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Axiomatic Considerations of the Concepts of R-Implication and T-Norm∗

Helmut Thiele

Abstract In the paper presented we investigate under which conditions there exists a one-to-
one correspondancebetween a class of generalized R-implications and a class of generalized
T-norms based on the mutual definability of these classes. Furthermore, we study which
properties of functions of the one class will be translated into properties of functions of the
other class by the bijection mentioned above. This paper can be considered as a continuation
of author’s paper dealing with the same problematics for S-implications on the one hand and
S-norms (T-conorms) and negations on the other hand.

Keywords R-implications, T-norms, mutual definability, bijections between classes of gen-
eralized R-implications and classes of generalized T-norms, translating properties of R-
implications and T-norms by this bijection.

1 Basic Definitions and Fundamental Results

By 〈0,1〉 we denote the set of all real numbers r with 05 r 5 1.

We define

FUNCT(2) =def lΦ Φ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉q .

In [26] we have defined the functional operators RIMP and TNOR with

RIMP,TNOR : FUNCT(2) → FUNCT(2)

as follows where τ,π ∈ FUNCT(2) and r, s ∈ 〈0,1〉

Definition 1
1. RIMP(τ)(r, s) =def supmt t ∈ 〈0,1〉 ∧ τ(r,t)5 sr
2. TNOR(π)(r, s) =def infmt t ∈ 〈0,1〉 ∧ π(r,t)= sr.

We underline that definition 1 generalizes the well-known residuation operation and the gen-
eration of a T-norm by a given implication, respectively.

The following six theorems and corollaries one can find already in [26], but without proof.

Theorem 1
For every r, s ∈ 〈0,1〉,

TNOR aRIMP(τ)f (r, s)5 τ(r, s) .

Proof
Assume r, s ∈ 〈0,1〉. By definition of the operator TNOR we have to prove

infmt t ∈ 〈0,1〉 ∧ RIMP(τ)(r,t)= sr 5 τ(r, s) .(1)

By definition of inf and RIMP it is sufficient to show

∃t dt ∈ 〈0,1〉 ∧ supmt′ t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 tr= s ∧ t 5 τ(r, s)i(2)

∗Revised version of a paper originally published in International Conference on Onformation Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU ’98), Paris, France, July 6–10, 1998
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hence by definition of sup it is sufficient to show

∃t∃t′ ct, t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 t ∧ t′= s ∧ t 5 τ(r, s)h .(3)

We put

t =def τ(r, s)

t′ =def s .
(4)

Obviously, (3) holds. �

Theorem 2
If the function τ is monotone and left-hand continuous with respect to 〈0,1〉 and its second
argument, then for every r, s ∈ 〈0,1〉,

τ(r, s)5 TNOR aRIMP(τ)f (r, s) .

Proof
Assume r, s ∈ 〈0,1〉. By definition of the operator TNOR we have to prove

τ(r, s)5 infmt t ∈ 〈0,1〉 ∧ RIMP(τ)(r,t)= sr .(1)

By definition of inf it is sufficient to show

∀t ct ∈ 〈0,1〉 ∧ RIMP(τ)(r,t)= s → τ(r, s)5 th ,(2)

hence by definition of RIMP it is sufficient to show

∀t dt ∈ 〈0,1〉∧ supmt′ t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 tr= s → τ(r, s)5 ti .(3)

By definition of sup we have

supmτ(r,t′ t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 tr5 t .(4)

Furthermore, as for every fixed r ∈ 〈0,1〉 the function τ(r, s) is left-hand continuous with
respect to s ∈ 〈0,1〉, we obtain

τ dr,supmt′ t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 tri5 supmτ(r,t′) t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 tr .(5)

Hence from (4) and (5) we get

τ dr,supmt′ t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 tri5 t .(6)

In order to prove (3) we assume

supmt′ t′ ∈ 〈0,1〉 ∧ τ(r,t′)5 tr= s .(7)

Because for every fixed r ∈ 〈0,1〉 the function τ(r, s) is monotone with respect to s ∈ 〈0,1〉,
we obtain

τ(r, s)5 τ dr,supmt′ t′ ∈ 〈0,1〉∧ τ(r,t′)5 tri ,(8)

hence from (8) and (6) we get

τ(r, s)5 t .(9)

�
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Corollary 3
If the function τ is monotone and left-hand continuous with respect to 〈0,1〉 and its second
argument, then for every r, s ∈ 〈0,1〉,

TNOR aRIMP(τ)f (r, s) = τ(r, s) .

Proof
By theorems 1 and 2. �

Definition 2
1. FUNCT(2,M2,LHC2)

=def
R
S
T
ϕ ϕ : 〈0,1〉× 〈0,1〉 → 〈0,1〉 and ϕ is monotone and left-hand

continuous with respect to 〈0,1〉 and its second argument
U
V
W

2. FUNCT(2,M2,RHC2)

=def
R
S
T
ϕ ϕ : 〈0,1〉× 〈0,1〉 → 〈0,1〉 and ϕ is monotone and right-hand

continuous with respect to 〈0,1〉 and its second argument
U
V
W

Corollary 4
The operator RIMP is an injection from FUNCT(2,M2,LHC2) into FUNCT(2).

Proof
By corollary 3. �

Now, we are faced with the problem to characterize the image of the class
FUNCT(2,M2,LHC2) generated by the operator RIMP. The following theorems and
corrollaries solve this problem.

Assume π : 〈0,1〉 × 〈0,1〉 → 〈0,1〉.

Theorem 5
If the function π is monotone and right-hand continuous with respect to 〈0,1〉 and its second
argument, then for every r, s ∈ 〈0,1〉,

RIMP aTNOR(π)f(r, s)5 π(r, s) .

Proof
Like theorem 2. �

Theorem 6
For every r, s ∈ 〈0,1〉,

π(r, s)5 RIMP aTNOR(π)f(r, s)

Proof
Like theorem 1. �

Corollary 7
If the function π is monotone and right-hand continuous with respect to 〈0,1〉 and its second
argument, then for every r, s ∈ 〈0,1〉 :

RIMP aTNOR(π)f(r, s) = π(r, s) .

Proof
By theorems 5 and 6. �
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Corollary 8
1. TNOR is a bijection from FUNCT(2,M2,RHC2) onto FUNCT(2,M2,LHC2)

2. RIMP is the inversion of TNOR.

Proof
ad 1.
By thorems 5 and 6 we get

FUNCT(2,M2,RHC2)j RIMP aFUNCT(2,M2,LHC2)f ,(1)

hence by monotonicity of TNOR

TNOR aFUNCT(2,M2,RHC2)fj TNOR bRIMP aFUNCT(2,M2,LHC2)fg .(2)

By corollary 3 we have

TNOR bRIMP aFUNCT(2,M2,LHC2)fgj FUNCT(2,M2,LHC2),(3)

hence by (2)

TNOR aFUNCT(2,M2,RHC2)fj FUNCT(2,M2,LHC2) .(4)

ad 2.
In analogy to 1. �

2 Axioms for Characterizing T-Norms and
R-Implications

Definition 3 (Axioms for Characterizing T-Norms)
Assume τ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉.

TN1. ∀s bs ∈ 〈0,1〉 → τ(0, s) = 0g
TN2. ∀r br ∈ 〈0,1〉→ τ(r,0) = 0g
TN3. ∀s bs ∈ 〈0,1〉 → τ(1, s) = sg
TN4. ∀r br ∈ 〈0,1〉→ τ(r,1) = rg
TN5. ∀r∀s∀t cr, s,t ∈ 〈0,1〉∧ r 5 s → τ(r,t)5 τ(s,t)h
TN6. ∀r∀s∀t cr, s,t ∈ 〈0,1〉∧ s5 t → τ(r, s)5 τ(r,t)h
TN7. ∀r∀s br, s ∈ 〈0,1〉 → τ(r, s) = τ(s, r)g
TN8. ∀r∀s∀t br, s,t ∈ 〈0,1〉→ τ ar,τ(s,t)f = τ aτ(r, s), tfg

Definition 4 (Axioms for Characterizing R-Implications)
Assume π : 〈0,1〉 × 〈0,1〉 → 〈0,1〉.

RIM1. ∀s bs ∈ 〈0,1〉 → π(0, s) = 1g
RIM2. ∀s bs ∈ 〈0,1〉 → π(1, s) = sg
RIM3. ∀r br ∈ 〈0,1〉 → π(r,1) = 1g
RIM4. ∀r∀s cr, s ∈ 〈0,1〉∧ r 5 s → π(r, s) = 1h
RIM5. ∀r∀s cr, s ∈ 〈0,1〉∧ π(r, s) = 1 → r 5 sh
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RIM6. ∀r∀s∀t cr, s,t ∈ 〈0,1〉 ∧ r 5 s → π(r,t)= π(s,t)h
RIM7. ∀r∀s∀t cr, s,t ∈ 〈0,1〉 ∧ s5 t → π(r, s)5 π(r,t)h
RIM8. ∀r∀s∀t dr, s,t ∈ 〈0,1〉 → cπ(r,t)= s ↔ π(s,t)= rhi
RIM9. ∀r∀s∀t br, s,t ∈ 〈0,1〉 → π ar,π(s,t)f = π as,π(r,t)fg

3 On Translating Properties of Functions by
Applying the Functional Operator TNOR

Theorem 9
Assume π : 〈0,1〉 × 〈0,1〉 → 〈0,1〉.

1. TNOR(π) fulfils TN1 if π(0,0) = 1

2. TNOR(π) fulfils TN2 without any assumption for π

3. TNOR(π) fulfils TN3 if π fulfils RIM2

4. TNOR(π) fulfils TN4 if π fulfils RIM4 and RIM5

5. TNOR(π) fulfils TN5 if π fulfils RIM6

6. TNOR(π) fulfils TN6 without any assumptions for π

7. TNOR(π) fulfils TN7 if π fulfils RIM8

8. TNOR(π) fulfils TN8 if π fulfils RIM5, RIM6, RIM7, RIM9 and π is right-hand con-
tinuous with respect to 〈0,1〉 and its second argument.

Proof
ad 1. TN1
Assume s ∈ 〈0,1〉. We have to prove

TNOR(π)(0, s) = 0 .(1)

By definition of TNOR it is sufficient to show

infmt t ∈ 〈0,1〉 ∧ π(0, t)= sr = 0 .(2)

In order to prove (2), by definition of inf it is sufficient to show

∃t ct ∈ 〈0,1〉 ∧ π(0, t)= s ∧ t = 0h .(3)

But (3) holds because of π(0,0) = 1.

ad 2. TN2
Assume r ∈ 〈0,1〉. We have to prove

TNOR(π)(r,0) = 0 .(1)

By definition of TNOR it is sufficient to show

infmt t ∈ 〈0,1〉 ∧ π(r,t)= 0r = 0 .(2)

Because π(r,t)= 0 holds for every r,t ∈ 〈0,1〉, we get π(r,0)= 0, hence (2) holds.

ad 3. TN3
Assume s ∈ 〈0,1〉. We have to prove

TNOR(π)(1, s) = s .(1)
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By definition of TNOR it is sufficient to show

infmt t ∈ 〈0,1〉 ∧ π(1, t)= sr = s .(2)

Because of RIM2 we have

∀t bt ∈ 〈0,1〉→ π(1, t) = tg ,(3)

hence we have

infmt t ∈ 〈0,1〉 ∧ π(1, t)= sr = infmt t ∈ 〈0,1〉∧ t = sr .(4)

Obviously, we have

infmt t ∈ 〈0,1〉 ∧ t = sr = s,(5)

hence from (4) and (5) we get (2).

ad 4. TN4
Assume r ∈ 〈0,1〉. We have to prove

TNOR(π)(r,1) = r .(1)

By definition of TNOR it is sufficient to show

infmt t ∈ 〈0,1〉 ∧ π(r,t)= 1r = r .(2)

In order to show (2), it is sufficient to prove

∀r br ∈ 〈0,1〉 → π(r, r) = 1g(3)

and

∀r∀t cr,t ∈ 〈0,1〉 ∧ π(r,t) = 1 → t = rh .(4)

But, RIM4 implies (3) and RIM5 implies (4).

ad 5. TN5
Assume for r, s,t ∈ 〈0,1〉

r 5 s .(1)

We have to prove

TNOR(π)(r,t)5 TNOR(π)(s,t) .(2)

By definition of TNOR it is sufficient to show

infmt′ t′ ∈ 〈0,1〉 ∧ π(r,t′= tr5 infmt′ t′ ∈ 〈0,1〉 ∧ π(s,t′)= tr .(3)

By definition of inf it is sufficient to prove

∀t′ ct′ ∈ 〈0,1〉 ∧ π(s,t′)= t → π(r,t′)= th .(4)

Assume π(s,t′)= t. From r 5 s and RIM6 we get π(r,t′)= π(s,t′), hence (4) holds.

ad 6. TN6
Assume for r, s,t ∈ 〈0,1〉

s5 t .(1)
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We have to prove

TNOR(π)(r, s)5 TNOR(π)(r,t) .(2)

By definition of TNOR it is sufficient to show

infmt′ t′ ∈ 〈0,1〉 ∧ π(r,t′)= sr5 infmt′ t′ ∈ 〈0,1〉 ∧ π(r,t′)= tr .(3)

By definition of inf it is sufficient to show

∀t′ ct′ ∈ 〈0,1〉∧ π(r,t′)= t → π(r,t′)= sh .(4)

But, (4) holds trivially because of s5 t.

ad 7. TN7
Assume r, s ∈ 〈0,1〉. We have to prove

TNOR(π)(r, s) = TNOR(π)(s, r) .(1)

By definition of TNOR it is sufficient to show

infmt t ∈ 〈0,1〉 ∧ π(r,t)= sr = infmt t ∈ 〈0,1〉 ∧ π(s,t)= rr .(2)

By definition of inf it is sufficient to show

∃t ct ∈ 〈0,1〉 ∧ π(r,t)= sh if and only if ∃t ct ∈ 〈0,1〉 ∧ π(s,t)= rh .(3)

But, (3) holds because of assumption RIM8.

ad 8. TN8
Assume r, s,t ∈ 〈0,1〉. We have to prove

TNOR(π) ar,TNOR(π)(s,t)f = TNOR(π) aTNOR(π)(r, s), tf .(1)

By definition of TNOR it is sufficient to show

(2) infmu u ∈ 〈0,1〉 ∧ π(r,u)= TNOR(π)(s,t)r =

infmv v ∈ 〈0,1〉 ∧ π aTNOR(π)(r, s), vf= tr .

By definition of inf it is sufficient to prove

∃u cu ∈ 〈0,1〉 ∧ π(r,u)= TNOR(π)(s,t)h(3)

if and only if

∃v cv ∈ 〈0,1〉 ∧ π aTNOR(π)(r, s), vf= th .(4)

I (B).
Assume for u ∈ 〈0,1〉

π(r,u)= TNOR(π)(s,t), i. e.(5)

π(r,u)= infmw w ∈ 〈0,1〉 ∧ π(s,w)= tr .(6)

Because π is right-hand continuous with respect to 〈0,1〉 and its second argument, there ex-
ists a w ∈ 〈0,1〉 such that

π(r,u)= w(7)
7



and

π(s,w)= t .(8)

We have to prove (4), i. e.

∃v ev ∈ 〈0,1〉 ∧ π dinfmx x ∈ 〈0,1〉 ∧ π(r,x)= sr , vi= tj .(9)

Because of RIM6 we get

π dinfmx x ∈ 〈0,1〉 ∧ π(r,x)= sr , vi= supmπ(x,v) x ∈ 〈0,1〉 ∧ π(r,x)= sr ,(10)

hence it is sufficient to show

∃v dv ∈ 〈0,1〉 ∧ supmπ(x,v) x ∈ 〈0,1〉 ∧ π(r,x)= sr= ti .(11)

By definition of sup it is sufficient to show

∃v∃x cv,x ∈ 〈0,1〉 ∧ π(x,v)= t ∧ π(r,x)= sh .(12)

Put

v = π(s,u)(13)

and

x =def r .(14)

Then it is sufficient to prove

π ar,π(s,u)f= t(15)

and

π(r, r)= s .(16)

We prove (15).
By (7) and RIM7 we get

π as,π(r,u)f= π(s,w),(17)

hence by (8)

π as,π(r,u)f= t,(18)

hence by RIM9, (15) holds.
Finally, (16) holds because of RIM5.

II (A).
In analogy to I. �

4 On Translating Properties of Functions by
Applying the Functional Operator RIMP

Theorem 10
Assume τ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉.

1. RIMP(τ) fulfils RIM1 if τ(0,1) = 0
8



2. RIMP(τ) fulfils RIM2 if τ fulfils TN3

3. RIMP(τ) fulfils RIM3 without any assumption

4. RIMP(τ) fulfils RIM4 if τ fulfils TN4

5. RIMP(τ) fulfils RIM5 if τ fulfils TN4 and τ is left-hand continuous with respect to
〈0,1〉 and its second argument

6. RIMP(τ) fulfils RIM6 if τ fulfils TN5

7. RIMP(τ) fulfils RIM7 without any assumption

8. RIMP(τ) fulfils RIM8 if τ fulfils TN6 and TN7

9. RIMP(τ) fulfils RIM9 if τ fulfils TN3, TN6, TN8, and τ is left-hand continuous with
respect to 〈0,1〉 and its second argument.

Proof
Like theorem 9. �

5 Conclusions

The theorems and corollaries above give the possibility to derive numerous “translating”
and “bijection” theorems for classes of functions. In the following we discuss only one ex-
ample.

To this end we define

Definition 5
1. FUNCT(2,C2) =def

R
S
T
ϕ ϕ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉 and ϕis continuous

with respect to 〈0,1〉 and its second argument
U
V
W

2. FUNCT(2,M2,C2) =def
R
S
T
ϕ ϕ ∈ FUNCT(2,C2) and ϕ is monotone with

respect to 〈0,1〉 and its second argument
U
V
W

Lemma 11
For every ϕ, if ϕ ∈ FUNCT(2,M2,C2), then TNOR(ϕ) and RIMP(ϕ) belong to
FUNCT(2,M2,C2).

Proof
Like corollary 8. �

Definition 6
Assume π,τ : 〈0,1〉× 〈0,1〉 → 〈0,1〉.
π is said to be an R-implication
=def π fulfils

RIM2. ∀s bs ∈ 〈0,1〉 → π(1, s) = sg
RIM4. ∀r∀s cr, s ∈ 〈0,1〉∧ r 5 s → π(r, s) = 1h
RIM5. ∀r∀s cr, s ∈ 〈0,1〉∧ π(r, s) = 1 → r 5 sh
RIM6. ∀r∀s∀t cr, s,t ∈ 〈0,1〉 ∧ r 5 s → π(r,t)= π(s,t)h
RIM8. ∀r∀s∀t dr, s,t ∈ 〈0,1〉 → cπ(r,t)= s ↔ π(s,t)= rhi
RIM9. ∀r∀s∀t br, s,t ∈ 〈0,1〉 → π ar,π(s,t)f = π as,π(r,t)fg
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Remember the concept of T-norm which can be defined as follows:
τ is said to be a T-norm
=def τ fulfils the axioms TN4, TN5, TN7, and TN8.

Then we get the following theorem:

Theorem 12
1. If τ is a T-norm with τ ∈ FUNCT(2,C2),

then RIMP(τ) is an R-implication with RIMP(τ) ∈ FUNCT(2,C2)

2. If π is an R-implication with π ∈ FUNCT(2,C2),
then TNOR(π) is a T-norm with TNOR(π) ∈ FUNCT(2,C2)

3. RIMP and TNOR are bijections between the class of T-norms and the class of R-
implications (restricted in both cases to the class FUNCT(2,C2)).

Proof
By theorems 9, 10, corollaries 3, 7, 8, and lemma 11. �

Remark
Because T-norms and R-implications are monotone with respect to 〈0,1〉 and their second
argument, in the theorem above FUNCT(2,C2) can be replaced by FUNCT(2,M2,C2).

In a forthcoming paper we will publish a proof of theorem 10 and discuss further examples.
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[15] JÁNOS C. FODOR and TIBOR KERESZTFALVI. Generalized Modus Ponens And
Fuzzy Connectives. In: IPCSIC ’96 [19], pages 99–106.
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