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On Semantic Models for Investigating “Computing with Words”∗

Helmut Thiele

In daily life we can meet a lot of instructions having the form “many”
plus “some” is “many”, for instance. This paper presents a semantic
interpretation as basis for defining arithmetic operations for such words.

1 Introduction

At present we can observe a fast and fruitful development of soft computing, but in general,
on a more or less intuitive basis. Therefore, we are faced with the problem of designing and
investigating a theory of soft computing on a precise conceptional basis.

In contrast to “hard computing” the key idea of soft computing consists in including vague-
ness, imprecision and uncertainty of data and knowledge which are to be processed.

Soft computing covers at least the areas of

• fuzzy logic

• neural networks

• genetic algorithms,

this opinion is a widely accepted interpretation.

In the following we shall consider only the area of fuzzy logic. Following L. A. ZADEH [20]
we are of the opinion that computing with words is an independent part of soft computing
which covers fuzzy logic, or more exactly, which uses the concepts and results of fuzzy logic
to develop its own concepts, theorems, and algorithms.

In the fuzzy community it is widely accepted that the term fuzzy logic has two meanings,
in the narrow and in the wide sense. With respect to our thesis above we shall specify com-
puting with words as

• computing with words in the narrow sense and

• computing with words in the wide sense.

Roughly speaking, computing with words in the narrow sense has the goal of developing
an “arithmetics” of computing with vague or with uncertain values. This goal includes to
adopt as many usual arithmetic concepts and algorithms as possible, i. e. procedures for
processing natural numbers, integers, rational and real numbers, for instance.

Computing with words in the wide sense, so we think, should be classified into

• reasoning with words

• modelling with words

• programming with words.

Because of restricted space, in the paper presented we shall discuss only Computing with
Words in the narrow sense. Investigations of this area in the wide sense will follow in forth-
coming papers.

∗Revised version of a paper presented as a Keynote Address at Second International Conference on Knowledge-
Based Intelligent Electronic Systems, Adelaide, Australia, April 21–23, 1998
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2 Some fundamental algebraic and arithmetic
concepts

Already in school we learned several “arithmetic” structures and “arithmetic” algorithms.
So we know how the addition and the multiplication of (non-negative) integers are to be
carried out. Furthermore, we know how these operations and the subtraction in the case of
integers and, finally, the division of rational (or real) numbers are to be carried out.

The mathematical background of these procedures are certain (special) algebraic structures.
Because these structures will play a crucial role in defining “computing with words” in the
narrow sense we remind their definitions for definiteness.

The starting point and the basis of all these structures is the concept of monoid.

Definition 1
M = [M,°] is said to be a monoid
=def 1. M is a non-empty set and

2. ° is a total binary associative operation on M with values in M.

Remarks

1. M is called the domain of M.

2. An element n ∈ M is said to be a neutral element of M if and only if
∀x(x ∈ M → x ° n = n ° x = x). Obviously, a monoid has at most one neutral
element.

3. If in M there exists a (uniquely determined) neutral element, then we shall call M a
monoid with neutral element.

4. A monoid M is called commutative, if its operation ° is commutative.

5. A (commutative) monoid M is called a (commutative) group if and only if
∀a∀b ba,b ∈ M → ∃x(a ° x = b) ∧ ∃y(y ° a = b)g .

Definition 2
M = [M,°,5] is said to be a totally (partially) ordered monoid
=def 1. [M,°] is a monoid and

2. 5 is a total (partial) order relation on M such that

∀x∀y∀z cx,y, z ∈ M ∧ x5 y → x ° z5 y ° z ∧ z ° x5 z ° yh.

Example 1

Let A be a non-empty set, A∗ the set of all finite sequences of elements from A in-
cluding the empty sequence e. For s = a1 ⋅ ⋅ ⋅am and t = b1 ⋅ ⋅ ⋅bn where m,n = 1 and
a1,… ,am,b1,… ,bn ∈ A we define a binary operation

s ° t =def a1 ⋅ ⋅ ⋅amb1 ⋅ ⋅ ⋅bn

e ° t =def t ° e =def t
e ° e =def e.

Then A = [A∗,°] is a monoid with the neutral element e. Furthermore, A is commutative if
and only if cardA = 1.

Example 2

M =def N =def k0,1,…p, ° is the addition + of natural numbers. Then N+ = [N,+] is a com-
mutative monoid with the neutral element 0.
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Example 3

M =def N =def k0,1,…p, ° is the multiplication × of natural numbers. Then N× = [N,×] is a
commutative monoid with the neutral element 1.

On the basis of the concept of (ordered) monoid we can very easily define further algebraic
structures suitable for describing arithmetical procedures.

Definition 3
S = [S,+,×] is said to be a Semi Ring
=def 1. [S,+] is a commutative monoid

2. [S,×] is a monoid
3. ∀x∀y∀z bx,y, z ∈ S → x × (y + z) = (x × y) + (x × z) ∧ (x + y) × z = (x × z) + (y × z)g.

Remarks

1. S is said to be a commutative semiring if and only if S is a semi ring and the monoid
[S,×] is commutative.

2. S is a semiring with the zero element 0 and the unit element 1 if and only if 0 and 1
are the neutral element of the monoids [S,+] and [S,×], respectively.

Definition 4
S = [S,+,×] is said to be a (commutative) ring
=def 1. S is a (commutative) semi ring and

2. [S,+] is a (commutative) group.

Remark
S = [S,+,×,5] is called a totally (partially) ordered ring if and only if [S,+,×] is a ring,
[S,+,5] is a totally (partially) ordered monoid, and

∀a∀b∀x ca,b,x ∈ S ∧ a5 b ∧ 05 x → a × x5 b × xh

and

∀a∀b∀y ca,b,y ∈ S ∧ a5 b ∧ y5 0 →b × y5 a × yh

where 0 is the zero element of [S,+]. If a semi ringS has a zero element, then this definition
can be adopted without modification.

Example 4

S =def I =def k0,+1,−1,+2,−2,…p (the set of integers) Let +,× and 5 denote the addition,
multiplication, and natural order of integers. Then [S,+,×,5] is an ordered ring with the
zero element 0 and the unit element 1.

Finally, we define

Definition 5
S = [S,+,×] is said to be a (commutative) field
=def 1. S is a (commutative) ring and

2. [Sr k0p,×] is a group.
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Remarks

1. A field S is called totally (partially) ordered if and only if the ring S is totally (par-
tially) ordered.

2. “Standard” examples for totally ordered fields are

• the field of rational numbers and

• the field of real numbers.

3. A partially (but not totally) ordered field is the field of complex numbers.

So, we have remembered the most important arithmetic structures and their algebraic de-
scriptions. Now, using these notions we are going to construct arithmetic structures whose
domain is not a set of numbers, but a set of words.

Each of the words carries a certain semantic meaning and this meaning serves to define arith-
metical operations (addition, multiplication and so forth) for these words.

3 On semantic interpretations of words

Beside the concept of word in a natural language, we start with a mathematical formalization
of this concept. Let A be an arbitrary non-empty set called alphabet. A word w on A is an
arbitrary finite or maybe infinite sequence of elements (letters) of the alphabet A.

Furthermore, we fix an arbitrary set U called universe. Independently of other more or less
intuitive descriptions we use the following mathematical definition of a granule and of gran-
ulation on U .

Definition 6
1. A is said to be a crisp granule on U

=def AjU .

2. G is said to be a crisp granulation consisting of crisp granules on U
=def GjP(U) whereP(U) is the power set of U .

3. F is said to be a fuzzy granule on U
=def F : U → 〈0,1〉.

4. F is said to be a crisp granulation consisting of fuzzy granules on U
=def Fj FP(U)
where FP(U) =def lF F : U → 〈0,1〉q.

Remarks

1. The case of a fuzzy granulation Φ consisting of crisp granules on U , i. e.
Φ :P(U) → 〈0,1〉 , will not be considered.

2. The case of a fuzzy granulation Ψ consisting of fuzzy granules on U , i. e.
Ψ : FP(U) → 〈0,1〉 , will not be considered, either.

3. With respect to the remarks 1 and 2 we call G (see item 2 of definition 6) and F (see
item 4 of definition 6) shortly crisp and fuzzy granulation on U , respectively.

4. We underline that “granule” and “granulation” are only new names for well-known
things, but introduced with respect to the following interpretations and applications.

4



Now, we are going to develop three mathematical interpretations (meanings), namely on the
following three levels. Therefore let W be a set of words, i. e. W j A∗ ∪ Aω where A∗ is
defined in example 1 and Aω denotes the set of all infinite sequences α from elements of A,
i. e. α : k1,2,…p → A. Furthermore, let G and F be a crisp and a fuzzy granulation on U ,
respectively.

Definition 7
Interpretation of words on the level of elements (level 1)

σ is said to be a semantic interpretation of the words of W by elements of U
=def σ : W → U .

Definition 8
Interpretation of words on the level of crisp granulations (level 2)

σ is said to be a semantic interpretation of the words of W by granules of the crisp granula-
tion G

=def σ : W → G.

Definition 9
Interpretation of words on the level of fuzzy granulations (level 3)

σ is said to be a semantic interpretation of the words of W by granules of the fuzzy granu-
lation F

=def σ : W → F.

We underline that the distinction of the three levels described above is very important in
developing the concepts of “Computing with Words in the Narrow Sense” and for its un-
derstanding.

We start these considerations with some examples.

Example 5
(level 1)
Put A1 =def k0,1,… ,9p.
Words on A1 are, for instance, 105, 2200, or 0150. Using the decimal system of representing
natural numbers, the meaning of µ(w) where w is a finite word on A1 is clear. Notice, that
different words can have the same meaning, for instance 23, 023, 0023, … .

Remark
The example above gives the occasion to hint at the following misleading formulations in lit-
erature [20]. There “computing with numbers” is confronted with “computing with words”
which does not truly reflect the logical and algorithmic situation in the present case.

We state that computing with words appears already in domains of numbers. For instance,
if we have natural numbers represented in the decimal system by 214 and 3708, then their
sum is given by 3922, where the word 3922 can be “computed” using the words 214 and
3708 as inputs.

Using only the concept of semantic interpretation (i. e. without the concept of algorithm)
one can describe this situation as follows:

Let δ be the usual semantic interpretation of words from A1 using the decimal system. Then
we have

3922 ∈ δ−1 bδ(214) + δ(3708)g,
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i. e.

δ(3922) = δ(214) + δ(3708).

The last equation means that the semantic meaning of the word 3922 equals the sum of the
natural numbers δ(214) and δ(3708). Finally, we underline that this example demonstrates
“Computing with Words”, but in a very simple case. Already in elementary school we have
learned how the word 3922 is computed starting with the words 214 and 3708 as inputs.
Obviously, there are infinitely many words from A1 which have the same semantic meaning
as 3708, namely 03708, 003708, … .

Example 6
(level 1)
Put A2 =def A1 ∪ k.,−p.
Then to represent an arbitrary real number we need infinite words, for instance, π = 3.14… .
Furthermore, finite and infinite words on A2 can have the same meaning, for instance 1 and
0.99 ⋅ ⋅ ⋅ .

4 Semantic interpretations of words by crisp
granules and computing with words via crisp
granulations

Now, we move on to level 2. Referring to literature from artificial intelligence (see, for in-
stance, [5, 7, 14]), computing with words on the level 2 can be illustrated by the following
example: Take as A1 the usual Latin alphabet and take the words NEGATIVE and POS-
ITIVE. If NEGATIVE and POSITIVE denote an arbitrary negative and positive integer,
respectively, then the product is a negative integer, hence we can state that the “product”
NEGATIVE×POSITIVE is defined and fulfils the equation

NEGATIVE × POSITIVE = NEGATIVE.

How to place this heuristic argumentation on a correct and well-defined mathematical basis?
Within approaches made in artificial intelligence under the titel “Qualitative Computing”
one can find a methodology explained by the following example:

Example 7
(level 2)
We fix the universe U as the set I of all integers. We choose the words NEGATIVE, ZERO,
and POSITIVE (for short N, Z, and P, respectively) and define WORDS =def kN,Z,Pp. Fur-
thermore, we fix the following crisp granules NEG, ZER, and POS in U , where

NEG =def k−1,−2,−3,…p
ZER =def k0p
POS =def k1,2,3,…p

and put G = kNEG,ZER,POSp. Now, using the crisp granulation G we define a semantic
interpretation of the words from WORDS as follows

σ(N) =def NEG
σ(Z) =def ZER
σ(P) =def POS.
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To define operations for these granules we “lift” the addition and multiplication from I into
the power set P(I) by the following definition. Assume A,B ∈ I. Then we define

A + B =def la + b a ∈ A ∧ b ∈ Bq
A × B =def la × b a ∈ A ∧ b ∈ Bq .

Now, using σ we define in the domain WORDS two binary operations ⊕,⊗ as follows where
w,w′ ∈ WORDS:

w ⊕ w′ =def σ−1 bσ(w) + σ(w′)g
w ⊗ w′ =def σ−1 bσ(w) × σ(w′)g .

So, we get the following tables describing an “addition” and a “multiplication” in the set
WORDS:

⊕ N Z P

N N N -
Z N Z P
P - P P

⊗ N Z P

N P Z N
Z Z Z Z
P N Z P

Obviously, the structure [WORDS,⊗] is a commutative monoid with the neutral element
P. The structure [WORDS,⊕] is not a monoid, because the operation ⊕ is partial, i. e.
N ⊕ P and P ⊕ N are not defined. The reason is that NEG + POS = POS + NEG = I, but
I ∉ kNEG,ZER,POSp.
So, we introduce a new word A (ARBITRARY) and choose the new granulation

H = kNEG,ZER,POS,Ip.

Notice, that G is a partition of U , whereas H is only a covering of U .

Now, the new domain H is closed with respect to + and ×, hence we get the tables

⊕ N Z P A

N N N A A
Z N Z P A
P A P P A
A A A A A

⊗ N Z P A

N P Z N A
Z Z Z Z Z
P N Z P A
A A Z A A

Proposition 1
The structure [WORDS,⊕,⊗] is a commutative semi ring with the zero element Z and the
unit element P.

In the following we move on to level 3.

5 Partially ordered sets of words

Let W be an arbitrary non-empty set of words from a given alphabet A. Assume that on W
a binary relation 5 exists which is reflexive on W and transitive.

We underline that in applications the relation 5 could be antisymmetric or, additionally,
even linear. Furthermore, if the words from W come from the natural language, then the
relation5 is given by the use of the words in this language, as the following examples 8, 9,
and 10 show.
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Example 8
(level 3)
Consider the linguistic variable AMOUNT OF MONEY. As linguistic terms for this vari-
able we choose the following set W1 of words:

W1 = kTINY,VERY SMALL,SMALL,MEDIUM,LARGE,VERY LARGE,HUGEp.

From the common use of these words in the (natural) English language we obtain the fol-
lowing binary relation ≺1 between the words of W1:

TINY≺1 VERY SMALL≺1 SMALL≺1

MEDIUM≺1 LARGE≺1 VERY LARGE≺1 HUGE.

Let51 be the reflexive-transitive closure of≺1 with respect to W1. Then [W1,51] is a totally
ordered set.

Example 9
(level 3)
Take the same set W1 of words and the same relation≺1 (as in example 8). Add the linguistic
variable AGE and for AGE the set

W2 = kYOUNG,MIDDLE-AGED,OLD,VERY OLDp

as its linguistic terms. Take the relation ≺2 defined by

YOUNG≺2 MIDDLE-AGED≺2 OLD≺2 VERY OLD.

Let52 be the reflexive-transitive closure of≺2 with respect to W2. Then [W2,52] is a totally
ordered set, but [W1 ∪W2,51 ∪52] is only a partially ordered set.

Example 10
(level 3)
We add to W2 the word AGED, i. e. consider W3 = W2 ∪ kAGEDp. Furthermore, add to the
relation ≺2 the relation ≺ ′ described by

MIDDLE-AGED≺ ′AGED≺ ′OLD≺ ′AGED≺ ′VERY OLD.

Let 53 be the reflexive-transitive closure of ≺2 ∪ ≺ ′ with respect to W3. Then 53 is
reflexive on W3, furthermore, 53 is transitive, but not antisymmetric, because we have
OLD 53 AGED and AGED 53 OLD and OLD ≠ AGED. This situation can be justified
by the observation that “OLD MAN” and “AGED MAN” have the same meaning (see [4],
for instance), but the words are different.

Now, starting with a fixed set W of words and a reflexive-transitive relation 5 on W we
are looking for an universe U and for a fuzzy granulation F on U such that the following
conditions 1 and 2 hold:

1. there exists a reflexive-transitive relation 5 ′ on F and

2. there exists a semantic interpretation

σ : W → F

of the words from W by granules from F such that σ is a homomorphism with respect
to the structures [W,5] and [F,5 ′], i. e. the condition

∀w1,w2 cw1,w2 ∈ W ∧ w1 5 w2 → σ(w1)5 ′σ(w2)h(1)

holds.
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With respect to applications one could claim that σ is a strong homomorphism, i. e. that
additionally holds

∀w1∀w2 cw1,w2 ∈ W ∧ σ(w1)5 ′σ(w2) → w1 5 w2h .(2)

If we assume the stronger condition

∀w1∀w2 aw1,w2 ∈ W ∧ σ(w1) = σ(w2) → w1 = w2f(3)

then we get that σ is an injection from [W,5] into [F,5 ′], hence σ is an isomorphism be-
tween [W,5] and [σ(F),5∗] where σ(F) =def lσ(W ) w ∈ Wq and5∗ is the restriction of5 ′
to σ(F).

At the first glance in the following considerations we take the set R of all real numbers as
the universe U . Hence, in contrast to other approaches (see [3, 6, 8–11, 24], for instance)
granules F are arbitrary fuzzy sets onR, i. e. F :R→ 〈0,1〉. We underline that for certain
applications the choice ofRn or of a suitable metric space as universe U could lead to better
models for describing a given problem of application.

The crucial point is to fix a reflexive-transitive relation 5 ′ on the given (real) granulation
because in literature one can find a lot of definitions (see [10, 24], for instance) and, at the
first glance, there is no idea which of these relations should be taken or whether a completely
different relation has to be defined.

We claim that the relation 5 ′ must be monotone with respect to operations with granules.
The best way to reach this goal is, we think, first to define operations with granules and then
to derive from them a suitable relation 5 ′.

6 Real Fuzzy Granules and Computing with them

In literature one can find definitions of operations with real fuzzy numbers and with so-
called fuzzy quantities.

Obviously, one can adopt these definitions to arbitrary (real) fuzzy sets on R. Assume
F,G :R→ 〈0,1〉, r, s,t ∈ 〈0,1〉.

Definition 10
1. (F + G)(r) =def Suplmin aF(s),G(t)f s,t ∈R∧ r = s + tq
2. (F − G)(r) =def Suplmin aF(s),G(t)f s,t ∈R∧ s = r + tq
3. (F × G)(r) =def Suplmin aF(s),G(t)f s,t ∈R∧ r = s × tq
4. (F/G)(r) =def Suplmin aF(s),G(t)f s,t ∈R∧ s = r × tq

5. Fc(R) =def
R
S
T

1 if r = c
0 if r ≠ c

where r ∈R and c ∈ 〈0,1〉.

Proposition 2
1. [FP(U),+] is a commutative monoid with F0 as zero element.

2. [FP(U),×] is a commutative monoid with F1 as zero element.

3. ∀F∀G∀H cF,G,H ∈ FP(R) →F × (G + H)j a(F × G) + (F × H)fh.

Because of lacking space we can not investigate the algebraic and arithmetic properties of
the structure [FP(U),+,−,×, / ].

Now, we want to introduce a binary relation 5 ′ for fuzzy sets from FP(R) such that
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1. 5 ′ is at least reflexive and transitive on FP(R) and

2. the operations introduced above are monotone with respect to 5 ′.

The leading idea comes from the following condition valid in the set R of real numbers:

∀r∀s dr, s ∈R→ cr 5 s ↔ ∃t(t = 0 ∧ r + t = s)hi .

For defining the relation5 ′ we need the concept “non-negative” (i. e. t = 0) and the addition
+. For adopting the concept “non-negativ” we define for F ∈ FP(R).

Definition 11
F is said to be non-negative

=def ∀r cr ∈R∧ F(r) > 0 → r = 0h.

Using this concept and the operation + for fuzzy sets F,G onR we put

Definition 12
F 5 ′G =def ∃H cH ∈ FP(U) ∧ H is non-negative ∧ F + H k Gh .

Proposition 3
1. 5 is reflexive and transitive on FP(R).

2. The operation + is monotone with respect to 5.

3. ∀F∀G∀H cF,G,H ∈ FP(R) ∧ H is non-negative ∧ F 5 G → F × H 5 G × Hh.

7 Computing with words via their semantic
interpretations by real fuzzy granules

Let W be a set of words and 5 a binary relation on W which is reflexive and transitive
(maybe, additionally, antisymmetric and/or linear).

Furthermore, let F be a (real) granulation. Consider on F the relation 5 ′ introduced by
definition 12.

Finally, let σ be a homomorphism from [W,5] onto [F,5 ′]. (Obviously, the assumption
“onto” is no restriction of the generality.)

Now, via σ we translate the operations defined in FP(U) from F to W . For short, we con-
sider only the operator +. Let w1, w2, and w be arbitrary words from W .

Definition 13
w = w1 + w2 =def σ(w) = σ(w1) + σ(w2).

This definition causes several problems.

1. In the following we shall assume that
∀w∀w′ bw,w′ ∈ W ∧ σ(w) = σ(w′) → w = w′g holds. In this case the result w is
uniquely determined and w can be expressed by w1 ⊕ w2 = σ−1 aσ(w1) + σ(w2)f.

2. With respect to the last equation we have to state that ⊕ is a partial operation because
F will not be closed with respect to the operation, in general.

We see the following two approaches to overcome this lack.
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Approach 1
We replaceF by its closureFc with respect to + defined as the intersection of all FjFP(R)
such that Fj F′ and F′ is closed under +. But this approach includes the following disad-
vantage: In Fc there can exist granules F which do not have “names”, i. e. F ∈ Fc and there
is no w ∈ W such that σ(w) = F . To eliminate this gap we could add new words to W .

Approach 2
Define

F∗ =def F∪ lσ(w) + σ(w′) w,w′ ∈ Wq .

We have a mapping

LA : F∗ → F

which fulfils

LA(F) = F if F ∈ F.

Then we define for w,w′ ∈ W

w + w′ =def σ−1 bLA aσ(w1) + σ(w2)fg

Obviously, this concept is close to the concept of linguistic approximation introduced by L.
A. ZADEH in [2, 18].

This approach causes some difficulties. Obviously, the operation w ⊕ w′ is com-
mutative because the addition of real granules is commutative. The associativity
w1 ⊕ (w2 ⊕ w3) = (w1 ⊕ w2) ⊕ w3 follows if LA fulfils

∀F∀G∀H dF,G,H ∈ F∗ → LA aF + LA(G + H)f = LA aLA(F + G) + Hfi .

Because of lacking space we have to stop our considerations here. Summarizing the con-
siderations above to design semantic models for computing with words in the narrow sense
we have to carry out the following steps.

Step 1 Fix a set W of words on an alphabet A. Fix on W a binary relation 5 which is
reflexive and transitive on W , at least.

Step 2 Fix a real granulation F on R, i. e. a set of fuzzy sets on R such that
cardW = cardF. Define a semantic interpretation σ : W → F and a binary relation5 ′ on F

such that
- σ is a bijection between W and F

- σ is a homomorphism from [W,5] onto [F,5 ′].

Step 3 Define in F operations +, −, ×, and / such that [F,5,+,−,×, / ] or [F,5,+,×], for
instance, is a reasonable arithmetical structure, i. e. an ordered semi ring, ordered ring, or
even, an ordered field, if possible.

We underline that step 3 includes a lot of pure mathematical problems unsolved up to now,
even for “small” sets W , i. e. cardW = 2,… ,cardW = 7 (important for applications).
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Step 4 Translate the operations +, −, ×, / from F to operations on W using the semantic
interpretation σ.

Very important is the fact that the operations defined in W via σ, (and maybe LA) depend
on the originally given relation 5 on W . The claim that the operations +, −, ×, / must be
monotone with respect to 5 ′ implies certain restrictions to the definition of these opera-
tions. Finally, these restrictions are “translated” into restrictions in defining the translated
operations in W .
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[10] MILAN MAREŠ. Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems91, 143–
153, 1997.
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