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Investigating the Logical Structure of FUZZY IF-THEN Rule Bases using
Concepts of Mathematical Logic and of Functional Analysis∗

Helmut Thiele

Abstract
In developing a semantics for a Fuzzy If-Then Rule Base we in principle distinguish the fol-
lowing two approaches. Firstly, a Fuzzy If-Then Rule Base is considered as a Fuzzy Knowl-
edge Base describing (time independent) situations by means of fuzzy logic. Secondly, a
Fuzzy If-Then Rule Base describes the “inner part” of a fuzzy controller, therefore the con-
clusions of If-Then rules must be interpreted as assignments. In the paper presented we
discuss only the first approach. To this end following TARSKI we define a suitable concept
of model and semantic entailment for Fuzzy If-Then Rule Bases. Furthermore, we adopt
the concept of fact from logic programming.

1 Introduction

By 〈0,1〉 we denote the set of all real numbers r with 05 r 5 1. If U is an arbitrary set by
a fuzzy set F on U we understand a mapping F : U → 〈0,1〉, i. e. we do not distinguish
between a fuzzy set F and its membership function µF . The set of all fuzzy sets on U is
denoted by FP(U), furthermore,P(U) denotes the classical power set of U . Generally, Λ
terms the empty set.

Let m and n be integers with m, n = 1. Furthermore we are given non-empty sets U1, … ,
Un, V called universe.

Now we assume that X1, … , Xn, and Y are variables for fuzzy sets on U1, … ,Un and V ,
respectively, also called linguistic variables on the concerning universe.

Using the terminology of the (usual classical) Logic Programming we call constructs of the
form

Xν = Fν and Y = G

FACTS on Uν and FACTS on V , respectively, where ν = 1, … , n, Fν is a fuzzy set on Uν,
and G is a fuzzy set on V . By FAC(Uν) and FAC(Y ) we denote the set of all facts on Uν and
V , respectively.

Constructs of the form

IF X1 = F1, … , and Xn = Fn THEN Y = G

are termed as RULES on [U1, … ,Un;V ]. The set of all rules on [U1, … ,Un;V ] is denoted
by RUL(U1, … ,Un;V ).

Now we assume that

F1ν, … , Fmν are fuzzy sets on Uν where ν = 1, … , n

and

G1, … , Gm are fuzzy sets on Y .

∗Long version of a paper originally published in World Automation Congress 1998 (WAC ’98), Anchorage,
Alaska, USA, May 10–14, 1998
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A scheme R of the form

IF X1 = F11, … , and Xn = F1n THEN Y = G1

R:
...

IF X1 = Fm1, … , and Xn = Fmn THEN Y = Gm

is called FUZZY IF-THEN RULE BASE on [U1, … ,Un;V ].

With respect to the semantic interpretation, R will be considered as a “LOGICAL” FUZZY
KNOWLEDGE BASE in contrast to the interpretation of R as an IMPERATIVE ASSIGN-
MENT PROGRAMM in the area of fuzzy control.

This distinction between the “logical approach” and the “imperative approach” is decisive
and fundamental for all considerations in the paper presented and in forthcoming papers
dealing with fuzzy IF-THEN rule bases.

In the following of this paper we will consider only the logical approach.

2 The Concept of Model and of Semantic
Entailment for logical Fuzzy IF-THEN Rule Bases

In developing the concepts of model and of semantic entailment we go back to the classical
definition of the concept of semantic entailment in logical calculi.

Assume that E is an expression and E is a set of expressions. Furthermore assume that we
are given a set J of interpretations and there is defined for an interpretation I ∈ J the relation
“I is a model of E” holds.

Now, we remember that in mathematical logic one defines “E semantically entails E with
respect to J” to be if and only if for every I ∈ J, if I is a model of E then I is a model of kEp.
Remark
In some publications the word “semantically” is replaced by “model based” and for the com-
plete formulation “E semantically (model based) entails E with respect to J” is replaced by
“E is a semantic (model based) consequence of E with respect to J”.

Now, we are going to formulate these fundamental definitions in the case of a given logical
Fuzzy IF-THEN Rule Base R as specified in the previous section.

Definition 1
Φ is said to be an interpretation on [U1, … ,Un;V ]
=def Φ:FP(U1) × ⋅ ⋅ ⋅× FP(Un) → FP(V ).

Obviously, this definition means that Φ is a functional operator which generates a image
function G = Φ(F1, … ,Fn) from the given n-tuple [F1, … ,Fn] argument functions F1, … ,Fn

where for every ν ∈ k1, … , np, Fν:Uν → 〈0,1〉 and G:V → 〈0,1〉.

The set of all interpretations on [U1, … ,Un;V ] is denoted by INT(U1, … ,Un;V ).

Definition 2
Φ is said to be a model of R
=def 1. Φ is an interpretation on [U1, … ,Un;V ] and

2. Φ(F11, … , F1n) = G1
...

Φ(Fm1, … , Fmn) = Gm
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This definition says that for every rule

Rµ: IFX1 = Fµ1, … , and Xn = Fµn THENY = Gµ

(µ = 1, … ,m) the functional operator Φ the n-tuple [Fµ1, … ,Fµn] of premises converts into
the conclusion Gµ, i. e. that the equation

Φ(Fµ1, … , Fµn) = Gµ

holds.

In order to define an entailment relation we fix a set J of interpretations of R. Expressions
E are fuzzy if-then rules of the form E = R where

R: IFX1 = F1, … , and Xn = Fn THENY = G

Thus, Fuzzy IF-THEN Rule Base are sets E of “expressions” E.

Remark
With respect to the conception of model state that the “order” of the rules in R does not play
any role, thus, we can consider R as a usual (unordered) set.

Definition 3
R semantically entails R with respect to J (shortly denoted by R
J R)
=def For every Φ ∈ J, if Φ is a model of R then Φ is a model of kRp.

Obviously, in definitions 2 and 3 the fact thatR is a finite set does not play any role, therefore
we admit that R is an arbitrary set, i. e. R can be finite, or infinite, or even empty.

Finally, we define the following entailment operator ENT

Definition 4
ENT(R,J) =def mR R
J Rr

3 Investigating and Applying the Entailment
Operator

Adopting the “philosophy” of mathematical logic we are faced with the problem to investi-
gate the behavior of the operator ENT depending on R and J, in particular, to characterize
ENT(R,J) by deduction rules if possible or to show that this is not possible, respectively.

We start the investigation of ENT(R,J) with the following two simple theorems.

Theorem 1
For every R,R′j RUL(U1, … ,Un;V ) and for every Jj INT(U1, … ,Un;V ),

1. Rj ENT(R,J)

2. ENT(ENT(R,J),J)j ENT(R,J)

3. if RjR′ then ENT(R,J)j ENT(R′,J).

4. ENT(Λ,J) = Λ
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Obviously, this theorem means that for every fixed J the operator ENT ′J defined by

ENT ′J(R) =def ENT(R,J)

with RjRUL(U1, … ,Um;V ) is a closure operator in the sense of classical algebra with the
sealing condition ENT ′(Λ) = Λ.

Theorem 2
For every Rj RUL(U1, … ,Un;V ) and every J, J′j INT(U1, … ,Un;V ),

1. if Jj J′ then ENT(R,J′)j ENT(R,J)

2. ENT(R,Λ) = RUL(U1, … ,Un;V )

If we define for every fixed Rj RUL(U1, … ,Un;V ) the operator ENT ′′R by

ENT ′′R(J) = ENT(R,J),

where J j INT(R,J), then ENT ′′R(J) is comonotone with the scaling condition
ENT(Λ) = RUL(U1, … ,Un;V ).

From mathematical logic we adopt the following fundamental definition.

Definition 5
1. ENT is said to be compact in the first argument with respect to the fixed set J of in-

terpretations
=def For every Rj RUL(U1,… ,Un;V )

and for every R ∈ RUL(U1,… ,Un;V ),
if R ∈ ENT(R,J) then there exists an R f in jR such that R f in is a finite set and
R ∈ ENT(R f in,J).

2. ENT is said to be cocompact in the second argument with respect to the fixed set R
of rules
=def For every Jj INT(U1,… ,Un;V )

and for every R ∈ RUL(U1,… ,Un;V ),
if R ∈ ENT(R,J) then there exists an Jco f in k J such that
INT(U1,… ,Un;V )rJco f in is finite and R ∈ ENT(R,Jco f in).

In mathematical logic the compactness of operators like ENT ′J plays a decisive role in in-
vestigating and solving the problem whether the set ENT ′J(R) can be characterized by (re-
cursive) deduction rules.

Now, in the present case to this problem one could counter that in practise infinite fuzzy
IF−THEN rule bases R do not occur. But we are of the opinion that this point of view is to
narrow because one could use “parameterized” rule sets with an infinite parameter set and
this fact could mean that the rule base considered is infinite.

The co-compactness defined for the operator ENT ′′R seems to be strange, but as we have
shown in [4] this modification of the “classical” compactness must be used for comonotonic
operators.

Open problem
Up to now it is still an open problem in which cases for R and J the operators ENT ′J and
ENT ′R are compact and cocompact, respectively. This problem will be investigated in a
forthcoming paper.

Remark
As we have shown in [5, 6] the entailment operators defined can be applied in order to de-
fine concepts like consistency (inconsistency), completeness (incompleteness), dependency
(independency) and equivalence of rule bases R.
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4 Methods for generating interpretations and
restricting models

The concepts of interpretation, model, and semantic entailment are very general and also
very flexible such that in special situations or for special applications by “fine tuning” the
definitions can be adapted to the problematic nature considered.

We offer two methods of adapting, firstly, the restriction of the concept of interpretation,
and secondly, the restriction of the concept of model.

We begin with considering the first approach. Referring to definition 3 one could think that
by fixing a subset J of interpretations from INT(U1,… ,Un;V ) and using this set in order to
define the entailment relationR
J R the claim for restricting the concept of interpretation is
sufficiently satisfied. But that this is not the case will be shown further down by applications.
Strictly speaking, the applications require that the set J of interpretation used depends on
the given rule base R.

Thus, we formulate the following definition.

Definition 6
J is said to be an interpretation-selecting operator on RUL(U1,… ,Un;V ) and
INT(U1,… ,Un;V )
=def J :P(RUL(U1,… ,Un;V )) →P(INT(U1,… ,Un;V )).

If RjRUL(U1,… ,Un;V ) is a rule base then J = J(R) is to interpret as the set of interpreta-
tions which will be used in definition ofR
J R and ENT(R,J). According to this approach
we define

Definition 7
1. R
∗

J R =def R
J(R) R

2. ENT∗(R, J) = ENT(R, J(R))

With respect to this more general approach, theorem 1 must be modified as follows.

Theorem 3
For every R,R′ j RUL(U1,… ,Un;V ) and every interpretation-selecting operator J on
RUL(U1,… ,Un;V ) and INT(U1,… ,Un;V ),

1. Rj ENT∗(R, J)

2. if J(R)j J(ENT∗(R, J)) then ENT∗(ENT∗(R, J), J)j ENT∗(R, J)

3. if RjR′ and J(R′j J(R) then ENT∗(R, J)j ENT∗(R′, J)

4. ENT∗(Λ, J) = Λ

After theorem 1 we defined the entailment operator ENT ′J and stated that ENT ′J is a clo-
sure operator satisfying the scaling condition ENT ′J(Λ) = Λ.

Analogously for a fixed interpretation-selecting operator J we define

ENT1
J(R) =def ENT?(R, J).

where R ∈ RUL(U1, … ,Un;V ).

Trivially, we get the scaling condition ENT1
J(Λ) = Λ but with respect to theorem 3 we can

not conclude that ENT1
J is a closure operator for an arbitrary (fixed) J.

Furthermore, theorem 2 must be modified as follows.

5



Theorem 4
For every R j RUL(U1,… ,Un;V ) and every interpretation-selecting operator J and J′ on
RUL(U1,… ,Un;V ) and INT(U1,… ,Un;V ),

1. if J(R)j J′(R) then ENT∗(R, J)j ENT∗(R, J′)

2. if J(R) = Λ then ENT∗(R, J) = RUL(U1,… ,Un;V ).

After theorem 2 we defined the operator ENT ′′R and stated that ENT ′′R and is comonotone
and satisfies the scaling condition ENT ′′R(Λ) = RUL(U1,… ,Un;V ).

Now, for arbitrary interpretation-selecting operators J and J′ on RUL(U1,… ,Un;V ) and
INT(U1,… ,Un;V ) we define

J j J′ =def For every Rj RUL(U1,… ,Un;V ), J(R)j J′(R).

Furthermore, for a fixed rule base R j RUL(U1,… ,Un;V ) and arbitrary interpretation-
selecting operator J we define

ENT2
R(J) =def ENT?(R, J).

Then we can state that ENT2
R is comonotone and satisfies the scaling condition

ENT2
R (Λ) = RUL(U1,… ,Un;V ).

Remark
The definition of compactness of ENT∗ with respect to the first argument can be adopted
from definition 5 for ENT. It remains as a problem how the cocompactness of ENT∗ with
respect to the second argument can be defined.

In the following of this section we define and investigate several methods for generating
special sets of interpretations for a given rule set R, i. e. methods for constructing special
interpretation-selecting operators J. The methods will be based on concept of continuity of
the functional operators considered, on the principles FATI and FITA, and on fuzzy relations
interpreted as solution of systems of fuzzy relational equations.

4.1 The concept of continuity

We assume that FP(U1),… ,FP(Un), and FP(V ) are topological spaces. Assume
Rj RUL(U1,… ,Un;V ).

Definition 8
Jgc(R) =def lΦ Φ ∈ INT(U1,… ,Un;V ) and Φ is continuous q

Obviously, Jgc does not depend on R because we have supposed the continuity of Φ in its
whole domain. According to this, we have used the index gc for J (as “globally continu-
ous”).

Because Jgc is constant we can state that this operator satisfies the conditions (see theorem
3)

Jgc(R)j Jgc(ENT?(R, Jgc))

and if RjR′ then Jgc(R′)j Jgc(R), hence we have

Proposition 5
ENT1

Jgc
is a closure operator.
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Furthermore, we have to remark that Jgc, of course, depends on the topologies given in
FP(U1),… ,FP(Un), and FP(V ) and even on the concept of continuity defined for Φ.

For instance, the topologies considered can be generated by suitable metrics, maybe by the
well-known CHEBYSHEV distance dCH , on FP(U) for arbitrary F,G : U → 〈0,1〉 defined
by

dCH(F,G) =def Supl|F(x) − G(x)| x ∈ Uq .

One can be of the opinion that to suppose the continuity of Φ in its whole domain is too
strong, hence the class of admitted interpretations would be too small, hence the class of
entailed rules would be too large.

Therefore we can claim that for a given rule base R an operator Φ is continuous only at
“points” of the form [F1,… ,Fn], where F1 ∈ FP(U1),… ,Fn ∈ FP(Un) and there is a rule
R ∈ R of the form R = IF X1 = F1,… ,Xn = Fn THEN G.

Accordingly, we formulate where the index lc means “locally continuous”.

Definition 9

Jlc(R) =def

R
|
S
|
T
Φ

Φ ∈ INT(U1,… ,Un;V ) and for every rule R ∈ R, if R has the form
R = IF X1 = F1,… , and Xn = Fn THEN Y = G
then Φ is continuous at the point [F1,… ,Fn]

U
|
V
|
W

Obviously, Jlc satisfies the following proposition (see theorem 3).

Proposition 6
For every R,R′j RUL(U1,… ,Un;V ), if RjR′ then Jlc(R′)j Jlc(R).

Using theorem 3 from proposition 6 we get that ENT1
Jlc

is monotonic. We underline

that Jlc(R) j Jlc(ENT?(R, Jlc)) does not hold, in general, hence ENT1
Jlc

does not satisfy

ENT1
Jlc

(ENT1
Jlc

(R))j ENT1
Jlc

(R), in general.

4.2 The principle FATI

We are given a rule base of the form

IF X1 = F11, … , and Xn = F1n THEN Y = G1

R:
...

IF X1 = Fm1, … , and Xn = Fmn THEN Y = Gm

We define FATI(R) =def The set of all FAT where FAT has the form
FAT = [S1, … , Sm,α,κ,Q] and satisfies

1. for every µ ∈ k1, … , mp, Sµ : U1 × ⋅ ⋅ ⋅ ×Un ×V → 〈0,1〉

2. α : 〈0,1〉m → 〈0,1〉

3. κ : 〈0,1〉n+1 → 〈0,1〉

4. Q : P 〈0,1〉 → 〈0,1〉

Starting with a FAT = [S1, … ,Sm,α,κ,Q] we define a functional operator ΦFAT as follows:
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• for every µ ∈ k1, … , mp, the (n + 1)-ary relation Sµ is considered as an interpretation
of the fuzzy if-then rule

Rµ : IFX1 = Fµ1, … , and Xn = Fµn THENY = Gµ,

• by using the function α we define the superrelation S where for
x1 ∈ U1, … , xn ∈ Un, and y ∈ V

S(x1, … , xn,y) =def α(S1(x1, … , xn,y), … , Sn(x1, … , xn,y))

• by using κ and Q we define for arbitrary arguments F1 ∈ FP(Un), … , Fn ∈ FP(Un)
the value Φ(F1, … , Fn) of the operator ΦFAT as follows where y ∈ V :

ΦFAT (F1, … , Fn)(y) =def Q

R
|
S
|
T
κ(F1(x1), … , Fn(xn),S(x1, … , xn,y))

x1 ∈ U1
...

xn ∈ Un

U
|
V
|
W

Finally, we define the set JFATI(R) of all interpretations Φ ∈ INT(U1, … ,Un;V ) which are
selected by the principle FATI as follows

JFATI(R) =def lΦFAT FAT ∈ FATI(R)q

4.3 The principle FITA

We start with the same rule base R as specified in section 4.2. We define FITA(R) =def the
set of all FIT where FIT has the form

FIT = [S1, … , Sm,κ1, … , κm,Q1, … , Qm,β]

and

1. for every µ ∈ k1, … , mp, Sµ : U1 × … ×Un ×V → 〈0,1〉

2. for every µ ∈ k1, … , mp, κµ : 〈0,1〉n+1 → 〈0,1〉

3. for every µ ∈ k1, … , mp, Qµ : P 〈0,1〉 → 〈0,1〉

4. β : 〈0,1〉m → 〈0,1〉

Starting with

FIT = [S1, … , Sm,κ1, … , κm,Q1, … , Qm,β]

we define a functional operator ΦFIT with

ΦFIT : FP(U1) × ⋅ ⋅ ⋅× FP(Un) → FP(V )

as follows:

• as in section 4.2 for every µ ∈ k1, … , mp, the (n + 1)-ary relation Sµ is considered as
an interpretation of the fuzzy if-then rule

Rµ : IFX1 = Fµ1, … , and Xn = Fµn THENY = Gµ,

• using κµ and Qµ we define the logical operator

Φµ(F1, … , Fn)(y) =def Qµ

R
|
S
|
T
κµ(F1(x1), … , Fn(xn),Sµ(x1, … , xn,y))

x1 ∈ U1
...

xn ∈ Un

U
|
V
|
W

8



• using the aggregation function β we define the final result

ΦFIT (F1, … , Fn)(y) =def β(Φ1(F1, … , Fn)(y), … , Φm(F1, … , Fn)(y))

Finaly, we define the set JFITA(R) of all interpretations selected by the principle FITA as
follows

JFITA(R) =def lΦFIT FIT ∈ FITA(R)q

We have to mention that the conditions formulated in theorem 3, point 2 and 3, for J are not
satisfied by JFATI and JFITA, in general. If we define

J?FATI(R) =def ∪
γjR

JFATI(γ)

and

J?FITA(R) =def ∪
γjR

JFITA(γ)

then J?FATI and J?FITA fulfill the comonotonicity (see point 3 of theorem 3 and proposition 6).

4.4 Extensional (truth functional) generation of fuzzy relations

We obtain a further restriction of the generating procedures described in section 4.2 for FATI
and in section 4.3 for FITA if for each fixed rule base R (like in section 4.2 specified) there
exists a vector [π1, … , πm] of real functions

πµ : 〈0,1〉n+1 → 〈0,1〉

(µ ∈ k1, … ,mp) and if we define the relations S1, … ,Sn used in the definitions of FATI and
FITA as follows, where x1 ∈ U1, … , xn ∈ Un,y ∈ V

Definition 10
Sµ(x1, … , xn) =def πµ(Fµ1(x1), … , Fµn(xn),Gµ(y))

This definition means that the membership value Sµ(x1, … ,xn,y) of the vector [x1, … ,xn,y]
only depends on the membership values Fµ1(x1), … , Fµn(xn),Gµ(y) of the elements
x1, … , xn,y, but it is independent of these elements themselves. This fact is often denoted
by the word “truth functional” or “extensionel”.

4.5 Methods for restricting models

The methods for restricting interpretations can be partly used for restricting models, of
course. Therefore we do not discuss this approach.

In the following we introduce two methods for restricting models which are strictly “model
based”, i. e. which can only be applied to restrict models but not to restrict interpretations.

These methods are adopted from nonmonotonic logic, especially from the theory of circum-
scription, and therefore they are based on the concept of minimal (and maximal, respec-
tively) model.

For formulating the concept of minimal and maximal model we define where F,F′ are fuzzy
sets on U and Φ,Φ′ are interpretations on [U1, … ,Un;V ].

9



Definition 11
1. F j F′ =def ∀x(x ∈ U → F(x)5 F ′(x)

2. ΦjΦ′ =def ∀F1, … , Fn(F1 : U1 → 〈0,1〉 ∧ ⋅ ⋅ ⋅ ∧ Fn : Un → 〈0,1〉
→ Φ(F1, … , Fn)jΦ′(F1, … , Fn))

Definition 12
Φ is said to be a minimal (maximal) model of R
=def 1. Φ is a model of R and

2. for every interpretation Φ′ on [U1, … ,Un;V ], if Φ′ is a model of R and Φ′j Φ
(ΦjΦ′) then Φ = Φ′.

Now, referring to definition 6 let J be an interpretation-selecting operator on
RUL(U1, … ,Un;V ) and INT(U1, … ,Un;V ).

Definition 13
1. R semantically entails R with respect to J based on minimal (maximal) models

(shortly denoted by R
min
J R and R
max

J R, respectively)
=def For every Φ ∈ J(R), if Φ is a minimal (maximal) model of R then Φ is a model

of kRp.
2. ENTMIN(R, J) =def nR R
min

J Rs
3. ENTMAX(R, J) =def mR R
max

J Rr

Proposition 7
1. If Φ is an minimal (maximal) model of R and R′jR then Φ is a model of R′, but

Φ is not a minimal (maximal) model of R′, in general.

2. The operators ENTMIN and ENTMAX are not monotone, in general.

Let ET be an arbitrary mapping

ET :P(RUL(U1, … ,Un;V )) →P(RUL(U1, … ,Un;V ))

Definition 14
ET is said to be the cumulatively monotone
=def ∀R∀R′(Rj RUL(U1, … ,Un;V ) ∧R′j ET(R) → ET(R) = ET(R∪R′))

Problem
Which conditions are sufficient that ET is cumulatively monotone?

5 Incorporating Facts

In this section we solve the question how facts can be incorporated into the concepts devel-
oped above.

We choose sets of facts FACTS1 j FAC(U1), … , and FACTSn j FAC(Un) and define

FACTS =def FACTS1 ∪ ⋅⋅ ⋅ ∪ FACTSn.

Then we enlarge the given fuzzy If-Then Rule Base R to S as follows

S =def R∪ FACTS

10



The following definition is inspired by the concepts of logic programming and it is funda-
mental for the further developement of the theory.

Let Y = G be an arbitrary fact from FAC(Y ).

Definition 15
S semantically entails Y = G with respect to J
=def There exist facts X1 = F1 ∈ FACTS1, … , Xn = Fn ∈ FACTSn such that R semantically

entails the rule IFX1 = F1, … , Xn = Fn THENY = G with respect to J.

Remark
All further definitions of entailment formulated in the sections 2, 3 and 4 can be enlarged
corresponding to definition 15.

6 Concluding remark

The considerations made above have predominate conceptional character. In forthcoming
papers a theory will be worked out which consists of more extensive investigations of the
logical structure of If-Then Rule Bases using the concepts in the paper presented.
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[1] K. SCHRÖTER. Theorie des logischen Schließens — Teil I. Zeitschrift für mathematis-
che Logik und Grundlagen der Mathematik 1, 37–86, 1955.
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