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On Semantic Models for Investigating “ Computing with Words™ ™
Helmut Thiele

In daily life we can meet alot of instructions having the form “many”
plus “some’ is “many”, for instance. This paper presents a semantic
interpretation as basi sfor defining arithmetic operationsfor such words.

1 Introduction

At present we can observe afast and fruitful development of soft computing, but in general,
onamoreor lessintuitive basis. Therefore, we are faced with the problem of designing and
investigating a theory of soft computing on a precise conceptional basis.

In contrast to “hard computing” the key idea of soft computing consistsin including vague-
ness, imprecision and uncertainty of data and knowledge which are to be processed.

Soft computing covers at least the areas of
 fuzzy logic
* neural networks
* genetic algorithms,

this opinionis awidely accepted interpretation.

Inthefollowingweshall consider only theareaof fuzzy logic. FollowingL. A. ZADEH [20]
we are of the opinion that computing with words is an independent part of soft computing
which coversfuzzy logic, or more exactly, which usesthe conceptsand results of fuzzy logic
to develop its own concepts, theorems, and algorithms.

In the fuzzy community it is widely accepted that the term fuzzy logic has two meanings,
inthe narrow and in the wide sense. With respect to our thesis above we shall specify com-
puting with words as

» computing with wordsin the narrow sense and
 computing with words in the wide sense.

Roughly speaking, computing with words in the narrow sense has the goal of developing
an “arithmetics’ of computing with vague or with uncertain values. This goal includesto
adopt as many usual arithmetic concepts and algorithms as possible, i. e. procedures for
processing natural numbers, integers, rational and real numbers, for instance.

Computing with wordsin the wide sense, so we think, should be classified into
* reasoning with words
» modelling with words
* programming with words.

Because of restricted space, in the paper presented we shall discuss only Computing with
Wordsin the narrow sense. Investigations of thisareain thewide sensewill follow in forth-
coming papers.

CRevised version of a paper presented as a Keynote Address at Second International Conference on Knowledge-
Based Intelligent Electronic Systems, Adelaide, Australia, April 21-23, 1998



2 Some fundamental algebraic and arithmetic
concepts

Already in school we learned several “arithmetic” structures and “arithmetic” algorithms.
So we know how the addition and the multiplication of (non-negative) integers are to be
carried out. Furthermore, we know how these operations and the subtraction in the case of
integers and, finally, the division of rational (or real) numbersare to be carried out.

The mathematical background of these proceduresare certain (special) algebraic structures.
Because these structureswill play acrucia rolein defining “computing with words’ in the
narrow sense we remind their definitions for definiteness.

The starting point and the basis of all these structuresis the concept of monoid.

Definition 1
M =[M, ] issaid to be amonoid
=4 1. M isanon-empty set and
2. o jsatotal binary associative operation on M with valuesin M.

Remarks
1. M iscalled the domain of 91.

2. An element n 0 M is said to be a neutral element of 9 if and only if
Ox(x OM - xen=neox=x). Obviously, a monoid has at most one neutral
element.

3. If in 91 there exists a (uniquely determined) neutral element, then we shall call 9t a
monoid with neutral element.

4. A monoid 97t is called commutative, if its operation o is commutative.

5. A (commutative) monoid 9t is caled a (commutative) group if and only if
Oaldb(a,bOM - x(aex=b)O0y(yea=h)).

Definition 2
M =[M,o,<] issaid to be atotally (partially) ordered monoid
=4 1. [M,°] isamonoid and

2. < isatotal (partial) order relation on M such that

OxOyOz(x,y,zZOMOX Sy - xoz< yoz[Jzo X < zoy).

Example 1

Let A be a non-empty set, A” the set of all finite sequences of elements from A in-
cluding the empty sequence e. For s = a; &y, and t = by (b, where m,n = 1 and
ay,...,am,byq,... ,by O Awe define abinary operation

Sot =4 ay [ldmb, b,

eot =ggtoe=ggt

€0e =g €.
Then 21 = [AY, o] is amonoid with the neutral element e. Furthermore, 2 is commutative if
and only if cardA=1.

Example 2

M =g IN =gef {0, 1, ... }, o isthe addition + of natural numbers. ThenM* =[N, +] isacom-
mutative monoid with the neutral element 0.



Example 3

M =get N =gef {0,1,... }, o isthemultiplication x of natural numbers. Then 0t* =[IN, x] isa
commutative monoid with the neutral element 1.

On the basis of the concept of (ordered) monoid we can very easily define further algebraic
structures suitable for describing arithmetical procedures.

Definition 3
& =[S +,x] issaid to be a Semi Ring
=4 1. [S+] isacommutative monoid
2. [S,x] isamonoid
3. OxOyOz(x,y,z0 S - xx(y+2) = (xxy) +(xx2) O(x+Yy) xz= (XX 2) + (y X 2)).

Remarks

1. Gissaidtobeacommutativesemiringif and only if & isasemi ring and the monoid
[S %] is commutative.

2. G isasemiring with the zero element 0 and the unit element 1 if and only if 0 and 1
are the neutral element of the monoids[S,+] and [S, x], respectively.

Definition 4

G =[S +,x] issaid to be a (commutative) ring

=4 1. & isa(commutative) semi ring and
2. [S+] isa(commutative) group.

Remark
G =[S +,%,<] iscaled atotally (partialy) ordered ring if and only if [S,+,x] is aring,
[S+,<] isatotaly (partially) ordered monoid, and
OalbOx(a,b,x0SOa<bO0< x - axx< bxx)
and

OalbOy(a,b,ydSOa<bOy<0- bxy<axy)

whereQisthezero element of [S, +]. If asemi ring & hasazero element, then this definition
can be adopted without modification.

Example 4

S=gef I =ges {0,+1,-1,+2,-2, ...} (the set of integers) Let +,x and < denote the addition,
multiplication, and natural order of integers. Then [S,+,%,<] is an ordered ring with the
zero element 0 and the unit element 1.

Finally, we define

Definition 5
& =[S +,x] issaid to be a (commutative) field
=4t 1. S isa(commutative) ring and

2. [S~\.{0},%] isagroup.



Remarks

1. Afield G iscalled totaly (partialy) ordered if and only if thering & istotaly (par-
tially) ordered.

2. “Standard” examplesfor totally ordered fields are
« thefield of rational numbersand
* thefield of real numbers.
3. A partialy (but not totally) ordered field is the field of complex numbers.

So, we have remembered the most important arithmetic structures and their algebraic de-
scriptions. Now, using these notionswe are going to construct arithmetic structures whose
domain is not a set of numbers, but a set of words.

Each of thewordscarriesacertain semantic meaning and thismeaning servesto definearith-
metical operations (addition, multiplication and so forth) for these words.

3 On semantic interpretations of words

Besidethe concept of wordin anatural language, we start with amathematical formalization
of this concept. Let A be an arbitrary non-empty set called alphabet. A wordwon Aisan
arbitrary finite or maybe infinite sequence of elements (letters) of the alphabet A.

Furthermore, we fix an arbitrary set U called universe. Independently of other more or less
intuitive descriptionswe use thefollowing mathematical definition of agranule and of gran-
ulationonU.

Definition 6
1. Aissaidto beacrisp granule onU
=aef ASU.

2. & issaidto be acrisp granulation consisting of crisp granulesonU
=4ef ® € P(U) wherelP(U) isthe power set of U.

3. F issaid to be afuzzy granule onU
=g F:U - [0,10

4. ¥ issaid to beacrisp granulation consisting of fuzzy granulesonU
=det § S FP(U)
whereFP(U) =4¢ {F|F : U - [0,10.

Remarks

1. The case of a fuzzy granulation ® consisting of crisp granules on U, i. e
@: PU) - 0,10 will not be considered.

2. The case of a fuzzy granulation W consisting of fuzzy granules on U, i. e
Y FIP(U) - [0,10 will not be considered, either.

3. With respect to theremarks 1 and 2 we call & (seeitem 2 of definition 6) and § (see
item 4 of definition 6) shortly crisp and fuzzy granulation on U, respectively.

4. We underlinethat “granule” and “granulation” are only new names for well-known
things, but introduced with respect to the following interpretations and applications.



Now, weare going to devel op three mathematical interpretations(meanings), namely onthe
following three levels. Therefore let W be a set of words, i. e. W € A A® where Al is
defined in example 1 and A® denotesthe set of all infinite sequences a from elements of A,
i.e a:{1,2,...} - A. Furthermore, let & and § be a crisp and afuzzy granulationon U,
respectively.

Definition 7
Interpretation of words on the level of elements (level 1)

0 is said to be a semantic interpretation of the words of W by elements of U
=gef 0 W - U.

Definition 8
Interpretation of words on the level of crisp granulations (level 2)

O is said to be a semantic interpretation of the words of W by granules of the crisp granula-
tion®
Zgef 0. W - 6.

Definition 9
Interpretation of words on the level of fuzzy granulations (level 3)

0 is said to be a semantic interpretation of the words of W by granules of the fuzzy granu-
lation §
=gef O W - §.

We underline that the distinction of the three levels described above is very important in
developing the concepts of “ Computing with Words in the Narrow Sense” and for its un-
derstanding.

We start these considerations with some examples.

Example 5

(level 1)

Put A7 =g« {0,1,...,9}.

Wordson A, are, for instance, 105, 2200, or 0150. Using the decimal system of representing
natural numbers, the meaning of p(w) wherew is afinite word on A, is clear. Notice, that
different words can have the same meaning, for instance 23, 023, 0023, ... .

Remark

Theexampleabovegivestheoccasionto hint at thefollowing mideading formulationsinlit-
erature [20]. There“ computing with numbers” is confronted with “ computing with words’
which does not truly reflect the logical and algorithmic situation in the present case.

We state that computing with words appears already in domains of numbers. For instance,
if we have natural numbers represented in the decimal system by 214 and 3708, then their
sum is given by 3922, where the word 3922 can be “ computed” using the words 214 and
3708 asinputs.

Using only the concept of semantic interpretation (i. e. without the concept of algorithm)
one can describe this situation as follows:

Let & bethe usua semantic interpretation of wordsfrom A; using the decimal system. Then
we have

3922 [0 571(5(214) +5(3708)),



5(3922) = 5(214) + 5(3708).

Thelast equation means that the semantic meaning of the word 3922 equal s the sum of the
natural numbers 6(214) and 6(3708). Finally, we underline that this example demonstrates
“Computing with Words’, but in avery simple case. Already in elementary school we have
learned how the word 3922 is computed starting with the words 214 and 3708 as inputs.
Obvioudly, there areinfinitely many wordsfrom A; which have the same semantic meaning
as 3708, namely 03708, 003708, ... .

Example 6

(level 1)

Put A2 =def Al u {.,—}.

Then to represent an arbitrary real number we need infinitewords, for instance, t=3.14....
Furthermore, finite and infinite words on A, can have the same meaning, for instance 1 and
0.99m

4 Semantic interpretations of words by crisp
granules and computing with words via crisp
granulations

Now, we move onto level 2. Referring to literature from artificial intelligence (see, for in-
stance, [5, 7, 14]), computing with words on the level 2 can be illustrated by the following
example: Take as A; the usual Latin aphabet and take the words NEGATIVE and POS-
ITIVE. If NEGATIVE and POSITIVE denote an arbitrary negative and positive integer,
respectively, then the product is a negative integer, hence we can state that the “product”
NEGATIVEXPOSITIVE is defined and fulfils the equation

NEGATIVExPOSITIVE = NEGATIVE.

How to placethisheuristic argumentation on a correct and well-defined mathematical basis?
Within approaches made in artificial intelligence under the titel “Qualitative Computing”
one can find amethodol ogy explained by the following example:

Example 7

(level 2)

Wefix theuniverseU astheset I of all integers. We choosethe words NEGATIVE, ZERO,
and POSITIVE (for short N, Z, and P, respectively) and defineWORDS =4 {N, Z,P}. Fur-
thermore, we fix the following crisp granules NEG, ZER, and POSin U, where

NEG =def {—1,—2,—3, }
ZER =g {0}
POS:def {1,2,3, }

and put & = {NEG, ZER, POS}. Now, using the crisp granulation & we define a semantic
interpretation of the words from WORDS asfollows

O'(N) =qet NEG
O'(Z) =gef ZER
O'(P) =gef POS.



To define operationsfor these granuleswe “lift” the addition and multiplication from I into
the power set IP(I) by the following definition. Assume A, B O 1. Then we define

A+B=¢s {a+blad AOb OB}
AxB =44 {axblad AOb O B}.

Now, using o wedefinein the domain WORDStwo binary operationsd, [ asfollowswhere
w,w [0 WORDS:

wOW =g 0L (a(W) +a(W))
WOW =g 072 (a(W) xa(W)).

So, we get the following tables describing an “addition” and a “multiplication” in the set
WORDS:

ON|Z]|P O|NJZ]|P
N N[N - N[P[Z]|N
Z|N[Z[P Zz|z]|zZ
P -[P|P PIN[Z]|P

Obvioudly, the structure [WORDS, (] is a commutative monoid with the neutral element
P. The structure [WORDS, ] is not a monoid, because the operation O is partid, i. e.
N OP and PON are not defined. The reason is that NEG + POS = POS+ NEG =T, but
T 0O {NEG,ZER, POS}.

So, we introduce a new word A (ARBITRARY') and choose the new granulation
$ ={NEG,ZER,POS,T}.

Notice, that & isa partition of U, whereas ) is only acovering of U.
Now, the new domain $) is closed with respect to + and x, hence we get the tables
ON|[Z|P]A ON|Z]|P]|A

N{N|NIA]A N|P|Z|NJ|A
Z{|N|Z|P|A Z\Z2\|Z2|2|Z
PIIlA|P|P]|A PIN|Z|P|A
AIlAJAIAA AlA|Z|AA

Proposition 1
The structure [WORDS, 0, ] is a commutative semi ring with the zero element Z and the
unit element P.

In the following we move onto level 3.

5 Partially ordered sets of words

Let W be an arbitrary non-empty set of words from agiven alphabet A. Assume that on W
abinary relation < existswhich is reflexive on W and transitive.

We underline that in applications the relation < could be antisymmetric or, additionally,
even linear. Furthermore, if the words from W come from the natural language, then the
relation < isgiven by the use of the wordsin thislanguage, as the following examples 8, 9,
and 10 show.



Example 8

(level 3)

Consider the linguistic variable AMOUNT_OF_MONEY. Aslinguistic termsfor this vari-
able we choose the following set W, of words:

W ={TINY,VERY_SMALL,SMALL,MEDIUM, LARGE,VERY _.LARGE,HUGE}.

From the common use of these words in the (natural) English language we obtain the fol-
lowing binary relation <; between the words of W :

TINY <71 VERY_SMALL <71 SMALL <
MEDIUM <; LARGE <; VERY _LARGE <; HUGE.

Let <4 bethereflexive-transitiveclosure of <; with respect toW;. Then[W;, <] isatotally
ordered set.

Example 9

(level 3)

Takethe same set W, of wordsand the samerelation <4 (asinexample8). Addthelinguistic
variable AGE and for AGE the set

W, = {YOUNG, MIDDLE-AGED,OLD,VERY _OLD}
asitslinguistic terms. Take therelation <, defined by
YOUNG <, MIDDLE-AGED <5, OLD <, VERY_OLD.

Let <, bethereflexive-transitiveclosure of <, with respect toWs. Then[Ws, <] isatotally
ordered set, but [Wy OW5, <; O <,] isonly a partially ordered set.

Example 10

(leve 3)

We add to W, theword AGED, i. e. consider W5 =W, O {AGED}. Furthermore, add to the
relation <, therelation < ' described by

MIDDLE-AGED <'AGED < 'OLD < 'AGED < 'VERY_OLD.

Let <3 be the reflexive-transitive closure of <, O < ' with respect to W5. Then <3 is
reflexive on W5, furthermore, <j is transitive, but not antisymmetric, because we have
OLD <3 AGED and AGED <3 OLD and OLD # AGED. This situation can be justified
by the observationthat “OLD MAN” and “AGED MAN" have the same meaning (see[4],
for instance), but the words are different.

Now, starting with a fixed set W of words and a reflexive-transitive relation < on W we
are looking for an universe U and for a fuzzy granulation § on U such that the following
conditions 1 and 2 hold:

1. thereexists areflexive-transitiverelation < ' on § and

2. there exists a semantic interpretation
oW §F

of thewordsfromW by granulesfrom § such that o isahomomaorphism with respect
to the structures[W, <] and [§,< '], i. e. the condition

(1) Owy, Wa (Wy,Wo OW Owy < Wy - a(wy) < 'o(Wy))

holds.



With respect to applications one could claim that o is a strong homomorphism, i. e. that
additionally holds

2 Owy Ows (wq, Wp OW Oo(wg) < 'o(Wp) — Wy S Wy).
If we assume the stronger condition
3 Owy Ows (W, W OW Oo(wy) = o(Wp) - Wy =Wp)

then we get that o is an injection from [W, <] into [§, < '], hence ¢ is an isomorphism be-
tween [W, <] and [0(F), <5 where 0(F) =g {0(W)|w OW} and <istherestriction of <’
to a(3).

At the first glance in the following considerations we take the set R of all real numbersas
the universe U. Hence, in contrast to other approaches (see [3, 6, 811, 24], for instance)
granulesF are arbitrary fuzzy setson R, i. e. F : R - [0, 10 We underlinethat for certain
applicationsthe choice of IR" or of asuitable metric space asuniverseU could lead to better
modelsfor describing a given problem of application.

The crucial point isto fix areflexive-transitiverelation < ' on the given (real) granulation
because in literature one can find alot of definitions (see [10, 24], for instance) and, at the
first glance, thereisnoideawhich of theserelationsshould betaken or whether acompletely
different relation has to be defined.

We claim that the relation < ' must be monotone with respect to operations with granules.
The best way to reach thisgoal is, wethink, first to define operationswith granulesand then
to derive from them asuitablerelation <.

6 Real Fuzzy Granules and Computing with them

In literature one can find definitions of operations with rea fuzzy numbers and with so-
called fuzzy quantities.

Obvioudly, one can adopt these definitions to arbitrary (real) fuzzy sets on R. Assume
F,G:R - [0,10r,s,t 00,10

Definition 10
1. (F+G)(r) =g¢t Sup{min(F(s),G(t))|s,t DR Or = s+t}
2. (F=G)(r) =gt Sup{min(F(s),G(t))|s,t DR Os=r+t}
3. (FxG)(r) =g¢ Sup{min(F(s),G(t))|s,t O R Or =sxt}
4. (FIG)(r) =ge Sup{min(F(s),G(t))|s,t DR Os=rxt}

. Fe(R) :def{ é :;:;g wherer O R andc 0 [0, 100

&)}

Proposition 2
1. [FPP(U),+] isacommutative monoid with Fy as zero element.

2. [FIP(U),x] isacommutative monoid with F; as zero element.

3. OFOGOH (F,G,H OFP(R) - F x(G+H) C ((F xG) +(F xH))).
Because of lacking space we can not investigate the algebraic and arithmetic properties of
the structure [FIP(U), +,—,%,/].

Now, we want to introduce a binary relation < ' for fuzzy sets from FIP(IR) such that



1. <'isatleast reflexive and transitive on FIP(IR) and
2. the operationsintroduced above are monotone with respect to <.

The leading idea comes from the following condition valid in the set R of real numbers:
OrOs(r,sOR - (r £s o Ot =2 00r+t=y9))).

For definingtherelation < ' we need the concept “ non-negative” (i. e. t = 0) and theaddition
+. For adopting the concept “ non-negativ”’ we definefor F O FIP(R).

Definition 11
F is said to be non-negative
=4 Or(r OROF(r)> 01 = 0).

Using this concept and the operation + for fuzzy sets F,G on IR we put

Definition 12
F <'G=¢¢ (H(H OFIP(U)OH isnon-negative OF +H 2 G).

Proposition 3
1. <isreflexive and transitive on FIP(IR).
2. The operation + is monotone with respect to <.

3. OFOGOH (F,G,H O FP(R) UH isnon-negative OF < G - FxH < GxH).

7 Computing with words via their semantic
interpretations by real fuzzy granules

Let W be a set of words and < a hinary relation on W which is reflexive and transitive
(maybe, additionally, antisymmetric and/or linear).

Furthermore, let § be a (real) granulation. Consider on § the relation < ' introduced by
definition 12.

Finaly, let o be a homomorphism from [W, <] onto [F, < ']. (Obvioudly, the assumption
“onto” is no restriction of the generality.)

Now, via o we trandate the operations defined in FIP(U) from § to W. For short, we con-
sider only the operator +. Let wy, wy, and w be arbitrary wordsfromW.

Definition 13
W=Wy+Wy =gt O(W) = a(wy) +0(W2).
This definition causes several problems.

1. Inthefollowing we shall assume that
OwOw (w,w OW Oo(w) =o(W) - w=w') holds. In this case the result w is
uniquely determined and w can be expressed by w; 0w, = 071 (a(Wy) + 0(Wy)).

2. With respect to the last equation we have to state that [J is a partial operation because
F will not be closed with respect to the operation, in general.

We see the following two approachesto overcomethis lack.
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Approach 1

Wereplace § by itsclosure € with respect to + defined astheintersection of al § € FP(IR)
suchthat § € 3 and §' is closed under +. But this approach includes the following disad-
vantage: In F° there can exist granules F which do not have “names’, i. e. F [0 §° and there
isnow OW such that o(w) = F. To eliminate this gap we could add new wordsto W.

Approach 2
Define
§” =t § 0 {o(W) +o(W)|ww OW}.
We have amapping
LA:37 -
which fulfils

LA(F)=F ifFO3.

Then we define for w,w OW
WHW =g 01 (LA (O(Wy) +O(W5)))

Obvioudly, this concept is close to the concept of linguistic approximationintroduced by L.
A.ZADEH INn[2,18].

This approach causes some difficulties. Obvioudly, the operation w O w' is com-
mutative because the addition of real granules is commutative. The associativity
wq O (Wo O ws) = (wy Ows) Ows followsif LA fulfils

OFOGOH (F,G,H 037~ LA(F +LA(G+H)) = LA(LA(F +G) +H)).

Because of lacking space we have to stop our considerations here. Summarizing the con-
siderations above to design semantic modelsfor computing with wordsin the narrow sense
we have to carry out the following steps.

Step 1 Fix aset W of words on an alphabet A. Fix on W a binary relation < which is
reflexive and transitiveon W, at least.

Step 2 Fix area granulation § on R, i. e a set of fuzzy sets on IR such that
cardW = card§. Define asemantic interpretation o : W — § and abinary relation <’ on §
such that

- o isabijection between W and §

- 0 isahomomorphism from [W, <] onto [§,<'].

Step 3 Definein § operations +, —, x, and / such that [§, <, +,-,%,/] or [§, <, +,%], for
instance, is a reasonable arithmetical structure, i. e. an ordered semi ring, ordered ring, or
even, an ordered field, if possible.

We underlinethat step 3 includesalot of pure mathematical problems unsolved up to now,
even for “small” setsW, i. e. cardW =2,... ,cardW = 7 (important for applications).

11



Step 4 Trandatethe operations +, —, %, / from § to operations on W using the semantic
interpretation o.

Very important is the fact that the operations defined in W via o, (and maybe LA) depend
on the originally given relation < on W. The claim that the operations +, —, %, / must be
monotone with respect to < ' implies certain restrictions to the definition of these opera-
tions. Finaly, these restrictions are “translated” into restrictions in defining the translated
operationsin W.
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