[0](F) =def F

2. ∆[k+1](F) =def ∆[k](F)t∆(∆[k](F))

3. ∆[∗](F) =def SUPo∆[k](F) k ∈Nt

The following concepts of modality of a set ∆ of fuzzy deduction rules is sufficient that
some of the following theorems can be proved.

Definition 13
1. ∆ is said to be submodal with respect to L

=def ∀y∀F

F
G
G
G
H

y ∈ U ∧ F ∈ FP(U) →∃n∃δ∃x1 ⋅ ⋅ ⋅xn

F
G
H

n ∈N∧ δ ∈ ∆ ∧ δ is n-ary ∧ x1, … , xn ∈ U ∧
∆(F)(y) = min bF(x1), … , F(xn),δ(x1, … , xn,y)g

I
J
K

I
J
J
J
K

2. ∆ is said to be strongly submodal with respect to L
=def 2.1. ∆ is submodal with respect to U and

2.2. ∀y∀F F
Hy ∈ U ∧ F ∈ FP(U) →∃k ek ∈N∧ ∆[∗](F)(y) = ∆[k](F)(y)jIK

Lemma 22
If ∆ is strongly submodal with respect to L, then

Ψ∆(F)v ∆[∗] (F) .

14



Proof
In order to prove the inclusion above, it is sufficient to show

F v ∆[∗](F)(1)

and

∆(∆[∗](F))v ∆[∗] (F) .(2)

Proposition (1) holds trivially by definition of ∆[∗](F) (see definition 12). In order to prove
(2) it is sufficient to show

∀y FHy ∈ U → ∃k ek ∈N∧ ∆(∆[∗](F))(y)5 ∆(∆[k](F)(y))jIK(3)

By definition of ∆ and the assumption of submodality for ∆ we obtain that there are
n ∈N, x1, … , xn ∈ U,δ ∈ ∆ such that δ is n-ary and

∆(∆[∗](F))(y) = min e∆[∗](F)(x1), … , ∆[∗](F)(xn),δ(x1, … , xn,y)j(4)

Because of the strong submodality of ∆ there are k1, … , kn ∈N such that

∆[∗] (F)(x1) = ∆[k1](F)(x1)
...

...
∆[∗] (F)(xn) = ∆[kn](F)(xn) ,

(5)

hence

∆(∆[∗](F))(y) = min e∆[k1](F)(x1), … , ∆[kn](F)(xn),δ(x1, … , xn,y)j .(6)

Because we have

∆[k](F)v ∆[l](F)

if k5 l, there exists a natural number m ∈N

∆[k1](F)(x1) 5 ∆[m](F)(x1)
...

...
∆[k1](F)(xn) 5 ∆[m](F)(xn) ,

(7)

hence by 6

∆(∆[∗](F))(y)5min e∆[m](F)(x1), … , ∆[m] (F)(xn),δ(x1, … , xn,y)j ,(8)

hence

∆(∆[∗](F))(y)5 ∆(∆[m](F))(y),(9)

i. e. (3) holds. �

Lemma 23

∆[∗](F)vΨ∆(F)

15



Proof
By definition of ∆[∗] it is sufficient to prove

∆[k](F)vΨ∆(F) for every k ∈N .(1)

By definition of Ψ∆(F) it is sufficient to prove for G ∈ FP(U) and k ∈N

F j G ∧ ∆(G)vG → ∆[n](F)vG .(2)

But (2) will be proved by induction on n. The basic step n = 0 is trivial. The induction step
n is also trivial if we apply lemma 20, i. e.

F v G →∆(F)v ∆(G)(3)

where F,G ∈ FP(U). �

Theorem 24
If ∆ is strongly submodal with respect to L, then

∀F eF ∈ FP(U) →Ψ∆(F) = ∆[∗](F)j .

Proof
By lemma 22 and 23. �

Now, we are going to prove the compactness of Ψ∆. Therefore we start with the following
lemma expressing the compactness of the mapping ∆[k] where k ∈N and k is fixed.

Lemma 25
If ∆ is submodal with respect to L, then

∀k∀y∀F
F
G
H
k ∈N∧ y ∈ U ∧ F ∈ FP(U) →
∃Ffin eFfin ∈ FP(U) ∧ Ffin v F ∧ Ffin is finite ∧ ∆[k](F)(y)5 ∆[k](Ffin)(y)j

I
J
K

Proof
By induction on k.

Basic step. k = 0

Then ∆[0](F) = F , hence we put for x ∈ U ,

Ffin(x) =def
R
S
T

F(x) if x = y
0 if x /= y .

(1)

Consequently,

Ffin ∈ FP(U),

Ffin v F,

Ffin is finite,

(2)

finally

F(y)5 Ffin(y) .(3)

16



Induction step.

Assume that lemma 25 holds for fixed k ∈N, every F ∈ FP(U), and every y ∈ U .

By definition of ∆[k+1] we have

∆[k+1](F) = ∆[k](F)t∆(∆[k](F)),(4)

i. e. for every y ∈ U ,

∆[k+1](F)(y) = max F
H∆

[k](F)(y),∆ e∆[k](F)j(y)IK .

By induction assumption we get a fuzzy set Ffin with

Ffin ∈ FP(U),

Ffin v F,

Ffin is finite,

(5)

∆[k](F)(y)5 ∆[k](Ffin)(y) .(6)

Furthermore, because ∆ is submodal with respect to L, we get an n ∈ N, elements
x1, … , xn ∈ U , and an n-ary fuzzy deduction rule δ ∈ ∆ such that

∆ e∆[k](F)j(y) = min e∆[k](F)(x1), … , ∆[k](F)(xn),δ(x1, … , xn,y)j .(7)

Now, by induction assumption for every i ∈ k1, … , np we have an Fi
fin such that

Fi
fin ∈ FP(U), Fi

fin v F , Fi
fin is finite and

∆[k](F)(xi)5 ∆[k] eFi
finj(xi).

We define F∗
fin =def SUP{Fi

fin i ∈ k1, … , np}.
Then we have F∗

fin ∈ FP(U),

Fi
fin v F∗

fin v F

F∗
fin is finite

(8)

and

∆[k](F)(xi)5 ∆[k] eFi
finj (xi)5 ∆[k] eF∗

finj (xi)(9)

for every i ∈ k1, … , np.
From (7) and (9) we obtain

∆ e∆[k](F)j (y)5min F
H∆

[k] eF∗
finj (x1), … , ∆[k] eF∗

finj (xn),δ(x1, … , xn,y)IK .(10)

We put

F∗∗
fin =def Ffin tF∗

fin .

hence by (5) and (8) we get

F∗∗
fin ∈ FP(U)

Ffin v F∗∗
fin v F

F∗
fin v F∗∗

fin v F

F∗∗
fin is finite.

(11)
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By (6) we obtain

∆[k](F)(y) 5 ∆[k] dFfini(y) 5 ∆[k] eF∗∗
fin j (y).(12)

Furthermore by (10) and (11)

∆ e∆[k](F)j(y)

5min FH∆
[k] eF∗

finj (x1), … , ∆[k] eF∗
finj(xn),δ(x1, … , xn,y)IK

5min FH∆
[k] eF∗∗

fin j(x1), … , ∆[k] eF∗∗
fin j(xn),δ(x1, … , xn,y)IK

5 ∆ F
H∆

[k] eF∗∗
fin jIK(y)

(13)

Finally, by (4), (12), and (13) we get

∆[k+1](F)(y)5 ∆[k+1] eF∗∗
fin j(y) .(14)

Thus, the induction step is finished. �

Theorem 26
If ∆ is strongly submodal, then Ψ∆ is compact, i. e.

∀F∀y
F
G
G
H
F ∈ FP(U) ∧ y ∈ U → ∃Ffin

F
G
H
Ffin ∈ FP(U) ∧ Ffin v F ∧ Ffin is finite

∧ Ψ∆(F)(y)5Ψ∆ dFfini(y)

I
J
K

I
J
J
K

Proof
Because ∆ is strongly submodal by theorem 24 we get

Ψ∆(F)(y) = SUPo∆[k](F)(y) k ∈Nt ,(1)

because ∆ is strongly submodal, by definition 13 we have

∃k ek ∈N∧ Ψ∆(F)(y) = ∆[k](F)(y)j ,(2)

thus, by lemma 25 we finish the proof of theorem 26. �

Consider a mapping

Ψ : FP(U) → FP(U) .

We are going to investigate the problem under which conditions for Ψ there exists a set ∆
of fuzzy deduction rules on U such that

Ψ = Ψ∆ .

We start with the following lemma

Lemma 27

∀y∀F ey ∈ U ∧ F ∈ FP(U) →∆(F)(y)5Ψ∆(F)(y)j
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Proof
By definition of Ψ∆ we have

Ψ∆(F)(y) =def InfoG(y) F v G ∧ ∆(G)v G ∧ G ∈ FP(U)t(1)

hence by definition of Inf it is sufficient to prove

∀G eG ∈ FP(U) ∧ F vG ∧ ∆(G)v G →∆(F)(y)5 G(y)j(2)

From F vG by monotonicity of ∆ (lemma 20) we get ∆(F)v ∆(G), hence by ∆(G)vG we
obtain ∆(F)v G, i. e. ∆(F)(y) 5G(y) for every y ∈ U .

Now, by using Ψ we construct a set ∆Ψ of fuzzy deduction rules as follows. Therefore
we fix an n ∈N. and an x ∈ Un. Let SETx be the set of elements of U belonging to x. For
and arbitrary y ∈ U and F ∈ FP(U) we define

Fx(y) =def
R
S
T

F(y) if y ∈ SETx

0 if y ∉ SETx .

Hence Fx is finite and Fx v F . Furthermore supp(Fx) = SETx. �

Definition 14
1. δn,F

Ψ (x, y) =def Ψ(Fx)(y) where x ∈ Un and y ∈ U

2. ∆Ψ =def oδn,F
Ψ n ∈N∧ F ∈ FP(U)t

Lemma 28
If Ψ is compact then

∀F dF ∈ FP(U) →Ψ(F)vΨ∆Ψ(F)i .

Proof
We have to prove that for every y ∈ U and F ∈ FP(U),

Ψ(F)(y)5Ψ∆Ψ(F)(y) .(1)

By compactness of Ψ we have

∃Ffin eFfin ∈ FP(U) ∧ Ffin is finite ∧ Ffin v F ∧ Ψ(F)(y)5Ψ dFfini (y)j(2)

Assume cardsupp dFfini = n. We define

δn,Ffin
Ψ (x, y) =def Ψ F

HdFfinix
I
K (y) .

Then we get for x0 = kx1, … , xnp = supp dFfini
Ψ dFfini(y)

= Ψ F
HdFfinix0

I
K (y)

= δn,Ffin
Ψ bx0g (y)

5 Sup
R
S
T
δn,Ffin

Ψ (x)(y) x ∈ UnUV
W

= δn,Ffin
Ψ dFfini(y)

5 ∆Ψ dFfini (y)

5 ∆Ψ(F)(y) by lemma 20

5Ψ∆Psi(F)(y) by lemma 27

(3)

Thus, lemma 28 holds. �
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For proving the following lemma 29 we need the concept of strong submodality of an
operator Ψ.

Definition 15
Ψ is said to be strongly submodal on U
=def
For every y ∈ U,F ∈ FP(U) there exist n0 ∈N, x0

1, … , x0
n0 ∈ U such that

Sup

R
|
S
|
T

min eΨ(F)(x1), … , Ψ(F)(xn),Ψ dH[x1, … , xn]i(y)j
n ∈N∧ H ∈ FP(U) ∧ x1, … , xn ∈ U

U
|
V
|
W

= min
F
G
H
Ψ(F)(x0

1), … , Ψ(F)(x0
n0 ),Ψ F

HΨ(F)[x0
1, … , x0

n0 ]
I
K (y)

I
J
K

Lemma 29
If Ψ is a closure operator on L and Ψ is strongly submodal,
then

∀F dF ∈ FP(U) →Ψ∆Ψ vΨ(F)i .

Proof
For every y ∈ U and every F ∈ FP(U) we have to prove

Ψ∆Ψ(F)(y)5Ψ(F)(y) .(1)

By definition of Ψ∆Ψ we have

Ψ∆Ψ(F)(y) = InfoG(y) F v G ∧ ∆Ψ(G)v Gt ,(2)

hence

∀G eF vG ∧ ∆Ψ(G)v G →Ψ∆Ψ(F)(y)5G(y)j .(3)

Put

G =def Ψ(F)(4)

Hence it is sufficient to prove

F vΨ(F)(5)

and

∆Ψ bΨ(F)gvΨ(F) .(6)

The condition (5) holds trivially because Ψ is embedding.

Now, we are going to show (6), i. e. we have to prove

∀y ey ∈ U → ∆Ψ bΨ(F)g(y) 5Ψ(F)(y)j(7)

By definition of ∆Ψ we have

∆Ψ bΨ(F)g (y) = Sup

R
|
S
|
T

min eΨ(F)(x1), … , Ψ(F)(xn),δn,H
Ψ (x1, … , xn,y)j

n ∈N∧ H ∈ FP(U) ∧ x1, … , xn ∈ U

U
|
V
|
W

(8)
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Now, by definition of δn,H
Ψ we have

δn,H
Ψ (x, y) =def Ψ cHxh (y) where x ∈ Un and y ∈ U(9)

hence from (8),

∆Ψ bΨ(F)g (y) = Sup

R
|
S
|
T

min dΨ(F)(x1), … , Ψ(F)(xn),Ψ cHxh (y)i
n ∈N∧ H ∈ FP(U) ∧ x ∈ Un ∧ x = [x1, … , xn]

U
|
V
|
W

(10)

Hence, because Ψ is strongly submodal, there are n0, x1
0, … , x0

n0 ∈ U such that

∆Ψ bΨ(F)g(y) = min
F
G
H
Ψ(F)(x0

1), … , Ψ(F)(x0
n),Ψ F

HΨ(F)[x0
1, … , x0

n0 ]
I
K (y)

I
J
K

.(11)

Now, we have

Ψ(F)[x0
1, … , x0

n0 ] vΨ(F)(12)

hence by monotonicity of Ψ

Ψ F
HΨ(F)[x0

1, … , x0
n0 ]

I
KvΨ bΨ(F)g ,(13)

hence by closedness of Ψ

Ψ F
HΨ(F)[x0

1, … , x0
n0 ]

I
KvΨ(F),(14)

hence by 11 we get

∆Ψ bΨ(F)g(y)5Ψ(F)(y)(15)

for every y ∈ U .

Thus, (6) holds, i. e. lemma 29 is proved. �

Theorem 30
If Ψ is a strongly submodal compact closure operator,
then

∀F dF ∈ FP(U) →Ψ(F) = Ψ∆Ψ(F)i

Proof
By lemma 28 and lemma 29. �

5 Concluding Remarks

Because of restricted space in chapter 4 we could not develop a fuzzification of the whole
theorems 16, 17, 18, and 19. In a forthcoming paper we shall continue the investigations
started in the paper presented.
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