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On Closure Operatorsin Fuzzy Algebras and Fuzzy Deductive Systems”
Helmut Thiele

The starting point of this paper isthe classica well-known theorem due to
G. BIRKHOFF, P. HALL, and J. SCHMIDT which establishes aone-to-one cor-
respondence between compact closure operators, inductive closure operators,
inductive closure systems, and closure operators generated in universal alge-
bras (and generated in deductive systems, respectively). Inthe paper presented
we make first stepsin order to generaize this important theorem to the fuzzy
set theory and fuzzy agebra (and fuzzy deductive systems, respectively).

Keywords  Compact Closure Operators, Inductive Closure Operators, | nductive Closure
Systems, Universal Algebras, Deductive Systems, Fuzzification

1 Introduction

For arbitrary crisp sets Aand B by An B, A0 B, and A~ B we denotetheusual intersection,
union, and difference of A and B, respectively, furthermore A € B means that A is a subset
of B. For an arbitrary system 2 of setsby () 2 and |:| 2 we denote the intersection and
theunionof all setsof 2, respectively. If wehaveafamily (Aj|i O 1) of setsA;, thenwewrite
Mo A and D ioi Ai. The cardinal number of A isdenoted by cardA, the power set of A
by IP(A), the empty set by [1, and the empty sequence of elements of aset by e. Hence we
define A =g {€}. A" =4 the set of all sequences of eements of A with the length n where
nisan integer with n > 1. Finaly, we define A™ =g |:| non A” where N = {0, 1, (IT3.

For compact denotation in the following we shall use sometimes the symbolic of pred-
icate caculus, i. e. Ox as “for every X', [X as “thereisan X', Das“and”, Oas“or”, - as
“if - then”, - as“if andonly if”, = as“not”.

Remember the definition of a complete lattice
£=[L,0gdo,u]

withthedomain L, theintersection operator [] the union operator [0) the zero e ement 0, and
the unit element u.

Remember that by the definition
X2y=g X=x  (xyOL)

thereisintroduced apartia order on L. For K € L by infK and supK we denotetheinfimum
and the supremum of K with respect to =, respectively. A set C C L issaid to be achain of
Lif and only if

OxOy(x,yOC-x=y O y=x.

Let < bethenatural ordering of real numbers. For an arbitrary set Sof real numbersby InfS
and Sup Swe denote theinfimum and the supremum of Swith respect to <, respectively. By
[0, 10we denote the set of all real numbersr with0<r < 1.

Let U be an arbitrary non-empty set called universe. A fuzzy set F on U isa mapping
F:U - [0,10)i. e. wedo not distinguish between afuzzy set F and itsmembership function
Mr. Theset of al fuzzy setson U isdenoted by FIP(U).
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Weintroducethe empty fuzzy set @ onU and theuniversal fuzzy setW onU, respectively,
for every x 0 U defined by

O =0
and UW(x)=1.

Asusua we define the support supp(F) of afuzzy set F onU by

supp(F) = {x|x O U OF(x) > 0} .

A fuzzy set F is said to be finite and a singleton if and only if supp(F) is finite and
cardsupp(F) = 1, respectively.

For F,G O FIP(U) as usua we put
F C G =g OX(xOU - F(X) < G(x))

and for x 0 U we define

(FT1G)(X) =der min(F(X), G(x))
(FUG)(X) =det max (F(x),G(X)) -

Furthermore, for arbitrary § € FIP(U),x 0 U we put

(INFZ)(X) =gef INfF{F(X)|F O §}
(SUPB)(X) =det Sup{F(x)|F O F} .

Remark
The operations 1, L, INF, SUP are defined in the “standard sense” and used throughout the
paper presented. In aforthcoming paper we shall discuss the case if min and max are re-
placed by an arbitrary t-norm t and an s-Norm (t-conorm) o, respectively. Furthermore,
INF and SUP should be replaced by the quantifier Q; and Qg, respectively (see [16-19]).

Finally, remember the following

Theorem 1

L =[PU),n,0,0,U]
and
L =[FPU),m,u,0,W0]

are compl ete lattices.

In the following chapters 2 and 3 we repeat some facts more or less well-known from
lattice theory and universal algebra.



2 A Bijection between Closure Operators and
Closure Systems of Complete Lattices

Let £ =[L, 000, u] be acomplete lattice. Assumethatd :L -~ LandC C L.

Definition 1
1. ¢ issaid to be monotone on £ =g OXOy(X,y OLOX =y - ¢(X) = ¢(Yy))
2. ¢ issaid to be embedding on £ =g OX(XO L - X = (X))
3. ¢ issaid tobe closed on £ =g OX(x O L - ¢(d(X) = d(X))
4. ¢ issaid a closure operator of £ =4¢ ¢ fulfilsthe conditions1, 2, and 3.

Definition 2
C issadto beaclosure system of £ =g OD(D £ C - infD 0 C)

Definition 3
1. SET(9) =qer {clcOLOd(c) =c}
2. FCT(C)(X) =¢er inf{y|x S yOy O C}

Lemma 2
If ¢ ismonotone on £, then SET(9) isaclosure system of £.

Proof

Assume

Q) D C SET(¢),i.e
2 Od(dOD - ¢(d) =d)

We haveto prove

(3 d(infD) = infD.

In order to prove (3) it is sufficient to show

(4) Od(d 0D - ¢(infD) = d)
Fromd O D we get

(5 infD=d

hence by monotonicity of ¢

(6) ¢(inf D) = ¢(d)
hence by (2) we obtain (4).

Lemma 3
If ¢ isembedding and closed on £, then

Ox(xOL - FCT(SET(9))(X) = $(X))



Proof
By definition 3 we have

FCT(SET(9))(¥)
€y =inf{y|x = yOy O SET($)}
=inf{ylx 2yO¢(y) = yOyOL}

In order to provelemma 3 it is sufficient to show

2 yo(Yo O L OX = yo O (Yo) = Yo)-
We put
©) Yo =def §(X).
Then we get
4) ¢0) DL,
(5) X = ¢(X) by embedding of ¢,
(6) d(d(¥) = $(x) by closedness of ¢,
hence lemma 3 holds.
|
Lemma 4
If ¢ ismonotone on £, then
Ox(xOL - ¢(x) = FCT(SET())(X)
Proof
For every x 0 L we haveto prove
(1) 009 =inflylyOLOx=yO(y) =y)} -
In order to prove (1) it is sufficient to show
) Oy(y OLOxZyOo(y) 2y - () =)
From x =y by monotonicity of ¢ we get d(x) = d(y), hence d(x) = y because of ¢(y) = =
Theorem 5
If ¢ isaclosure operator of £, then
FCT(SET(¢)) = ¢
Proof
By lemma 3 and lemma 4 n
Corollary 6

SET isaninjectionfromtheset of al closure operatorsof £ intotheset of al closure systems
of £.

Proof
By lemma 2 and theorem 5 n



Lemma 7
For every subset C C L,

1. FCT(C) is embedding and
2. FCT(C) is monotone.

Proof
Trivialy on the basis of definition 3

Lemma 8
For every subsetC C L,
ifC isaclosure system of £, then

1. FCT(C) isaclosure operator and
2. SET(FCT(C)) € C.

Proof
ad 1 Because of lemma 7 it is sufficient to show that FCT(C) isclosed, i. e

(1) Ox(x O L — FCT(C)(FCT(C)(X)) = FCT(C)(x).
On the basis of definition 3 it is sufficient to show
2 inf{y| FCT(C)(X) = yOy O C} = FCT(C)(%)

In order to prove (2) it is sufficient to show

3 Y(JFCT(C)(x) = yOy O COy = FCT(C)(X))
We put
4 Y =det FCT(C)(X) -

In order to prove (3) it is sufficient to show
(5) FCT(C)(x) OC.

But, (5) holds because C is a closure system.
ad 2 We haveto show

(6) Ox(x O LOx O SET(FCT(C)) - xOC)
For x [J L we assume

@) x 0 SET(FCT(C)),

hence by definition of SET

(8) FCT(C)(X) = x

Because of lemma 7, FCT(C) isembedding, i. e.

9) X = FCT(C)(%),

hence from (8) and (9) we get

(10) FCT(C)(X) =x.



Furthermore, by definition 3 we have
(11) FCT(C)(x) =inf{y|x=yOyOC}

Now, we assumed that C is a closure system, hence

(12) inf{y|x=yOyOdC}OC,
hence by (10) we get x O C.
|
Lemma 9
For every subsetC C L,
C C SET(FCT(Q)) .
Proof
Assume
«y xOC
In order to prove
(2 x O SET(FCT(C)),
using the definition of SET it is sufficient to show
©) FCT(C)(X) = X,
hence by definition of FCT it is sufficient to show
(4) inf{yx2yOyOC} = x.
But (4) holds because of x O C. |
Theorem 10
If C isaclosure system of £, then SET(FCT(C)) =C.
Proof
By lemma 8 and lemma 9 |
Corollary 11
1. SET isabijection fromthe set of al closure operators of £ onto the set of al closure
systems of £.
2. FCT istheinversion of the mapping SET.
Proof
By theorem 5 and theorem 10 |

Now, we are going to add some concepts of topol ogy.

Definition 4
1. ¢ issaid to be aatopologica mapping on £
=get IXOY(x,y O L - ¢(x0y) = o(x) Do(y))
2. Cissadtobeatopological set of £
=gef OX(X € COX isfinite OX isnot empty — SupX [0C)



Lemma 12
If ¢ isatopological mapping on £, then SET(¢) isatopologica set of £.

Proof
Let X bean arbitrary non-empty finite subset of £. Because ¢ isatopological mapping, we
get

(1) d(supX) = sup{p(¥)|x 0 X}

Now, we assume additionally that

2 X C SET(¢),i.e. Ox(xOX - ¢(X) = X),
hence we get
©) sup{o(¥)[x O X} = supX,

consequently (1) and (3) imply
4 d(supX) = supX, i.e. supX O SET(¢)
|

Lemma 13
If C isaclosure system of £ and C isatopological set of £, then FCT(C) is a topological
mapping on £.

Proof
We haveto prove

(D OxOy(x,y O L - FCT(C)(x@) = FCT(C)(x)OFCT(C)(y))
In order to prove (1) it is sufficient to show
2 inf{z|x@y = z0zOC} 2 inf{z|x = zOzO C}Minf{z]y = zOzOC}

Because C isaclosure system of £, we have

(3) inf{zjx=zOzOC}OC
and
4 inf{zly = z0zOC}OC,

hence, because C isatopological set of £, we get
(5) inf{z]x = zOzOC}@inf{zly=zOzOC}OC
Thus, in order to prove (2), it is sufficient to show
(6) X = inf{z|]x = zOzO C}Winf{zly = zOzOC}

But (6) followsfrom

7 x 2 inf{z]x = z0OzOC}
and
(8) y=inf{zly=z0zOC}.



Theorem 14
If ¢ isaclosure operator of £, then
¢ isatopological mapping on £ if and only if SET(¢) isatopological set of £.

Proof
ad 1 () Trivia by lemma 12

ad 2 (1) By theorem 5 we have
D ¢ = FCT(SET(9)) -

Hence by lemma 13 it is sufficient to show that

2 SET(¢) isaclosure system of £
and
3 SET(¢) isatopological set of £ .
But, (2) holdsbecause of lemma 2. Furthermore, (3) isan assumption in case consid-
ered.
|
Theorem 15
If C isaclosure system, then
Cisatopologica set of £ if and only if FCT(C) is atopological mapping of £.
Proof
ad 1 (U) Trividly by lemma13
ad 2 (1) Because C isaclosure system, by theorem 10 we get
Q) C = SET(FCT(C)),
hence by lemma 12, it is sufficient to show that
2 FCT(C) isatopologica mapping of £ .
But, (2) holds by assumption in case considered.
|

3 On Compactness of Classical Closure Operators.
Algebraic Closure Operators. The Theorem of
G. BIRKHOFF, P. HALL, and J. SCHMIDT.

We continue with the formulation of the fundamentel theorem due to G. BIRKHOFF, P.
HALL, and J. SCHMIDT whichisimportantin many branches of algebraand which givesan
algebraic characterization of the (classical) monotonic reasoning (see[9], aso [6]). In par-
ticular, by thistheorem the range of applicability of ZorRNslemmaiswell defined (see[9]).

In order to formulate thistheorem, we fix an arbitrary non-empty set U and consider the
complete lattice

L =[P(U),n,0,0,U]



where IP(U) isthe power set of U, n and O are the set-theoretical intersection and union of
subsets of U, respectively. Furthermore, 0 denotes the empty set, and the set U playsthe
role of the unit element of IL.

Because I isacomplete lattice al the considerations, concepts, and results of chapter 2
can be appliedto IL.

For amapping @ : P(U) - P(U) and asystem € € P(U) of subsets of U we define the
following well-known fundamental concepts:

Definition 5
1. @ jssaidto be compact on L.

=def DXDy(X g ulblyd CD(X) - |jxﬁn(xﬁn g X OXin isfinite Uy (D(xfin)))

2. ® jssaidto be strongly compact on I

- —
y IZIXDy[X CU Oy O X Oy O o(X) ]

MXsing(Xsing € X Ocard Xging < 10y 0 ®(Xsing))

3. ® issaidto beinductiveonIL

=def Dﬁ(ﬁg P(U)OR 700K isachain — ®( |:| R) C |:| [D(K)|K Dﬁ}]

4. ¢ issadto beinductiveon L

=def Dﬁ(ﬁg ¢ORF00R isachain - |:| ﬁmc:]

In order to describe the generation of closure operatorsby universal agebras and deduc-
tivesystems, respectively, weintroducethefollowingnotions. Let nbeaninteger withn = 0
and assume that X C U.

Definition 6
1. wissadtobea (total) n-ary operation onU if and only if w isamapping

w:U" - U (n=0).
If n is not specified, we will speak of afinitary operationonU.

2. A=[U,Q] issadto bea (total) dgebra on U if and only if Q is a set of finitary
operationsonU .

3. For givenX S U weput

O(X) = thereexistsan integern 2 0, ann-ary operation w0 Q
~aef 1Y andxy, ... ,%n O X such thaty = w(xg, ... ,%n)

4. X CU issaidto beQ-closed if and only if Q(X) € X.

Definition 7
1. CDQ(X) =def n {C|X g coco Q:}

2. 9o(X) =e« M {C|X SCCSUOQ(C)CC}
3. € =gef {C|C S U OP(C) EC}



4. ¢ =44 {C|CSUDQ(C) S C}

For many applications, in particular in logic, it is convenient to generalize the notion of
determininistic finitary operation introduced by definition 6 to the concept of finitary non-
deterministic, partial operation (see [9]). With respect to applicationsin logic, we prefer
the term deduction rulein this case.

Definition 8
1. dissaidto be ann-ary deductionrule onU if and only if

dCu"xU (nz0).
If n isnot specified, thend is called a finitary deduction ruleonU .

2. 9 =[U,D] issaid to be a deductive system on U if and only if D is a set of finitary
deduction rulesonU, i. e if D S U xU.

3. For givenX S U weput

B5(X) = there exists a natural number n > 0,n-ary deduction rule
“e WY dODadxy, ... % OX suchthat [xq, ... %}yl Od[’

4. X C U issaid to beD-closed if and only if D(X) € X.
5. ®p(X) =¢ () {C|X SC S U OD(C) EC}
6. €p(X) =gt {C|C S U OD(C) E C}
Remark
The definitions of @, P, and Pp correspond to the definition of FCT(C) (see definition

3). Analogously, the definitionsof €4, €q, and €p correspond to the definition of SET(C))
(see definition 3).

Now, we are able to formulate the theorem due to G. BIRKHOFF, P. HALL, and
J. SCHMIDT:

Theorem 16
If @ isaclosureoperator on 1., then thefollowing propositions 1, 2, 3, 4, and 5 are pairwise
equivaent:

1. & iscompact on L.
. @ isinductiveonIL.

2

3. ¢y isinductiveonIL.

4. thereexistsaset Q of finitary operationsonU such that ® = ®q.
5

. thereexistsaset D of finitary deduction rulesonU such that ® = ®@p.

Remarks

1. Concerning history, wewant to mention that therol e of compactnessin studyinglogi-
cal consequence operatorswas discovered and investigated by A. TARSKI in [11-13]
and emphasized by K. SCHROTER in[10]. A. MALCEV introduced the model the-
oretic version of compactness and established its applicability in severa branches of
algebra(see [8]).

2. The equivalence of 3 and 4 was first proved by J. SCHMIDT in [9], but accord-
ingto P. COHN in [6], page 81, is an unpublished result of P. HALL, and probably
G. BIRKHOFF knew thisresult (at least part of it) even eearlier (see [1-4]).
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. Theeguivaenceof 1 and 3wasalso discovered by J. SCHMIDT and first provedin[9].
He al so pointed out theimportance of inductive systems of setsfor applying ZORN’S
lemma, where it should be mentioned that the notion of inductiveness can already be
foundin [5].

. A proof for theequiva enceof 3and 5 can also befoundin[9], withtheonly difference
that the term “finitary deduction rul€’ is not used there.

. The equivaence of 2 and 3 is added in this paper. A proof can be carried out easily
by using the methods developed in [9].

. Using the concept of Clone (see [6], for instance) we can prove the following mod-
ification of theorem 16: In proposition 4 and 5 Q and D can be taken to be clones
of operations and deduction rules, respectively, where a clone of deduction rulesis
defined in the same way as a clone of operations. If we intend to construct a clone
of operations (or deduction rules) by a given compact closure operator @, we shall
see that the existance of the projection operations follows from the reflexivity of @,
whereas the monotonicity and the closedness of @ together imply that the system of
operations (deduction rules) is closed with respect to compositions.

Starting with a closure system, we can prove the following

Theorem 17

Ife

isaclosure system of 1., then the following propositions 1, 2, 3, 4, and 5 are pairwise

equivaent:

~

2
3
4
5

. CisinductiveonIL

. ®¢ isinductiveon 1.

. Oy iscompact on I

. thereexistsaset Q of finitary operationsonU such that € = €q

. thereexistsaset D of finitary deduction rulesonU such that € = €p.

Combining the algebraic with the topological concept we obtain the following (possibly
not very well-known) theorems:

Theorem 18

If®

isaclosure operator on 1., then the following propositions 1, 2, 3, 4, 5, and 6 are pair-

wise equivalent:

1.

SO A WD

@ jscompact and topological on 1.,

@ jsstrongly compact on 1;

@ jsinductive and topological on IL.;

&y isinductive and topological onIL.;

thereexistsaset Q of 1-ary operationsonU such that ® = ®q;
thereexistsa set D of 1-ary deduction rules of U such that ® = @p.

Theorem 19

Ife
equi
1

isaclosure system of 1., then the following propositions 1, 2, 3, 4, and 5 are pairwise
vaent:

. € isinductive and topological on I

2. ®¢ isinductive and topological on 1.

11



3. @, isstrongly compact on I
4. thereexistsaset Q of 1-ary operationsonU such that € = €q
5. thereexistsaset D of 1-ary deduction rulesonU such that € = ¢p.

4 On Closure Operators generated in Fuzzy
Algebras and in Fuzzy Deductive Systems

Now, we intend to “fuzzify” the concepts and results of chapter 3.

We remember that
L =[FPU),m,u,0,W0]

isacompletelatticewhere FIP(U) isthe set of al fuzzy setson U, furthermore, 1 and LI de-
notetheintersection and union of fuzzy setsbased on the minimum and maxi mum function,
respectively, and finally, @ and U are the empty and the universal fuzzy set on U, respec-
tively.

Thus, al considerations of chapter 2 can be applied to the complete lattice L.

For formulating the following definition we assume that W : FP(U) - FP(),
9 S FPP(U), and | isaprime minimum-ideal from [0, 1[]

Definition 9
1. Wissaidto be compact on L

FOFPU)OyOU
=g4ef OF Oy F Fin O FP(U) OFin C F OF, isfinite
" DWF)WY) < W(Fin)(Y)

2. Wissaid to be strongly compact on L
FOFPU)OyOU
=der OFCly| Fung Fsing 0 FIP(U) OFsng C F OFsng isasingleton
o OW(F)(Y) = W(Fsing(y)
3. Wissaidto beinductiveon L

=t OR(R SFP(U) 0R 4008 isachain®(SUPR) C SUP{W(K)|K O &})

4. 9 issaid to be inductive on L

=sf OR(R S ¢ORF00R isa C -chain - SUPR 0 €)

Now, we are going to define the concept of an n-ary fuzzy operation onU and of an n-ary
fuzzy deductionruleonU.

Definition 10
1. issaidto bea (totd) n-ary |-fuzzy operation onU
=gt @ TM:U"xU - [0,10and
b) Oxq MM¥, (X4, ... ,% DU = Oy(y DU OM(Xq, ... ,%,Y) O1)

12



X1, - XY U
9 Dxlmnmymy[ Xy, .. o Xy) 01O, .. X Y) O y =y ]

If n is not specified we will speak of a (total) finitary |-fuzzy operation onU with
respect tol .

2. F =[U,N] issaidtobea (tota) |-fuzzy operation onU
=qef [1 isaset of (totd) finitary | -fuzzy operationsonU.

3. Foragivenfuzzy set F O FIP(U) we put

_ ~ min(F (xa), ... , F (%), T(Xq, ... , %, )]
ME)) =cet S“p{n ONDOx, ... , X,y 0U OO N Otisn-ary

4. F isgudd to be NM-closed
=gt M(F)EF

5. Wn(F) =4 INF{G|GO FP(U) OF C GOM(G) C G}
Now, we are going to fuzzify the concept of deduction rule.

Definition 11
1. dissaidto bean n-ary fuzzy deduction rule onU

=gef 0:U"xU - [0,10.

2. If n is not specified, we will speak of a finitary fuzzy deduction rule onU. If
X1, -, %0, Y O U, then we interpret the real number

O(Xq, «+. » Xn,Y)

as the logical value that the fuzzy deduction rule d has the outputy for the inputs
X1y oev s Xn-

3. 9 =[U,4] issadto be afuzzy deductive system onU
=qet A isa set of finitary fuzzy deduction rulesonU .

4. Foragivenfuzzy set F O FIP(U) we put

_ _ min(F (x1), ... ,F (%), 80X, ... . %n; )|
AF)) Zaet S“p{n ONDOXy, ... , % 0U D8 0ADS isn-ary

5 F issaigto be A-closed
=gt A(F)CF

6. Wa(F) =ger INF{G|G O FP(U) OF C GUA(G) C G}

Because every n-ary |-fuzzy operation can be considered as a special case of an n-ary
fuzzy deduction rule, we formulate the following definitions, lemmata, and theorems only
for finitary fuzzy deduction rules.

Lemma 20
The mapping

A:FP(U) - FPU)

is monotoneon L.

13



Proof
For F,G O FIP(U) assume

(1) FCG.
We haveto prove

) A(F)CAG), i. e

€) Oy(yOU - AF)(y) £ AG)(Y)) -

By definition of A we have

X _ min(F(x1), ... ,F (%), (X1, ... , %n,Y))|
“) A(F)(y)‘S“p{ nONOSOAOSIsn-ary Ox, ... , % OU
hence by monotonicity of min and Sup from (1) we get (3). |
Theorem 21 _
1. The set {F|F OFP(U)OA(F) C F} of all A-closed fuzzy setsF onU isa closure
system of the latticeL.

2. W, isaclosure operator of thelatticeL.

Proof
ad 1 By theorem 1, lemma 20, and lemma 2.

ad 2 By theorem 1, theorem 21, and lemma 8.

Definition 12
1. AOF) =4« F

2. A(F) =4 AM(F) AR (F))
3. AA(F) =44 SUP{AM(F)|k O N}

The following concepts of modality of aset A of fuzzy deduction rulesis sufficient that
some of the following theorems can be proved.

Definition 13
1. Aissaid to be submodal with respect to L

yOU OF OFP(U) - ChiB M,

Zdet UYOF| [ nO NOdOAOd isn-aryxq, ... , %y OU O
A(F)(Y) =min(F(x), ... , F(Xn),8(X, --- , %n,Y))

2. A issaid to be strongly submodal with respect toL
=4ef 2.1. A issubmoda with respect toU and

2.2. OyOF (y OUOF OFPU) - Ek(k O N OAH(F)(y) = A[k](F)(y))]

Lemma 22
If A is strongly submodal with respect to L, then

Wa(F) CAE(F).

14



Proof
In order to provetheinclusion above, it is sufficient to show

1) F CAH(F)
and
) AQP(F)) CAH(F) .

Proposition (1) holdstrivially by definition of Al7(F) (see definition 12). In order to prove
(2) itissufficient to show

3 Oy(y DU - Ok(k O N OB@IF))0) < BEHE)Y))

By definition of A and the assumption of submodality for A we obtain that there are
NON,Xq, ... , % OU,00A suchthat disn-ary and

(4) AQTFEN ) =min(ATF)x), ..., AT F) ), 8¢, - 1 Xn,Y)

Because of the strong submodality of A thereareky, ... ,k, O N such that

AR ) = AkI(F)(x)
(5) : :
NIF) ) = ARI(F)(xn),
hence
(6) AT E)E) =minA" I F)(x), ..., AN F)40), 801, ... X0,Y)) -
Because we have

Al F) C Al ()
if k<1, there existsa natural number mJ IN

AMI(F)(x) < AM(F)(x)
™ 5 5
A (F)x) < AM(F)(x),

hence by 6

(8) AATF)) < min@AMF)), - A F) ), 80, - X0,Y))

hence

©) AT (F)©) = DA F))E),

i.e (3) holds. ]

Lemma 23

AT(F) C Wa(F)

15



Proof
By definition of Al it is sufficient to prove

(1) AM(F) C Wo(F) forevery kKON .
By definition of W, (F) itissufficient to provefor GOFPU)andk O N
) FCGOAG) CG-ANF)CG.

But (2) will be proved by inductionon n. The basic step n=0istrivia. Theinduction step
nisasotrivial if we apply lemma 20, i. e

©) FC G- A(F)CAG)
where F,G 0O FIP(U). [ |

Theorem 24
If A is strongly submodal with respect to L, then

OF (F OFPU) - Wa(F) =89 (F)) .

Proof
By lemma 22 and 23. ]

Now, we are goingto provethe compactness of W, . Thereforewe start withthefollowing
lemma expressing the compactness of the mapping A where k 0 N and k is fixed.

Lemma 25
If A is submodal with respect toL, then

kONOyOUOF OFPU) -

HkOyF Fiin (Fiin 0 FIP(U) Oy C F OFyp is finite DAM(F)(y) < AN (Fin)(v)

Proof
By induction on k.

Basic step. k=0
Then Al9N(F) = F, hencewe put for x DU,

. _ F(x) if x=y

(1) Ffln(x) —def { 0 if X#y
Consequently,

Fin O FP(U),
2) Fin C F,

Fin isfinite,
finaly
(©) F(y) = Fin(y) -

16



Induction step.
Assume that lemma 25 holdsfor fixed k O N, every F OFP(U), and every y O U.

By definition of A"l we have
(4) atAl(F) =aMF) ua@M(F)),
i.e foreveryyduU,
A (F) ) = max A9 E)) BENE) )

By induction assumption we get afuzzy set K, with

Fin OFPU),
5 Fin C F,
Fin isfinite,
(6) AMF) ) < AM(Fn)(Y) -

Furthermore, because A is submodal with respect to L, we get an n O N, elements
X1, --- »Xp OU, and an n-ary fuzzy deduction rule d 0 A such that

(7) A(BMF)) () = min(aMF)(x0), ..., AN F) ), 804, ... %0,Y)) -

Now, by induction assumption for every i O {1,..., n} we have an Ff}n such that
Fl.OFP(), R, CF,Fl isfiniteand

AM(F)(x) < M (R (%)
We define Fi =aer SUP{Fl, [ O {1, ... ,n}}.
Then we have Fi O FP(U),

Fin CFn CF

® FL isfinite
and
©) AMF) ) = M (Rin) (6) < A% (R ()

foreveryi O{1,...,n}.
From (7) and (9) we obtain
(10 B(aY(F)) o) < min(a¥ (FR)a). . .Y (i) (). 800, - 5y ).
We put
Ff%] =gef Fin U Ff% .

hence by (5) and (8) we get

R OFPU)

Fiin C Fin CF

0~ @
Fiin C Fin & F

Fi-isfinite.

(1)

17



By (6) we obtain

(12) AM(F)(y) < A (Fin) (v) < A (Fi) ().
Furthermore by (10) and (11)
AAMF)) )

< min(A[k] (Fi) ), .., A (R (40, 800, - ,xn,y)]

= < min(A["] (Fin) 02), -, M (R (%0), 8(xa, .. ,xn,y)]
< (8% () o)
Finally, by (4), (12), and (13) we get
(14) AF)(y) < AT (R () -
Thus, theinduction step is finished. |
Theorem 26

If A is strongly submodal, then W, iscompact, i. e

Fin O FP(U) OFin C F OFp isfinite

OFOy|F OFPU)OyOU - Chin DWAR)Y) = Wa (Fin) )

Proof
Because A is strongly submodal by theorem 24 we get
€ Wa(F)(y) = SUP{aM(F)(y) [k O N},
because A is strongly submodal, by definition 13 we have
@) Ck(k O N OWAF)(y) = AM(F)(v),
thus, by lemma 25 we finish the proof of theorem 26. |
Consider a mapping
W:FPU) - FP(U).

We are going to investigate the problem under which conditionsfor W thereexistsa set A
of fuzzy deduction ruleson U such that

LIJ:LIJA.

We gtart with the following lemma

Lemma 27

OyOF (yOU OF OFPU) - AF)(y) < Wa(F)y))

18



Proof
By definition of W, we have

(1) Wa(F)(Y) =aer INfF{G(y)|F C GOA(G) C GOGOFP(U)}
hence by definition of Inf it is sufficient to prove
2 0G(GOFPU)OF CGUAG) E G - A(F)(Y) < G(Y))

From F C G by monotonicity of A (lemma 20) we get A(F) C A(G), hence by A(G) C G we
obtain A(F) C G, i. e A(F)(y) < G(y) forevery y O U.

Now, by using W we construct a set Ay of fuzzy deduction rules as follows. Therefore
wefixannON. and any OU". Let SET, betheset of elementsof U belonging to r. For
and arbitrary y O U and F O FIP(U) we define

_ F(y) ifyUOSET,
Fﬁ(y)‘def{ 0 ifyOSET,.

Hence F;, isfiniteand K, C F. Furthermore supp(F;) = SET,. |

Definition 14
1. 8% (1Y) =aer W(F:)(y) wherey DU" andy OU

2. Ay =4 {837 NONOF OFPU)}
Lemma 28
If W is compact then
OF (F OFPU) - Y(F) C Wa,(F)) .

Proof
We haveto provethat forevery y OU and F O FIP(U),

D W(F)(Y) = Wa, (F)Y) -

By compactness of W we have

2 (Fiin (Frin 0 FIP(U) OFyiy isfinite OFyn © F OW(F)(Y) < W (Fin) ()
Assume cardsupp(Fin) = n. We define

N, Fin

Oy ' (X,Y) =def W((Ffin)x](w :
Then weget for ro = {x1, ... ,Xn} = supp(Fin)

W (Fin) (y)

= W((Ffin)m](y)

=8, (t0)9)

3 < Sup{aﬂfﬁ"(x)(y) ‘x au }

N, Fin

=8y " (Fin) (¥)
< Ay (Fin) (¥)
< Ay(F)(y) bylemma20
S Wapg(F)(y) by lemma 27
Thus, lemma 28 holds. |
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For proving the following lemma 29 we need the concept of strong submodality of an
operator Y.

Definition 15

Y jssaid to be strongly submoda onU

=def

ForeveryyOU,F OFP(U) thereexistn'® ON, %), ... ,x%, OU such that

sup) MN(WEI0Q), -, PEIOR) W (Hiss, .. .xt) )|
NONDOH OFPU)OXy, ..., % OU

= min| W(F)(x)), ... ,W(F)(ﬁo),w(w(F)[xg, ,Xgo]](y)]

Lemma 29
IfW isaclosure operator on L and W is strongly submodal,
then

OF (F OFPU) - Wy, C W(F)) .
Proof
For every yOU and every F 0 FIP(U) we have to prove
D Wa, (F)(Y) = W(F)(Y) -

By definition of Wy, we have

@ Wa, (F)) = Inf{G)|F = G UAw(G) C G},
hence

3) OG(F EGUAW(G) C G - Wa, (F)(Y) = G(Y)) -
Put

4 G =get W(F)

Hence it is sufficient to prove

©) FC W)
and
(6) Ay (W(F)) EW(F).

The condition (5) holdstrivialy because W is embedding.

Now, we are going to show (6), i. e. we haveto prove
(7) Oy(yOU - Ay (W(F) () < W(F)Y))
By definition of Ay we have

min(WF)(x), .., PE) (), 83 (%0, -, %0, Y)|

(8) Ay (P(F))(Y) = Sup nONOH OFPU)Oxg, ... , % OU

20



Now, by definition of &), we have
) 85" (r,Y) =aer W(H;)(¥) wherex OU"andy DU

hence from (8),

min(W(F)(xa), .. , WF) (), W(He) )|

10 AeENOI=SuP) ooy o FP(U) O DU Op = [Xq, .. , %]

Hence, because W is strongly submodal, there are n°, g, ... ,x%, 01U such that

W Be(WE)O)= min[w(F)(xﬁ), - RO, W(WF)g ,xgo]](y)] .
Now, we have

12) WF)g, .. 0 C W)

hence by monotonicity of W

(13) W(WFYg, . 0 | E W),

hence by closedness of W

(14 W(WFYyg, . 0 )= W)

hence by 11 we get

(15) Ay (W(F) () = WF)Y)
foreveryyOU.
Thus, (6) holds, i. e. lemma 29 is proved.

Theorem 30
If W jsastrongly submodal compact closure operator,
then
OF (F OFPU) - W(F) = Wa,(F))
Proof

By lemma 28 and lemma 29.

5 Concluding Remarks

Because of restricted space in chapter 4 we could not devel op a fuzzification of the whole
theorems 16, 17, 18, and 19. In aforthcoming paper we shall continue the investigations

started in the paper presented.
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