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Abstract  Thestarting point of the paper isthe (well-known) observationthat
the“classical” Rough Set Theory asintroduced by PAWLAK isequivalenttothe
S5 Propositional Modal Logic wherethe reachability relationisan equivalence
relation. By replacing this equivalence relation by an arbitrary binary relation
(satisfying certain properties, for instance, reflexivity and transitivity) we shall
obtain generalized (crisp!!) rough set theories. Our ideas in the paper are:

1. We replace the crisp reachability relation by a binary fuzzy relation
whereas the set to be approximated remains crisp. It is very important
that the reachability relation is used as a fuzzy relation, i. e. without in-
troducing and using a cut point. Hence, these lower and upper “fuzzy”
approximations of the given crisp set are fuzzy sets, in general.

2. Viceversa, the given set to be approximated is afuzzy set, but the reach-
ability relation is crisp. Also in this case the lower and the upper “crisp”
approximations of the given fuzzy set are again fuzzy sets, in general.

3. Finally, wedefinealower and an upper approximation of afuzzy set using
abinary fuzzy relation. Itisinteresting that this approach coincides with
a concept which we have devel oped for interpreting the modal operators
Box and Diamond in the framework of Fuzzy Logic.

1 Some Fundamental Notions and Notations

We fix a non-empty set U called universe. For arbitrary subsets X,Y € U we denote the
unionandtheintersectionof X andY by X Y and X n'Y, respectively. X isthe complement
of X with respecttoU, i. e. the set U \ X whereU \ X denotes the set-theoretical difference
of U and X. The empty set is denoted by (1.

For crisp binary relations R, i. e. for RC U xU, we use the terms “reflexive’, “ symmetric”,
“transitive’, “tolerance”, “semi partial ordering”, “equivalence” asusual. In doubt we refer
to definition 2 where these notions are generalized to binary fuzzy relations. By U/R we
denote the set of equivalence classes from U generated by the equivalencerelationRonU.

Assume R,R € U xU. For definiteness we recall
Definition 1
1 ROR =g {[x¥]|[xyl ORO[xY] OR}
2. RoR =4¢ {[x,¥]|z([x,4 O RO[zy] O R)}
3. RO=g¢ {[x¥|xOU}

4. R"1 =4« RoR" wheren isan integer withn > 0
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5 RU=g4g D R,
n=0

By {0, 1} and [0, 10ve denotethe set of the numbers0, 1 and the set of all real numbersr with
0= r £ 1, respectively. An n-ary BooLEan function 3 and £ UKASIEWICZ’ function A isa
mapping B:{0,1}" - {0,1} and A : [0, 1 - [0, 10 A issaid to be L UKASIEWICZ’ exten-
sion of B =ger Oxg MMMXp(Xq, ... , X0 0{0,1} - A(Xq, ... ,Xn) =B(Xq, ... ,Xn)). By etand seqwe
denote the binary BooL Ean functionsdefined by et(1,1) = 1, et(1,0) = et(0,1) = et(0,0) =0
and seq(1,1) = seq(0,1) = seq(0,0) = 1, seq(1,0) = 0, respectively. The functions min
and kd(r,s) =g max(1-r,s),(r,s) O [0, 1) are called standard L UKASIEWICZ' extensions
of et and seq, respectively. Generalized fuzzy conjunctions and fuzzy implications are
LUKASIEWICZ’ extensionsof et and seq, respectively. A t-normT and an s-norm (t-conorm)
0 is abinary monotone, associative and commutative £t UKASIEWICZ’ function satisfying
theequationt(r,1) =r and o(r,0) =r for every r 0 [0, 1L]respectively. Thus, at-normand an
s-normisageneralized fuzzy conjunction and ageneralized fuzzy digjunction, respectively.

Fuzzy sets on U are mappings F : U — [0,1[]i. e we do not distinguish between the
fuzzy set F and its membership function pg. By W and @ we denote the universal and
the empty fuzzy set on U, i. e. the mapping such that for every x 0 U the equations
W(x) =1 and O(x) = 0 hold, respectively. For F,G : U - [0,10we define F € G by
Ox(xOU - F(X) < G(X)).

For arbitrary fuzzy sets F and G on U we use the standard operations n, 0 and ™~ as usual,
i. e. for every x O U defined by

(F n G)(X) =ger Min(F (x), G(x))
(F O G)(X) =ger max(F(x), G(x))
(F)(%) =get 1=F(x).

For binary fuzzy relationsSand S on U, i.e. SS:U xU - [©0,10therelationsSn S,
SO S, and Sare defined as for fuzzy sets.

In order to formulate some parts of the following definition, we fix a function
K:[0,1x[0,10- 0,10

Definition 2
1. Sissaidto bereflexiveonU =g Ox(x DU - S(x,X) = 1)
Sissaid to be symmetric onU =g OxOy(x,y DU — S(X,y) = XV, X)).
Sissaid to bek-transitiveonU =g OxOyOz(x,y,z0OU - K(S(X,Y),SY,2)) < S(%,2)

Sissaid to be atolerancerelation onU =4 Sis reflexive and symmetric onU

o KN 0N

Sissaidtobeasemi partial K-orderingrelation onU =y Sisreflexiveandk-transitive
onU

6. Sissaid to be ak-equivalence relation onU =4 S is reflexive, symmetric, and K-
transitiveonU

7. (SeS)(xY) =der Sup{min(S(x,2),S(zy))[z0 U}

0 ifx4
8. SxY) =des { 1 ifxzz

(yDou)
9. g1+1 =def So &

10. Sx,Y) =det SUP{S(x,Y)In=0}  (xy) OU)



If in the points 3, 5, and 6 K is the function min, we shall call the corresponding rela
tion Sstandard-transitiveon U, semi partial standard-ordering relation onU and standard-
equivalencerelation onU, respectively.

2 “Classical” Crisp Rough Sets and their Crisp
Generalizations

Assume that RS U xU isan equivalence relation on U and X € U. Following PAWLAK
[24-26] we define the R-lower approximation RX and the R-upper approximation RX of X
asfollows

Definition 3
1. RX =g || {Y|Y DU/ROY C X}

2 RX =g | {YIY OU/ROY n X F 1.

Furthermore, following PAWLAK we define

Definition 4
1. X issaid to be R-exact =44 RX = RX

2. X issaid to be R-rough (R-inexact) =4 RX # RX.

For better understanding some investigations in the next chapters, we quote the following
theorem characterizing R-exact sets

Theorem 1
RX =RX if and only if there exists€ C U/R such that X = |:| ¢

Because R is an equivalencerelation on U, we get the following proposition

Proposition 2
1. RX =4« {Xx OU O[{RE X}
= {X|Oy(xyl DR -y O X)}
2. RX =4 {X|xOU O[X]RN XD}
={x|0y([x,y] U ROy O X)}.

Now, we incorporate these concepts of rough set theory in the KRIPK E-semantic approach
of the (two-valued) modal logic.

For this reason we permit that R € U xU isan arbitrary binary relation on U. We interpret
R as areachability relation of a KRIPKE-frame & = [U, R]. Then the box and the diamond
operator generated by R, respectively, are defined as followswhere X € U.

Definition 5
L [RIX =ge {X|Oy([x,Y] OR - y O X}

2. IRIX =gt {X|0y([x.y] O ROy O X)}.
Then the announced incorporation is understandabl e by the following proposition.

Proposition 3
If Risan equivalencerelation onU, then



1. [RIX=RX  and
2. [RX =RX.

Hence, we can state that the restriction to equivalencerel ations leads to the well-known S5-
System of modal logic or, vice versa, the “classical” crisp rough set theory (as introduced
by PAwLAK) can be termed as S5-rough set theory.

Furthermore, if we replace the equivalencerelation R by atolerancerelation (i. e. Risre-
flexiveonU and symmetric) or by asemi partial order relation (i. e. RisreflexiveonU and
transitive) then we will get generalized rough set theories, which could be called B-rough
set theory and $A4-rough set theory, respectively.

Because of space restriction we cannot discuss this generalized approach. In aforthcoming
paper we shall discuss this approach in detail. For more information see, for instance, [23,
28,34]. A topological oriented generalization can be found in [14].

3 Rough Fuzzy Sets

The starting point of the approachto be presented in this chapter isthe following proposition
which gives a new interpretation of definition 5. See also [2].

A crispsetY € U can bedescribed by its characteristic function xy defined for every x JU
by
_ 0 if xdy
XY(X) —def 1 |fXDY
Using definition 5 we get the following propositionwhere RS U xU.

Proposition 4
Forevery xOU,X C U,

L Xrx(®) = Inf{xx(y)|]y DU O[x,y] O R} and
2. Xmex(¥) = Sup{xx(Y)ly O U O[x,y] O R}
Now, wereplacethe“specia” fuzzy setxy : U — {0,1} by agenerd fuzzy setF :U - [0,10

and define the R-lower approximation [R]F and the R-upper approximation [R(F of the
fuzzy set F asfollowswherex O U.

Definition 6
1. ([RIF)(X) =get Inf{F(y)|y DU O[x,y] O R}

2. (IRIF)(X) =der SUp{F(y)ly DU O[x,y] OR}.

Obvioudly, [RIF and [R[F are again fuzzy setsonU.

Definition 6 is“compatible” with definition 5 in the sense of the following proposition

Proposition 5
1. KER([RJF) = [RIKER(F) and

2. KER(IRF) = [RIKER(F).

Thenotion of R-exactness can be generalized to fuzzy setsF onU and crisp binary relations
RonU asfollows



Definition 7
1. F issaid to be R-exact =4 [RIF = R(F

2. F issaid to be R-rough (R-inexact) =¢¢ [RIF o IR(F.
Aswe have already stated in [30, 31] this approach is well-known since more than twenty

years(see[5,12,13,16,21,22,27,29]) in order to interpret the modal operatorsd and ¢ in
the frame of fuzzy logic and of possibilistic logic, respectively.

Most of these approaches can be subordinated the following scheme: Given abinary fuzzy
relation SonU. Then for afixed “cutpoint” ¢ O [0, 1dwo binary crisp relations R; and R ¢
are defined as follows

Re =gef {[va]|xvy[| u DS(XvY) 2 C}
Rc=ger {[xYI[xyOU OS(x,y) > c}

Thentherelations R; and R ¢ are used in order to interpret box and diamond with respect to
definition 6.

For definiteness we recall some well-known results.

Theorem 6
For every RC U xU and every fuzzy F andG onU,

. [RIF =[RF and RF =[R|F

. F €G- [RIF C[RIG and [RF < [RG
. [RI(Fn G) 2[RIF n [RIG

. RIF 0 G) C [RF 0 RG

. [RIW =W and RAD) = .

a N W N R

Corollary 7
For every RC U xU and every fuzzy F and G onU,

1. [RI(FnG)=[RIFn[RIG 3. [RI(FOUG)2[RIFU[RIG
2. RFOG)=[RF ORG 4. [RUF n G) C [RF n [RG.
Theorem 8
ForeveryRC U xU andevery F :U - [0,1[]
1. if RreflexiveonU, then[RIF € F C (RIF
2. ifRsymmetric, thenF C [R][RIF and RJR]F C F
3. if Rtransitive, then [R]F € [R][R]F and RIRIF C [RF.
Corollary 9
ForeveryRC U xU andevery F : U - [0,1[)

1. if RtolerancerelationonU,
then[RIF € F C [RIF andF C [RIIRF and RIR]F € F
2. if R semi partial order relation onU,
then[RIF € F C [RIF and[R]F =[R][R]F and [RF = [RIRF

3. if R symmetric and transitive,
then RIF C [RIIRF and RIR]F € [R]F



4. if R equivalencerelation onU,
then [RIF CF C[RF and [R]F =[R][R]F and IR(F = [R][RIF and
[RIF = (RORF and  [RIF = RIR|F.

From dynamic propositional fuzzy logic (asintroduced in [31]) we quote

Theorem 10

ForeveryRR CUxU andevery F :U - [0,1[]
1. [ROR]F=[RFn[R]F 4. [RoRI[F = [RIRF
2. RORF=RFORF 5. [RAF =F n[RI[RIF
3. [ReR]F =[R|[R]F 6. RF =F 0 RIRF

The fundamental theorem characterizing R-exact crisp sets (see theorem 1) can be general-
ized asfollows

Theorem 11
For every equivalencerelation R € U xU and every fuzzy set F : U - [0,10]F isR-exact
if and only if

1. OK(K OU/R - F isconstant onK) and
2. F(x) = Sup{min(xr(x.y),F(y))lyOU}

4 Fuzzy Rough Sets

In this chapter we ask the question whether a crisp set X € U can be approximated by a
binary fuzzy reachability relationSon U, i. e. by amapping S: U xU - [0,1[] Seealso[2].

Proposition 4 leadsto a correct description of thisproblem. To thisend we replacethe crisp
relation R € U xU by its characteristic function xr. Hence, from proposition 4 we obtain

Proposition 12
1 Xrix(¥) = Inf{seq(Xr(X, ), Xx(¥)) |y DU }

2. Xmx (¥) = Sup{et(xr(x, ), Xx()) [yO U }.

Now, we want to replace the function xg : U xU - {0,1} by an arbitrary function
S:UxU - [0,10]i. e toreplacethe binary crisp relation Ron U by abinary fuzzy relation
SonU. Therefore, first of al, we replace the functions seq and et by £ UKASIEWICZ’ ex-
tensions of them because seq and et are only defined on {0, 1}. For simplification we choose
the standard extensions, i. e. seq and et are replaced by kd(r,s) = max(1-r,s) and min(r, s),
respectively.

Thus, using S: U xU - [0, 10as approximating fuzzy relation we define
Definition 8

1. ([SIX)(x) =ger Inf{max(1-S(x,y), xx(¥) |y DU}

2. ((EX)(X) =ger Sup{min(S(x,y), xx(¥))|y O U}.

In the following chapter we shall replace the crisp set X and its characteristic function xx
by an arbitrary fuzzy set F onU asin definition 9 described. When studying the approaches



determined by definition 8 and 9 we recognized that the properties of [§ X and [S]F essen-
tially depend on S, whereas of fixed Sthese widely coincide for X and F. The same holds
for (X and [(8F.

Hence. we shall not study [S]X and [3(F separately, but refer to the next chapter.

5 Fuzzy Box and Fuzzy Diamond

Continuing the discussion after definition 8 for arbitrary S: U xU - [0,10F : U - [0,1[)
and x 0 U we define

Definition 9
1. ([SIF)(X) =er Inf{max(1-S(x,y), F(y))lyO U}

2. ([8F)(x) =¢er Sup{min(S(x,y),F(y))[yOU}.
Notice that we already introduced these definitionsin 1993 (see [30], furthermore see [31])
in order to construct “soft” (i. e. fuzzy) interpretations of the modal operators[d and ¢.

Analogous to theorem 6 we get

Theorem 13
ForeveryS:U xU - [0,10and every F,G:U - [0,1[)

. [SF =BF

. FC G- [JF C[SGOIEF C 56
. [SI(FNG) 2 [FF n[IG

. BIF 0G) C 5F 0 [5G

L [SW =W OSD = 0.

a AN WO N R

Corollary 14
ForeveryS:U xU - [0,10and every F,G: U - [0,1[)

1. [9(FnG)=[gF n[IGC
2 H(FOG)=[3F0JMEG
3. [9(FOG2[JFO[YG
4. 8{F n G) C [BF n [EG.
Theorem 15
Forevery S:U xU - [0,10andevery F :U - [0,10)
1. if SisreflexiveonU, then[SF € F C [BF

2. a ifSissymmetriconU and OxOy(x,y OU - min(S(x,y), 1-S(x,y)) < F(X)), then
F C [JEF

b) if SissymmetriconU and OxOy(x,y O U - max(S(x,y),1-S(x,y)) = F(X)),
then EISIF C F

3. if Sis standard-transitiveonU, then [ F C [F[SF and BI8F < [EF



Remark In contrast to theorem 8 where for asymmetric R € U xU we could state
F C [RIIRTF and RIR]F C F,

we haveto accept that for arbitrary S: U xU - [0,10and F : U - [0,1[theinclusions
FCISSF  and  (SIYFCF

do not hold, in general.

Corollary 16
ForeveryS:U xU - [0,10and every F :U - [0,10)

1. if SisatolerancerdationonU, then
[SFEF CEF andF C [JEF andE]9F S F

2. if Sisasemi partial standard-order relationonU, then
[SIF € F C EF and[9F =[9[SF and [BF = [E18F

3. if SissymmetriconU and standard-transitiveon U, then
a) if OxOy(x,y DU - min(S(x,y),1-S(x,y)) < F(X)), then [3F C [F[EF
b) if OxOy(x,y DU - max(S(x,y),1-S(x,y)) 2 F(x)), then (I F & [SF
4. if Sisastandard-equivalencerelation onU, then
a [9F € F C EF and
b) [SF =[I[SF and
¢) BF = [BI8F and
d) if OxOy(x,y OU - min(S(x,Y),1-Sx,y)) < F(X)), then (5F = [S](BF
e if OxOy(x,y OU - max(S(x,Y),1-S(x,y)) = F(X)), then[SIF = [S]S|F

Analogousto “soft” dynamic logic we have

Theorem 17

ForeveryS,S :UxU - [0,10and every F : U - [0,1[)
1. [SOS]F=[SFn[S]F 4, [BoS[F =FIBF
2. BUOSF=BFOSBEF 5 [SIF=Fn[9[S]F
3. [SeS]F =[Y[S]F 6. BF=FOFIBEF

Comparing theorems (corollaries) 6, 7, 8, 9, and 10 with 13, 14, 15, 16, and 17, respec-
tively, we can state that for the box operator (and also for the diamond operator) almost the
same regularities hold independent of the fact whether a crisp relation R or afuzzy relation
Soccurs“inside’ the operator.

Finally, we state that there are surprising analogies between Fuzzy Diamond as we have
defined above and the “classical” Generalized Modus Ponensasit wasintroducedby L. A.
ZADEH in [36].

We recdl: Assume F,G,F’',G' are fuzzy setson U. The Generalized Modus Ponensis an
inference rule of the form

F
IFF'THENG' ,
G



with the following semantics. Given afunctionimp: 0,13 — [0, 1called “implication”.
Thefunctionimpisusedtointerpretthel F-THEN rule IFF' THEN G’ by defining the binary
relation

S(X,Y) =det IMp(F'(x),G'(y)) (xyOU)
on U. Then the fuzzy set G derived from F by IFF' THENg' is defined as

G(X) =ger Sup{min(F(y), Xy, x)|yOU}
forxOU, . e. by the Compositional Rule of Inference.

Thus, we can state that G = [571F, where S1(x,y) =g« Y,X) (X, y OU),i.e. thefuzzy set
G obtained by the Compositional Rule of Inference from F and S can also be constructed
by applying the fuzzy diamond operator to F, but this operator “attached” with the inverse
relation S1.

6 Non-Standard Fuzzy Box and Fuzzy Diamond

In many applicationsof fuzzy logic the function minisreplaced by at-normt and the func-
tion max(1-r,s) by another “implication” whereas it is to notice that the concept “impli-
cation” is not so uniquely defined and used as the concept of t-norm and of s-norm (for in-
stance, S-implication, R-implication, etc.).

To this end we fix a function 1t: 0,13 - [©,10caled “implication” and a function
K :[0,109 - [0, 1xalled conjunction. Using these functionswe definefor S:U xU — [0,10
andF :U - 0,10

Definition 10
L ([STIF)(X) =ger Inf{T(S(X,y),F(y))|lyOU}
2. (B KF)(X) =ger SUp{K(S(x,Y),F(Y))lyOU}.

Because of spacerestrictionswe cannot carry out the“whole” program anal ogousto chapter
5. Asit were an “example” we formulate only the following theorem

Theorem 18
ForeveryS:U xU - [0,10and every F :U - [0,10)

1. ifr(r,s) =1-k(r,1-s) for every r,s 0 [0, 1) then [S, T F = [§,kF

2. if x is monotone with respect to the second argument and F € G, then
B kIF C [$KI[G.

3. if SisreflexiveonU andk(1,s) =s for every sO [0, 1[Jthen F C [$,kF

4. if S is K-transitive and K is monotone with respect to the first argument and

K is continuous with respect to the second argument and K is associative, then
(5, kIS, KF € [BKIF.

It is well-known that by such replacements many theorems fail or they must be reformu-
lated. Thesame holdsif we define and study the so-called non-standard fuzzy box and non-
standard fuzzy diamond. While theorem 18 expresses some known properties of box and
diamond (see the corresponding items of theorems 6, 8, 13, 15), other properties depend
essentially on Ttand k.

In aforthcoming paper we will investigate the following two areas of problems:



1. to study the question which assumptionsfor rtand K are sufficient to ensure[S, 1] and
(5, k [fulfil certain desired properties

2. to study [S 1] and [$,k[For specia choicesof tand K, for instance

1(r,s) =min(1,1-r+s) T(r,8) =1-r+rs
K(r,s) = max(0,r +s-1) or K(r,9) =r[s$

wherer,s0 [0, 10
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