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Towards Axiomatic Foundations for Defuzzification Theory™
Helmut Thiele

Abstract

The starting point of the paper presented are the well-known defuzzification procedureson
the one hand and approachesto axiomati ze the concept of defuzzification, on the other hand.
We present a new attempt to build up an axiomatic foundation for defuzzification theory
using the theory of groups and the theory of partially ordered sets, and in particular, the
theory of GALOIS connections.

Keywords:  Defuzzification, functional, bijective transformation, group, partialy or-
dered set, GALOIS connection

1 Introduction

Defuzzification procedures are very important in designing fuzzy control circuits and also
in investigating and applying approximate reasoning.

Thereforein literature one can find alot of approachesto develop and to apply such proce-
dures (algorithms), but, in general, on amore or less intuitive basis without a conceptional
foundation.

Examples for this are the methods denoted by First-of-Maxima, Middle-of-Maxima,
Center-of-Sums, Center-of-Area, Center-of-Largest-Area, Center-of-Gravity, and Height-
Defuzzification, for instance.

About five years ago some scientists began investigations with the goal of developping a
systematic theory of defuzzification and of incorporating these results [13-16] into fuzzy
logic.

Tothisend aset of thirteen axiomsfor defuzzification strategies[ 15] wasformulated and the
attempt to interpret def uzzification as crisp decision under fuzzy constraintswas made[13].

The role of a defuzzifier within the frame of a general fuzzy control circuit is expounded
in[17].
For definiteness we repeat some more or less well-known notions.

Let A and B be arbitrary (crisp) sets. By A € B we denote that A is a maybe non-proper
subset of B in the usual sense. Furthermore, O isthe empty set and IPA is the power set of
A i. e the set of al subsets of A.

The set of all real numbersr with0 < r < 1istermed by [0, 10 Let U be an arbitrary non-
empty set called universe. A fuzzy set F on U isamapping

F:U - 0,10
We put
S(U) =g« {FIF:U - 0,10

and call §(U) the fuzzy power set of U.
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The support suppF of afuzzy set F onU isthe crisp set

suppF =g¢ {X|X O U OF(x) > 0}.

Assumethat v : [0,10- [0, 10satisfies
Or(r 0 ,10v(r)> 0 - r =0).

Thefunctionv can beinterpreted as akind of negation.

Furthermore assume that T and ¢ are an arbitrary t-norm and s-norm, respectively. For ar-
bitrary F,G 0 §(U) and x 0 U we put

FY(X) =def V(F (X))
(F m G)(X) =ger T(F(X),G(X))
(F @ G)(X) =ger 3 (F(x),G(X)).

Assume that U, V, and W are arbitrary non-empty sets. We fix a set IF of functions
F:U - V. Thenamapping ®: ' - W iscalled afunctional on IF with valuesin W.

For our purpose we put

F=4¢F whereF C FU)
Vv =def |ID, 10
W =g U

O =get P,

henced: F - U.

2 The fundamental axiom for characterizing
defuzzifiers

In the paper [15] the axioms were formulated under the assumption that U = R. Under this
strong assumption the authors could formulate very specia axioms reflecting some proper-
ties of special defuzzification procedures. But for many applicationsthe assumptionU =R
istoo special, oneshould admitU € R" (n = 1) or eventhat U isametric space with respect
to agiven metricp onU.

With respect to these remarkswe ask, first of al, for “ natural” axiomswithout using a struc-
tureinU. AssumeF CFU)andd:F - U.

Axiom 1
OF (F OF OsuppF # 0 — 3(F) O suppF)

This axiom causes some problems. On the one hand, one can have the opinion that a“rea-
sonable” defuzzifier must satisfy this axiom. On the other hand, there are defuzzification
procedureswhich do not fulfil the condition expressed by axiom 1. For instance, the Center-
of-Areamethod fails axiom 1, in general, which shows that this method is not “reasonabl e’
with respect to some applications.

For the following investigations we assume that the defuzzifiers considered satisfy axiom 1.
But we have to state that this assumption is restrictive to a certain extend as the following
theorems show, in particular, theorem 7 and 8 and their proofs.

So, we define



Definition 1
0 is said to be a defuzzifier on F with respect toU
=qef O Salisfies axiom 1.

By D (U) we denote the set of al defuzzifierson F with respect to U.

Remarks

1. Obviously, the concept of defuzzifiersis closely related to the well-known concept of
choice function used in many branches of mathematics. For definiteness we repest:

Let S be an arbitrary system of subsetsof aset S. Thenamappinga : S - Sissaid
to be achoicefunction on S if and only if the following condition holds

OX(XOSOX 20 - a(X) 0X).

If we define S=g¢ U x [0, 10]then an arbitrary fuzzy set F : U - [0,10sasubset of S,
henceasystem F C F(U) of fuzzy setson U is a system of subsetsof S. If we have
adefuzzifier d on F with respect to U, then by the definition

a(F) =aer | 8(F), F (3(F))|
we get achoicefunctionon F.

Viceversa, if we have a choicefunction a on F, then by the definition
6(F):defx (FDF,XDU)
where a(F) =[x, F(xX)] we get adefuzzifier on F with respect to U.

2. We get a modification of the concept of defuzzifier by introducing a new element
undefined 0 U and by modifying definition 1 by adding the condition

OF (F O F OsuppF =0 - 3(F) = undefined).

With respect to applications this modification could be a better mathematical mod-
elling of the intuitive concept of defuzzification procedure. But, with respect to the
following mathematical investigations, we can not see any advantages, thereforewe
shall not use this modification in the following.

3. Inthe paper [2] the authorsallow that for afuzzy set F 0 F(U) the value &(F) of dis
asubset of U, i. e. 8(F) € U. But for using defuzzifiersin fuzzy contral circuits this
approachis unapplicablebecause theinput of the plant controlled must be an element,
i. e. the plant can not process a set as control signals, in general.

Furthermore, it isinteresting that axiom 1 implies some simple, but important facts about
thevalued(F) of thedefuzzifier & for special fuzzy setsF. Let T and o bean arbitrary t-norm
and s-norm, respectively.

Proposition 1
1. OcOx(c O 0,10c> 0 - 3(F¢) =X)

2. OF (F OF OsuppFY # 0 - 3(FV) O suppF)
3. OFUG(F,GUOF Osupp(F m G) 20 — &(F m G) 0 suppF n suppG)
4, OFOG(F,GOF Osupp(F [@ G) # 0 - &(F [d G) O suppF O suppG)

Proof
Obvioudly by the definitions. [ ]



Thefollowing axioms 2-5will not bevalid for arbitrary F € F(U) and arbitrary defuzzifiers
6 and normsrt, 0.

In a forthcoming paper we shall investigate how F,9,T,0 are to be restricted so that the
axioms hold.

Axiom 2
OcOF (c 0 0,1Mc> 00F O F OsuppF 20 - 8(1(c,F)) = 8(F))

Axiom 3
OF (F OF Osupp(F) 20 - &(F m F) =3(F))

Axiom 4
OcOF (c O 0,1Mc> 00F O F OsuppF # 0 - d(a(c,F)) = &(F))

Axiom 5
OF (F OF OsuppF # 0 - &(F [d F) = &(F))

3 Bijective Transformations of Fuzzy Sets and
Defuzzifiers

Now, we consider and investigate the fact that there are defuzzifying procedureswhich are
invariant with respect to certain transformations of the fuzzy sets considered.

For instance, the defuzzifying procedures listed on in chapter 1 are invariant with respect
to arbitrary linear transformations. New ideas with respect to the claim of invariance are
developedin [§].

In the following we generalize and systemati ze these observations using the theory of GA-
LOIS connections and the theory of groups.

By 2B(U) we denote the set of all bijections3 on U. Obvioudly, the set %5(U) formsagroup
with respect to the concatenation of bijections from 2(U). For simplification thisgroup is
denoted by the same symbol B (U).

Let F O FU) and B O B(U). Then by B(F) we denote the one fuzzy set on U, which is
defined for every x O U by

(B(F)) (¥) =ger F (B(X)).

Fundamental for all following considerationsis the concept of admitting expressed by def-
inition 2 where d is an arbitrary defuzzifier on F with respect to U and B is an arbitrary
bijectiononU.

Definition 2
o admits B with respect to F
OF (F OF - 8(B(F)) = B(&(F)))-

As the following examples show there are defuzzifiers which admit every bijection on U
and there are other defuzzifiers which do not admit every bijectiononU.
Example 1

Put
U1 =gef {1,2,3}



F1 =gt {F|F :U; > 0,200u0v(u,vOU; OF(U) =F(V) > u=v)}
01(F) =ger X wherex 0 Uy and F(x) = max{F (u)|jud Uy} .

Obvioudly, for every F O F4 the value x is uniquely defined, hence 9, is a defuzzifier on F,
with respect to U;.

Furthermore, it is clear that for every bijection f on U; we have

31 (B(F)) = B(31(F))
foral F OFy.

Example 2

Put

Us =gef U1 ={1,2,3}

Fz =def {F,G} where
F(D) =3, F() =ge % F) = §
G(1) =def 5, G2 =def 3. GB) =def 3
B(L) =ge2 PR =dsl BE) =q«3

Then we have G = 3(F).

Now, we define &, as follows

& (F) =qet 2
5(G) =qef 2,
hence

B(%(F))=B(2) =1,
52 (B(F)) = 32(G) =2,

i e. 5 (B(F)) # B(3,(F)).

The examples above give the occasion to define for an arbitrary B € 93(U) and an arbitrary
D S D) whereF € F(U) isfixed

Definition 3
1. DEFUZZ(B) =44 {5‘5 0DU) DDBDF(B OBOF OF - 3(B(F)) = [3(6(F)))}

2. BIJECT(D) =q« {B‘B 0B() DD&DF[& ODOFOF - 8(R(F)) = B(é(F))]}.

Of course, DEFUZZ(B) and BIJECT (D) depend on F . But, because F is fixed throughout
the paper we omit the letter F .

The set DEFUZZ(B) can beinterpreted asthe set of all general defuzzifierswhich admit all
bijections from B. Analogously, the set BIJECT(D) is the set of all bijections on U which
are admitted by all defuzzifiersfrom D.

Theorem 2
The pair[DEFUZZ,BIJECT] isa GAL OIS connection between the posets[PB(U), <] and
[PDU),E].

Proof
By definition of GALOIS connection (see[3], chapter 24, for instance) we haveto provefor
every BC B(U) and D € D(U),

D € DEFUZZ(B) - B C BIJECT(D).



I (=)

Assume

1) D € DEFUZZ(B),

hence by definition of DEFUZZ

@) 08(30D - OBOF (BOBOF OF - 3(B(F)) = B(3(F)))).
Assume

3) p'UB,

then we have to show

4) O80F (8UDOF OF - 8(B'(F)) =B (3(F))).

But (4) followsimmediately from (2) and (3).

(<)
Asfor | (—). |

Theorem 3
For every B,B' € B(U) and every D,D' € D(U),

1. BC B' - DEFUZZ(B') C DEFUZZ(B)

D C D' - BIJECT(D')  BIJECT(D)

B C BIJECT (DEFUZZ(B))

D € DEFUZZ (BIJECT(D))

DEFUZZ(B) = DEFUZZ (BIJECT (DEFUZZ(B)))
BIJECT(D) = BIJECT (DEFUZZ (BIJECT(D)))

SO 0 A W N

Proof
Thistheoremfollowsfrom theorem 2 within theframework of thegeneral theory of GALOIS
connections. ]

Corollary 4
1. BIJECT is a bijection from the set {DEFUZZ(B)|BC B(U)} onto the set
[BIJECT(D)|D € D(U)}

2. DEFUZZ isthe inversion of the mapping BIJECT.
From applications we know that the set of al linear transformations (which are admitted

by the defuzzifying procedureslisted on in chapter 1) forms agroup. Furthermore, we can
state that this group is even commutative.

In thefollowing we shall discuss these facts within the framework of our general approach.

For definiteness for every B,B' 0 8B(U) by BB’ and B~ we denote the product of ,p’ and
the inversion of [3, respectively, defined by

(BR)(W) =g B'(B(W), ubOU  BHu)=v =g u=p(), uvOU.

Theorem 5
For every D € ©(U), if

OBOF (BOBIJECT(D)OF OF — B(F) OF OB™Y(F) OF),

then BIJECT(D) is a group with respect to the product of bijections, hence a subgroup of
BU).



Proof
We have to show

1. OR'0B(B',B O BIJECT(D) - (BR') O BIECT(D))
2. UB(B O BIJECT(D) - B~ O BIJECT(D))

adl
Assume
) 08(80DOF OF - 8(B(F)) =B (5(F)))
and
2 03(30DOF OF - 3(B'(F)) =B (3(F)))
We have to show
€©) 08(30DOF OF - 3((BR)(F)) = (BR)(3(F)))-
Now, by (1) we get
(BB')(8(F))

(4) =B (B(3(F))

=B (3(B(F))).-

Furthermore, by assumption we have
(5) OF(FOF - B(F)OF),

hence by (2) we obtain

© B (3(B(F)) = 3(B' (B(F))
=3((BR)(F)),
hence because of (4) and (6), (3) holds.
ad 2
Assume
@) O80F (5 OBIJECT(D) OF OF - 3(B(F)) = B(3(F))).
We have to show
(8) O80F (6 OBIJECT(D)OF OF - 3(B™(F))=p™ (6(F))j.

Because of assumption we have
OF(FOF - p%F)OF),

hence from (7) we get

(©) 3(B(B(F) = B(3((F))}
hence by BB~1 = £ where & denotes the identical bijection
(10 5F) = B(3(8(F) ),
hence

BL(3(F)) = B [rs [6(5—1(9)]]
= 5(81(F).

(11)



Corollary 6
BIJECT is an injection from the set {DEFUZZ(B)|BC B(U)} into the set
{66 isasubgroup of B(U)}.

Problem To characterize the subgroups & of B(U) which have the form & = BIJECT(D)
where D € D(U).

Now, for arbitrary B 0 26(U) and arbitrary 6 [0 ©(U) we define a left-product o & and a
right-product &< 3 as followswhere F [0 §(U).

Definition 4

1. (B d)(F) =aer B(3(F))
2. (8°B)(F) =aet 3(B(F)).
Now, we are going to formulate sufficient conditionsfor thefixed set F € F(U) and for the

givenset D € ©(U) of defuzzifierson U such that the group BIJECT (D) is even commuta-
tive.

Theorem 7

For every D € ©(U),

If 1. OBOF(BOBIECT(D)OF OF - B(F)OF OpY(F)OF)
2. {3(F)|[3UDOFOF}=U and
3. OBOS(B UBIJECT(D)IS0D - Bod0D)

then the group BIJECT (D) is even commutative.

Proof
Assume

«y B, O BIJECT(D).

By theorem 5 it is sufficient to show

2 Bop =P'°B,
hence by definition of the product of bijections we haveto prove
(©) Ox(x OU - B'(B(x) = B(B'(x))-

By U # O and assumption 2 thereis a d such that

@) 50D.

Then by (1) and assumption 3 we get

() B o50D,

hence by definition of BIJECT(D) and (1) we obtain for every F O F

(6) B((B =8)(F))= (B> ) (B(F)),

hence by definition of ' < J,

() B(B'(3(F))) =B (3(B(F)))-

Furthermore, by (1), (4) and definition of BIJECT(D) for F O F we have
(8) 3(B(F)) =B (3(F)),



hence by (7) and (8) we get

9 B(B'(8(F))) =B (B(3(F)))
foreverydODandF OF.

Because of assumption 2 we obtain (3).

The following theorem expresses a certain “inversion” of theorem 7.

Theorem 8

If 1. Bisacommutative subgroup of the group 5(U)
2 OBOF(BOBOFOF - B(F)OF)
3. OBOF (BUOBOF OF - suppB(F) = suppF)

then
DBOS(B O BOS O DEFUZZ(B) - Bo 8,59 B 0 DEFUZZ(B)).
Proof
Assume
) pOB
and
) &0 DEFUZZ(B).

From (2) by definition of DEFUZZ(B) we get

(3) OF (F O F OsuppF 20 - 8(F) O suppF)
and
4 OR'OF (B OBOF OF - 3(B'(F)) =B (3(F").

ad1 Pod0DEFUZZ(B)
By definition of 3o & and DEFUZZ(B) we have to prove

©) BedUDU)
and
(6) OB"OF" (" OBOF"OF - (Bed)(B"(F")=B"((B°d)(F"))-

We show (5). By definition of ©(U) it is sufficient to prove
(7) OF (F OF OsuppF 20 - (Bod)(F) O suppF).

FromF OF, suppF # O, definition of B <3, (1), and (4) we obtain

) (B d)(F) =B(8(F)) =3(B(F)).
From (1), F O F, and assumption 3 we get
€) suppf(F) = suppF,

hence by suppF # O we have

(10) suppB(F) # 0.



Furthermore, (1), F O F, and assumption 2 imply

(11) BF)OF,
hence

(12 S(B(F)) U suppB(F),
hence by (9)

(13) 3(B(F)) U suppF,
hence by (8) we get (7).

Now, we show (6). Assume

(14 'oB
and
(15) F'OF.

By definition of 3o dit is sufficient to show

(16) B@B"(F")=B"(BO(F")-
From (13), (14) by (4) for B’ =g B and F' =4 F'' we get
(17) 3(B"(F") =" (B(F"),
hence

(18) B(B"(F")=B(B" (B(F"))-
Because B is commutative, we get

(19) B(B" (B(F")) =B" (B(&(F")),

hence (17) and (18) imply (15).

ad 2 &P 0DEFUZZ(B)

By definition of &+ 3 and DEFUZZ(B) we have to prove

(20) 3oBO0DU)

and

(21) OB"OF"(B" OBOF"OF — (3B)(B"(F") =B"((5°B)(F"))-
We show (20). By definition of ©(U) it is sufficient to prove

(22) OF (F OF OsuppF 20 - (d°B)(F) O suppF).
By definition of o 3 we get

(23) (8°B)(F) =3(B(F)).

From (1), F O F and assumption 3 we obtain

(24) suppB(F) = suppF,

10



hence by suppF # O we get
(25) suppB(F) # 0.

Furthermore, (1), F O F and assumption 2 imply

(26) B(F)OF,

hence

(27) S(B(F)) O suppB(F),

hence by (24)

(28) 8(B(F)) O suppF,

hence by (23) we get (22).

Now, we show (21). We assume (14) and (15). By definition of o d it is sufficient to show
(29) S(B(B"(F")) =B" (B(B(F")).
From (14) and (15) by (4) for B' =q4¢ B and F' =g F'' we obtain
(30) 3(B(F™)) =B (&(F")),

hence

(31) B"(8(B(F")) =B" (B(3(F")).
Because B is commutétive, we have

(32) B (B(d(F")) =B(B" (3(F"))).

Because of (1) and (14), i. e. 3,f" OB, for the group B we obtain 3 ' O B, consequently
from (4) for B’ =q4¢f B o B and F' =4 F'' we obtain

(33) B(B"(B(F")) =3(B(B" (B(F")),
hence (31), (32), and (33) imply (29). [ ]

4 Conclusions

The concepts and results of chapter 3 can be interpreted as first steps to build up a (new)
algebrai c theory of defuzzification procedures. Whether thisway will be successful can not
be estimated on the basis of the paper presented. Further investigations are necessary, in
particular, investigations with respect to the well-known defuzzification procedures listed
on in chapter 1 and the approaches published in [13-16] and also in other papers. In forth-
coming paperswe shall study this area of problems.

Acknowledgement
The author likes to thank Stephan Lehmke and Mario Thalheim for fruitful scientific dis-
cussions and the last-named for his help in preparing the manuscript.

11



References

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

FUZZ-IEEE’ 97 — Sixth | EEE I nter national Conferenceon Fuzzy Systems, Barcelona,
Spain, July 1-5, 1997.

D. BOIXADER, J. JACAS and J. RECASENS. Smilarity-based approach to defuzz-
fication. In: FUZZ-IEEE '97 — Sixth |EEE International Conference on Fuzzy Sys-
tems[1], pages 761-764.

PETER BURMEISTER. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, Berlin, 1986.

D. DRIANKOV, H. HELLENDOORN and M. REINFRANK. An Introduction to Fuzzy
Control. Springer-Verlag, 1993.

D. P. FiILEv and R. R. YAGER. A Generalized Defuzzfication Method via Bad Dis-
tributions. International Journal of Intelligent Systems 6, 687—697, 1991.

H. HELLENDOORN and C. THOMAS. On Defuzzficationin Fuzzy Controllers. Jour-
nal of Intelligent and Fuzzy Systems 1993.

H. KIENDL. Fuzzy-Regler mit Hyperinferenz- und Hyperdefuzzifizierungsstrategien.
In: BERND REUSCH (editor), Fuzzy Logic — Theorie und Praxis. 3. Dortmunder
Fuzzy-Tage, Dortmund, 7.-9. June 1993. Springer-Verlag.

H. KIENDL. Non-trandation-invariant defuzzfication. In: FUZZ-1EEE ' 97 — Sixth
| EEE International Conference on Fuzzy Systems [1], pages 737—742.

S. MABUCHI. A proposal for a defuzzfication strategy by the concept of sensitive
analysis. Fuzzy Sets and Systems5s5, 1-14, 1993.

N. PFLUGER, J. YEN and R. LANGARI. A Defuzzfication Strategy for a Fuzzy Logic
Controller Employing Prohibitive Information in Command Formulation. In: Pro-
ceedings of the First IEEE International Conference on Fuzzy Systems pages 717—
723, San Diego, Cadlifornia, 1992.

L. RONDEAU, R. RUELAS, L. LEVRAT and M. LAMOTTE. A defuzzfication method
respecting the fuzzfication. Fuzzy Sets and Systems86, 311-320, 1997.

S. ROYCHOWDJURY, B. H. WANG and S. K. AHN. Radial Defuzzfication Method.
In: FUZZ-1EEE '94 — Third |EEE International Conference on Fuzzy Systems, vol-
ume 2, pages 1153-1158, Orlando, Florida, June 26-July 2, 1994.

T. A. RUNKLER and M. GLESNER. Defuzzfication As Crisp Decision Under Fuzzy
Constraints. New Aspects of Theory and Improved Defuzzfication Algorithms. In:
Fuzzy-Systeme ' 93. Management unsicherer Informationen. Workshop. Proceedings,
pages 156-164, Braunschweig, Germany, October 2022 1993.

T. A. RUNKLER and M. GLESNER. Defuzzfication with Improved Satic and Dy-
namic Behavior: Extended Center of Area. In: EUFIT’93—First European Congress
on Fuzzy and Intelligent Technologies, volume 2, pages 845-851, Aachen, Germany,
September 7-10, 1993.

T. A. RUNKLER and M. GLESNER. A Set of Axioms for Defuzzfications Strategies.
Towards a Theory of Rational Defuzzfication Operators. In: Proceedings of the Sec-
ond |EEE International Conference on Fuzzy Systems, pages 1161-1166, San Fran-
cisco, California, March 28-April 1, 1993.

THOMAS A. RUNKLER. Extended Defuzzfication Methods and their Properties. In:
FUZZ-IEEE ' 96 — Fifth | EEE I nternational Conference on Fuzzy Systems, volume 1,
pages 694—700, New Orleans, USA, September 8-11, 1996.

12



[17] HELMUT THIELE. Investigating Approximate Reasoning and Fuzzy Control by Con-
ceptsof Functional Analysis. In: First International Conference on Conventional and
Knowledge-Based I ntelligent Electronic Systems. Proceedings, volume 2, pages 493~
500, Adelaide, Australia, May 21-23, 1997.

[18] R. R. YAGER and D. FILEV. On theissue of defuzzfication and selection based on a
fuzzy set. Fuzzy Sets and Systemss5, 255271, 1993.

[19] R. R. YAGER and D. P. FILEV. On the issue of defuzzfication and selection from a
fuzzy set. Technical Report M11-1201, Machine Intelligence Institute, lona College,
1991.

[20] R. R. YAGER and D. P. FILEV. Constrained defuzzification. In: Proceedings: Fifth
International Fuzzy Systems Association World Congress’ 93, volume |, pages 1167—
1170, Seoul, Korea, July 4-9 1993.

[21] R. R. YAGER and D. P. FILEV. SLIDE: A Smple Adaptive Defuzzfication Method.
| EEE Transactions On Fuzzy Systems 1 (1), 6978, February 1993.

13



