UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Investigating the Logical Structure of FUZZY
IF-THEN Rule Bases using Concepts of
Mathematical Logic and of Functional Analysis

Helmut Thiele

No. CI-33/98

Technical Report ISSN 1433-3325 April 1998

Secretary of the SFB 531 [University of Dortmund [Dept. of Computer Science/XI
44221 Dortmund OGermany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support
of the Deutsche Forschungsgemeinschatt.



Investigating the Logical Structure of FUZZY IF-THEN Rule Bases using
Concepts of Mathematical Logic and of Functional Analysis-

Helmut Thiele

Abstract

In developing asemanticsfor aFuzzy If-Then Rule Basewein principledistinguish thefol -
lowing two approaches. Firstly, aFuzzy If-Then Rule Baseis considered asaFuzzy Knowl-
edge Base describing (time independent) situations by means of fuzzy logic. Secondly, a
Fuzzy |f-Then Rule Base describesthe “inner part” of afuzzy controller, therefore the con-
clusions of If-Then rules must be interpreted as assignments. In the paper presented we
discuss only thefirst approach. To this end following TARSKI we define a suitable concept
of model and semantic entailment for Fuzzy If-Then Rule Bases. Furthermore, we adopt
the concept of fact from logic programming.

1 Introduction

By [0, 10we denote the set of al real numbersr with0 <r < 1. If U isan arbitrary set by
afuzzy set F on U we understand a mapping F: U — [0,10]i. e. we do not distinguish
between a fuzzy set F and its membership function pur. The set of all fuzzy setson U is
denoted by FIP(U), furthermore, IP(U) denotes the classical power set of U. Generally, A
terms the empty set.

Let mand n be integers with m, n = 1. Furthermore we are given non-empty setsUy, ...,
Un, V called universe.

Now we assume that Xy, ..., Xn, and Y are variables for fuzzy setson Uy, ... U, and V,
respectively, also called linguistic variables on the concerning universe.

Using the terminology of the (usual classical) Logic Programming we call constructs of the
form

X=FKR and Y=G

FACTSonU, and FACTSonV, respectively, wherev =1, ... ,n, R, isafuzzy set on U,,
and G isafuzzy set onV. By FAC(U,) and FAC(Y) we dencte the set of all factson U, and
V, respectively.

Constructs of the form

IFX;{=Fp,...,and X, =R THENY =G

aretermed asRULES on [Uy, ... ,Up;V]. Theset of all ruleson [Uy, ... ,Up;V] isdenoted
by RUL(Uq, ... ,Un:V).

Now we assume that
Fi, ... ,Fn arefuzzy setsonU, wherev=1, ... ,n
and

Gy, ... ,Gnarefuzzy setson Y.
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A scheme R of theform
IF X3 =Fyg, ... ,and X, =Fy THENY =G

R: :
IFX; =Fng, ... ,a1d X, = Fm THENY =Gy,

iscaled FUZZY IF-THEN RULE BASE on [Uy, ... ,Up; V].

With respect to the semantic interpretation, 8 will be consideredasa“LOGICAL” FUZZY
KNOWLEDGE BASE in contrast to the interpretation of R asan IMPERATIVE ASSIGN-
MENT PROGRAMM in the area of fuzzy control.

This distinction between the “logical approach” and the “imperative approach” is decisive
and fundamental for all considerations in the paper presented and in forthcoming papers
dealing with fuzzy IF-THEN rule bases.

In the following of this paper we will consider only the logical approach.

2 The Concept of Model and of Semantic
Entailment for logical Fuzzy IF-THEN Rule Bases

In developing the concepts of model and of semantic entailment we go back to the classical
definition of the concept of semantic entailment in logical calculi.

Assumethat E is an expression and € is a set of expressions. Furthermore assume that we
aregivenaset J of interpretationsand thereis defined for aninterpretation | O J therelation
“l isamodel of ¢” holds.

Now, we remember that in mathematical logic one defines* & semantically entails E with
respectto J” to beif and only if for every | 0 3F, if | isamodel of € then| isamodel of {E}.

Remark

In some publicationstheword “ semantically” isreplaced by “model based” and for the com-
plete formulation“ € semantically (model based) entails E with respect to J” isreplaced by
“E isasemantic (model based) consequence of & with respect to J”.

Now, we are going to formulate these fundamental definitionsin the case of agiven logical
Fuzzy IF-THEN Rule Base R as specified in the previous section.

Definition 1
& jssaid to be an interpretation on[Uy, ... ,Up; V]
=gt P:FP(Uy) x (X FIP(Up) - FIP(V).

Obvioudly, this definition means that @ is a functional operator which generates a image
functionG=®d(Fy, ... ,F,) fromthegivenn-tuple[F,, ... ,F] argumentfunctionsFy, ... ,F,
whereforeveryv 0 {1, ... ,n}, R:Uy - [0,10nd GV - (0,10

The set of al interpretationson [Uy, ... ,Up; V] isdenoted by INT(Uy, ... ,Up; V).
Definition 2
@ issaid to be amode of R

=4 1. Pisaninterpretationon[Uy, ... ,Un;V] and
2. (D(F]_]_, . Fln) = Gl

®(Fm, -, Fm) = Gm



This definition says that for every rule
Re IFX =Fy, ...,and X, =Fin THENY =G,

(u=1,...,m) thefunctional operator ® the n-tuple[Fy, ..., Fun] of premises convertsinto
the conclusion Gy, i. e. that the equation

(D(Ful, ,Fun) = Gu

holds.

In order to define an entailment relation we fix aset J of interpretations of 2R. Expressions
E arefuzzy if-then rules of the form E = Rwhere

R IFX;=Fp, ..., and Xn =R THENY =G

Thus, Fuzzy IF-THEN Rule Base are sets ¢ of “expressions’ E.

Remark
With respect to the conception of model state that the“order” of therulesin R doesnot play
any role, thus, we can consider R as a usual (unordered) set.

Definition 3
R semantically entails R with respect to J (shortly denoted by R IF5 R)
=4ef FOr every ® 0 3, if ® isamodel of R then ® isamodel of {R}.

Obvioudly, in definitions2 and 3 thefact that R isafinite set doesnot play any role, therefore
we admit that R is an arbitrary set, i. e. R can befinite, or infinite, or even empty.

Finally, we define the following entailment operator ENT

Definition 4
ENT(R,J) =qe {RIR IF; R}

3 Investigating and Applying the Entailment
Operator

Adopting the “philosophy” of mathematical logic we are faced with the problem to investi-
gate the behavior of the operator ENT depending on 2R and J, in particular, to characterize
ENT(fR,J) by deduction rulesif possible or to show that this is not possible, respectively.

We start the investigation of ENT(2R, J) with the following two simple theorems.

Theorem 1
For every R, R' € RUL(Uq, ... ,Un;V) and for every 3 S INT(Uy, ... ,Up; V),

1. RS ENT(R,J)

2. ENT(ENT(*R,3),3) S ENT(R,3)

3. if R SR thenENT(R,3) S ENT(%R',3).
4. ENT(A,3) =A



Obvioudly, this theorem meansthat for every fixed J the operator ENT'; defined by
ENT'5(R) =g ENT(R,J)

withRE RUL(Uy, ... ,Un; V) isaclosure operator in the sense of classica algebrawith the
sealing condition ENT'(A) = A.

Theorem 2
For every s R C RUL(Uq, ... ,Uy;V) andevery 3, 3 S INT(Uq, ... ,Up; V),

1. if3 S 3 thenENT(R,3') € ENT(R,3)
2. ENT(%,A) =RUL(Uy, ... ,Upn;V)

If we define for every fixed 8 € RUL(Uy, ... ,Un;V) the operator ENT"'» by
ENT"%(J) = ENT(R,J),

where J € INT(R,J), then ENT"x(J) is comonotone with the scaling condition
ENT(A) =RUL(Uq, ... ,Up; V).

From mathematical logic we adopt the following fundamental definition.

Definition 5
1. ENT is said to be compact in the first argument with respect to the fixed set J of in-
terpretations
=qet For every R € RUL(Uy, ... ,Un;V)
and for every RO RUL(Uy, ... ,Up;V),
if ROENT(2R,J) then there exists an R+in € R such that Rin is afinite set and
RO ENT(Rtin, J).

2. ENT is said to be cocompact in the second argument with respect to the fixed set R
of rules
=qet Forevery 3 S INT(Uy, ... ,Un; V)
and for every RO RUL(Uq, ... ,Un; V),
if R O ENT(R,J) then there exists an Jeofin =2 J Such that
INT(U4, ... ,Un;V) N Jeofin isfinite and R 0 ENT(R, Jcofin)-

In mathematical logic the compactness of operatorslike ENT'; plays adecisiveroleinin-
vestigating and solving the problem whether the set ENT ' (9R) can be characterized by (re-
cursive) deduction rules.

Now, in the present case to this problem one could counter that in practise infinite fuzzy
IF-THEN rule bases R do not occur. But we are of the opinion that this point of view isto
narrow because one could use “parameterized” rule sets with an infinite parameter set and
this fact could mean that the rule base considered isinfinite.

The co-compactness defined for the operator ENT ''s; seemsto be strange, but as we have
shownin[4] thismodification of the“ classical” compactnessmust be used for comonotonic
operators.

Open problem

Up to now it is still an open problem in which cases for 93 and J the operatorsENT'; and
ENT'y are compact and cocompact, respectively. This problem will be investigated in a
forthcoming paper.

Remark

Aswe have shown in [5, 6] the entailment operators defined can be applied in order to de-
fine conceptslike consistency (inconsistency), completeness (incompl eteness), dependency
(independency) and equivalence of rule bases fR.



4 Methods for generating interpretations and
restricting models

The concepts of interpretation, model, and semantic entailment are very general and also
very flexible such that in special situations or for special applications by “fine tuning” the
definitions can be adapted to the problematic nature considered.

We offer two methods of adapting, firstly, the restriction of the concept of interpretation,
and secondly, the restriction of the concept of model.

We begin with considering the first approach. Referring to definition 3 one could think that
by fixing asubset J of interpretationsfrom INT(Uq, ... ,Un;V) and using this set in order to
definetheentailment relation R I-5; Rthe claim for restricting the concept of interpretationis
sufficiently satisfied. But that thisisnot the casewill be shown further down by applications.
Strictly speaking, the applications require that the set J of interpretation used depends on
the given rule base fR.

Thus, we formulate the following definition.

Definition 6

J is sad to be an interpretation-selecting operator on RUL(Uq,...,Un;V) and
INT(U4, ... ,Un;V)

Zgef J : P(RUL(Uy, ... ,Up;V)) = P(INT(Uq,... ,Un;V)).

If R € RUL(Uq,...,Up;V)isarulebasethenJ = J(R) isto interpret asthe set of interpreta-
tionswhichwill beusedin definition of 2R IF; Rand ENT(2R, J). According to thisapproach
we define

Definition 7
1. RIFJR=ger R IFyeon) R

2. ENTH®,J) = ENT(R,J(R))

With respect to this more general approach, theorem 1 must be modified as follows.

Theorem 3
For every R, R € RUL(Uy,... ,Un;V) and every interpretation-selecting operator J on
RUL(Uq, ... ,Un;V) and INT(Uq, ... ,Un;V),

1. R S ENTHR,J)

2. if JOR) € J(ENTH(R, J)) then ENTHENTHR,J),J) € ENTHR, J)

3 iFR SR and JOR' S I(R) then ENTHER, J) € ENTH9R',J)

4. ENTHAJ) = A
After theorem 1 we defined the entailment operator ENT'; and stated that ENT'; isaclo-
sure operator satisfying the scaling condition ENT';(A) = A.
Analogously for afixed interpretation-selecting operator J we define

ENT}(R) =g ENT*(R,J).

where % ORUL(Uy, ... ,Un;V).

Trivialy, we get the scaling condition ENTY(A) = A but with respect to theorem 3 we can
not conclude that ENT? is a closure operator for an arbitrary (fixed) J.

Furthermore, theorem 2 must be modified as follows.



Theorem 4
For every R € RUL(Uq, ... ,Un;V) and every interpretation-selecting operator J and J' on
RUL(Uq, ... ,Uy;V) and INT(Uq, ... ,Up; V),

1. if J(R) € I (R) then ENTHR, J) € ENTHR,J")

2. if JOR) = A then ENTH(R,J) = RUL (U, ... ,Un:V).

After theorem 2 we defined the operator ENT "' and stated that ENT "' and is comonotone
and satisfies the scaling condition ENT "' (A) = RUL(Uq, ... ,Up; V).

Now, for arbitrary interpretation-selecting operators J and J' on RUL (U4, ... ,Up;V) and
INT(Uq,... ,Un; V) we define

JC J =g Forevery 8 C RUL(Uy, ... ,Un:V), J(R) C J(R).

Furthermore, for a fixed rule base R € RUL(Uy, ... ,Upn;V) and arbitrary interpretation-
selecting operator J we define

ENT2 (J) =gef ENT*(R,J).

Then we can state that ENT% is comonotone and satisfies the scaling condition
ENTZ (A) = RUL(Uy, ... ,Un; V).

Remark

The definition of compactness of ENT with respect to the first argument can be adopted
from definition 5 for ENT. It remains as a problem how the cocompactness of ENT" with
respect to the second argument can be defined.

In the following of this section we define and investigate several methods for generating
specia sets of interpretations for agiven rule set 4R, i. . methods for constructing specia
interpretation-selecting operators J. The methodswill be based on concept of continuity of
thefunctional operatorsconsidered, onthe principlesFATI and FITA, and onfuzzy relations
interpreted as solution of systems of fuzzy relational equations.

4.1 The concept of continuity

We assume that FIP(U,),... ,FIP(Uy), and FIP(V) are topological spaces. Assume
R C RUL(Uy, ... ,Un; V).

Definition 8
Joc(R) =get {P|P OINT(Uy, ... ,Un;V) and ® is continuous }

Obviously, Jyc does not depend on R because we have supposed the continuity of @ in its
whole domain. According to this, we have used the index gc for J (as “globally continu-
ous’).

Because Jy is constant we can state that this operator satisfies the conditions (see theorem
3)

Jgc(R) € Jge(ENT* (R, Jgc))
and if |} € R’ then Jgc(PR') & Jgc(R), hence we have

Proposition 5
ENT%gc is a closure operator.



Furthermore, we have to remark that Jyc, of course, depends on the topologies given in
FIP(U,),... ,FIP(Up), and FIP(V) and even on the concept of continuity defined for &.

For instance, the topol ogies considered can be generated by suitable metrics, maybe by the
well-known CHEBY SHEV distance dcy, on FIP(U) for arbitrary F,G : U - [0, 1[0defined

by
der (F, G) =gt SUp{|F(x) ~G(X[[xT U} .
One can be of the opinion that to suppose the continuity of ® in its whole domain is too

strong, hence the class of admitted interpretations would be too small, hence the class of
entailed ruleswould be too large.

Therefore we can claim that for a given rule base R an operator ® is continuous only at
“points’ of theform [Fy, ... ,R,], whereF, OFP(Uy),... ,F, O FP(Uy) and thereisarule
ROMR of theform R= IF Xy =F4,... ,Xa =F, THEN G.

Accordingly, we formulate where the index |c means “locally continuous”.

Definition 9

@ OINT(Uq,... ,Un; V) and for every rule RO R, if R hasthe form
Jec(R) =g {P| R=IF Xy =Fq,..., andX,=F, THEN Y =G
then @ is continuous at the point [F4, ... ,Fq]

Obviously, J; satisfies the following proposition (see theorem 3).

Proposition 6
For every R, R’ € RUL(Uy, ... ,Up; V), if R S R’ then J(R') € Ji(R).

Using theorem 3 from proposition 6 we get that ENT}IC is monotonic. We underline
that Jc(R) € J(ENT*(2R,J,c)) does not hold, in general, hence ENT}IC does not satisfy
ENT]_(ENT], () € ENT]_(R), in general.

4.2 The principle FATI

We are given arule base of the form
IF X1 =Fyg, ... ,and Xp =Fn THENY =G

R: :
IF Xy =Fny, ... ,a1d X, = Fm THENY =G,

We define FATI(SR) =g¢ The set of all FAT where FAT hastheform
FAT =[Sy, ..., Sn,0,K,Q] and satisfies
1 foreveryu {1, ...,m}, §: Uy xQIxUpxV - [0,10
2. a:0,17 - ©,10
3. k: 0,20 - 10
4. Q:PO,10- 0,10
Starting withaFAT =[S, ..., Sn, d,K, Q] we define afunctional operator ®pa7 asfollows:



» forevery uO{1,...,m}, the(n+1)-ary relation S, is considered as an interpretation
of the fuzzy if-thenrule

Ru:IFX1=Fy, ... ,and Xy =Fin THENY =G,
e by using the function a we define the superelation S where for
X1 OUq, ..., X, OUp, andy OV
S(Xll !Xn!y) =def G(S]_(X]_, ,Xn,y), !SW(Xl! !Xn!y))
* by using k and Q we definefor arbitrary arguments F; O FP(Up), ... ,Fn O FIP(Up)
thevaue ®(F, ... ,F) of the operator ®ea7 asfollowswherey OV
X1 OUq
Bear(F1y - s Fn)(Y) =det Q{K(F1(X1), -+ s Fn(Xn), S(X1, --- , Xn,Y)) :
Xn U Up
Finally, we define the set Jeat (PR) of al interpretations ® O INT(Uq, ... ,Up; V) which are
selected by the principle FATI asfollows
JraTi (R) =det {Prat |[FAT O FATI(R)}

4.3 The principle FITA

We start with the same rule base R as specified in section 4.2. We define FITA(fR) =4 the
set of al FIT whereFIT hastheform

FIT=[S, ... ,SmK1 - ,Km, Q1, -.. , Qm, Bl
and
1 foreveryu0{1,...,m}, §;:Upx... xUyxV - [0,10
2. forevery p 0 {1, ..., m}, k, : (0,207 - [©,10
3. forevery p0{1, ... ,m}, Qu :PO,10- 0,10
4. B: 0,17 - 0,10
Starting with
FIT=[S, ... ,SnK1, - s Km Q1 -+, Qm, Bl
we define a functional operator ®g t with
®p 71 : FIP(Uy) x X FIP(Un) - FIP(V)
asfollows:

» asinsection4.2for every p0{1, ... ,m}, the (n+1)-ary relation S, is considered as
an interpretation of the fuzzy if-then rule

Ru:IFXy=Fy, ... ,and  Xq=Fun THENY =G,

* using Kk, and Q, we define the logical operator

X1 OUq

q)H(Fll an)(Y) =def QH KH(Fl(Xl)I an(Xn)!Sl(Xli 'Xn'Y))
Xn U Up



« using the aggregation function  we define the final result

Ori1(Fry v F)(Y) =det B(P1(Fr, .., F)(¥), ..., Pm(Fa, ..., F)(Y))

Finaly, we define the set Jr7a (RR) of all interpretations selected by the principle FITA as
follows

\];:|TA(ER) =def {(D|:|T |F|T 0 F|TA(ER)}

We have to mention that the conditionsformulated in theorem 3, point 2 and 3, for J are not
satisfied by JraTi andJ,:|TA, in general If we define

Jeami (R) =qes |:| Jrami(Y)
yER
and

Jrrra(R) =oes |:| Jraly)

yER

then Jgar, and J& 1 fulfill the comonotonicity (see point 3 of theorem 3 and proposition 6).

4.4 Extensional (truth functional) generation of fuzzy relations

We obtain afurther restriction of the generating proceduresdescribed in section 4.2 for FATI
and in section 4.3 for FITA if for each fixed rule base 9k (like in section 4.2 specified) there
exists avector [Ty, ... , Ty Of real functions

™, 0,10 - 0,10

(nO{q, ...,m}) andif wedefinetherelations S, ... , S, used in the definitions of FATI and
FITA asfollows, wherex; O Uy, ...,y DU,y OV

Definition 10
SJ(Xlr AR Xn) =def T[H(Ful(xl)r T Fun(xn)a Gu(y))

This definition meansthat the membershipvalue S,(xq, ... ,Xn,Y) of thevector [, ... ,Xn,V]
only depends on the membership values F,i(x1), ..., Fun(Xn), Gu(y) of the elements
X1, .- » Xn, Y, but it is independent of these elements themselves. Thisfact is often denoted
by the word “truth functional” or “extensionel”.

4.5 Methods for restricting models

The methods for restricting interpretations can be partly used for restricting models, of
course. Therefore we do not discuss this approach.

In the following we introduce two methods for restricting model swhich are strictly “model
based”, i. e. which can only be applied to restrict models but not to restrict interpretations.

These methods are adopted from nonmonotoniclogic, especially from thetheory of circum-
scription, and therefore they are based on the concept of minimal (and maximal, respec-
tively) model.

For formulating the concept of minimal and maximal model we definewhereF, F' arefuzzy
setson U and &, ®' areinterpretationson [Uy, ... ,Un;V].



Definition 11
1 FOF =g Ox(xOU - FX) S F'(X)

2. ®C D =g OFy, ... ,Fn(F1: Uy - O, MO0, : Uy - 0,10
S ®(F, ..., F) SP(Fy, ... ,Fo)

Definition 12
@ is said to be aminimal (maximal) model of R
=4t 1. ®isamodel of R and
2. for every interpretation ®' on[Uq, ... ,Up;V], if ' isamodel of R and ®' € ©
(@S @) thend =,

Now, referring to definition 6 let J be an interpretation-selecting operator on
RUL(Uq, ... ,Un;V) and INT(Uy, ... ,Up; V).

Definition 13
1. R semantically entails R with respect to J based on minimal (maximal) models
(shortly denoted by R IFT™ R and R IFT®* R, respectively)
=4ef FOr every ® 0 J(R), if @ isaminimal (maximal) model of R then ® is a model
of {R}.

2. ENTMIN(R,J) =g {R|R 7" R}
3. ENTMAX(R,J) =g {RIR IFT* R}

Proposition 7
1. If disan minima (maximal) model of R and &' € R then ® isamodel of R’, but
@ isnot aminima (maximal) model of $R', in general.

2. The operatorsENTMIN and ENTMAX are not monotone, in general.
Let ET be an arbitrary mapping
ET:IP(RUL(Uq4, ... ,Un;V)) » P(RUL(Uq, ... ,Un;V))

Definition 14
ET is said to be the cumulatively monotone
=qef OROR' (R S RUL(Uy, ... ,Un;V) OR' S ET(R) - ET(R) =ET(RONR))

Problem
Which conditions are sufficient that ET is cumulatively monotone?

5 Incorporating Facts

In this section we solve the question how facts can beincorporated into the concepts devel -
oped above.

We choose sets of facts FACTS,; € FAC(U,), ..., and FACTS, € FAC(U;)) and define

FACTS=q4¢ FACTS, O [IIJ FACTS.

Then we enlarge the given fuzzy If-Then Rule Base R to G asfollows

S =g ROFACTS

10



The following definition is inspired by the concepts of logic programming and it is funda-
mental for the further developement of the theory.

LetY = G bean arbitrary fact from FAC(Y).

Definition 15

& semantically entailsY = G with respect to J

=4 Thereexist factsX; =F, O FACTS,, ... ,Xn = Fy O FACTS, such that R semantically
entailstherulelFX, =Fq, ... ,Xa =F, THENY = G with respect to J.

Remark
All further definitions of entailment formulated in the sections 2, 3 and 4 can be enlarged
corresponding to definition 15.

6 Concluding remark

The considerations made above have predominate conceptional character. In forthcoming
papers a theory will be worked out which consists of more extensive investigations of the
logical structure of If-Then Rule Bases using the conceptsin the paper presented.
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