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Abstract

We consider the problem of approximating the independence number and
the chromatic number of k-uniform hypergraphs on n vertices. For �xed inte-
gers k � 2, we obtain for both problems that one can achieve in polynomial
time approximation ratios of at most O(n=(log(k�1) n)2). This extends results
of Boppana and Halld�orsson [5] who showed for the graph case that an ap-
proximation ratio of O(n=(logn)2) can be achieved in polynomial time. On the
other hand, assuming NP 6= ZPP , one cannot obtain in polynomial time for
the independence number and the chromatic number of k-uniform hypergraphs
an approximation ratio of n1�� for �xed � > 0.

1 Introduction

For a given graph G = (V;E) with vertex set V and edge set E � [V ]2, a subset

I � V is called independent, if I contains no edges. The independence number

�(G) is the size of a largest independent set. Computing an independent set I

with jI j = �(G) is an NP-hard problem. Therefore, polynomial time approximation

algorithms for this problem have been investigated, cf. [1], [9]. For an optimization

instance I , let OPT (I) denote the value of the optimal solution and A(I) the solution

found by an algorithm A. The approximation ratio AR(n) of algorithm A is de�ned

by

max
In

�
OPT (In)

A(In)
;

A(In)

OPT (In)

�

where the maximum is taken over all instances In of input size n (e.g., graphs on n

vertices).

A straightforward greedy strategy for computing independent sets was studied by

Halld�orsson and Radhakrishnan [11] and approximation ratios in terms of the aver-

age degree d = 2 � jEj=jV j and the maximum degree � of the graph G = (V;E) with

jV j = n were given, i.e., AR(n) � (d+ 2)=2 and AR(n) � (� + 2)=3, respectively.

�This research was supported by the Deutsche Forschungsgemeinschaft as part of the Collabo-

rative Research Center \Computational Intelligence" (SFB 531).
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For arbitrary graphs on n vertices an approximation ratio of O(n=(logn)2) can be

achieved in polynomial time as was shown by Boppana and Halld�orsson [5]. They

also showed that in graphs G on n vertices with �(G) � n=k + m, where k is a

�xed integer, one can �nd in polynomial time an independent set of size at least


(m1=(k�1)). This was improved by Alon and Kahale [2] who applied semide�nite

programming in conjunction with the Lov�asz �-number �(G) of a graph G and they

showed that if �(G) � n=k+m, then an independent set of size at least ~
(m3=(k+1))

can be found in randomized polynomial time.

As far as inapproximability results are concerned, the latest result is due to H�astad

[12] who showed that for all � > 0, there can be no polynomial time algorithm

with approximation ratio of n1=2��, unless P=NP . Under the assumption that

NP 6= ZPP , the same holds even for an approximation ratio of n1��.

The corresponding problem for hypergraphs has been less studied. A hypergraph

H = (V; E) is given by a set V of vertices and a set E of edges where E � V for

every edge E 2 E . A hypergraph is called k-uniform if jEj = k for every edge

E 2 E . A subset I � V is called independent if I contains no edges from H, i.e.,

E 6� I for each edge E 2 E . The size of a largest independent set in H is called the

independence number of H and is denoted by �(H).

Some results are concerned with �nding in parallel a maximal independent set in a

hypergraph, see e.g. [6], [15]. However, the sizes of maximal independent sets might

be far o� the size of a maximum independent set. In terms of the average degree

dk�1 := k � jEj=jV j of a k-uniform hypergraph H = (V; E), derandomizing a proba-

bilistic argument of Spencer [19] yields a linear time algorithm with approximation

ratio O(d).

We consider here the problem of approximating maximum independent sets in ar-

bitrary k-uniform hypergraphs. It turns out that one can achieve in polynomial

time an approximation ratio of O(n=(log(k�1) n)2). Here, log(k) n denotes the k-fold

iterated logarithm log � � � logn.

By a simple reduction from the case of graphs, inapproximability results of the order


(n1�") for each given " > 0 can be derived.

In connection with the maximum independent set problem we also consider the

problem of coloring the vertices of a k-uniform hypergraph H with as few colors as

possible. Call a coloring of the vertices of H proper if no edge is monochromatic. Let

�(H) denote the chromatic number of a hypergraph H, i.e., the minimum number

of colors which are necessary to obtain a proper coloring of the vertices of H. If

l � �(H), then the hypergraph H is called l-colorable.

For graphs, determining the chromatic number is an NP-hard problem. The cur-

rently best known polynomial time algorithm for coloring a 3-colorable graph on n

vertices is by Blum and Karger [4] and uses ~O(n3=14) colors. For graphs with larger

chromatic number, the currently best known result is due to Karger, Motwani and

Sudan [14] who showed that graphs on n vertices with maximum degree � can

be colored in polynomial time using at most min f ~O(�1�2=�(G)); ~O(n1�3=(�(G)+1))g
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colors.

For arbitrary graphs on n vertices, the �rst polynomial time approximation algo-

rithm for graph coloring was given by Johnson [13] with an approximation ratio of

O(n= logn). This was improved by Wigderson in [20] to O(n �(log logn= logn)2) and

further by Boppana and Halld�orsson [5] to O(n=(logn)2). The latest improvement

is by Halld�orsson [10] who gave a polynomial time algorithm to achieve an approx-

imation ratio of O(n � (log logn)2=(logn)3). Feige and Kilian [8] recently showed

that assuming NP 6= ZPP , given any � > 0, there is no polynomial time algorithm

which approximates the chromatic number within a factor O(n1��).

For the corresponding problem of coloring hypergraphs not much is known. In

fact, the �rst polynomial time algorithm capable of coloring a 2-colorable k-uniform

hypergraph on n vertices with a sublinear number of colors was given by Kelsen,

Mahajan and Ramesh [16] recently. Their algorithm uses O(n1�1=k � (logn)1�1=k)

colors.

Our algorithm works not only for 2-colorable k-uniform hypergraphs, but for k-

uniform hypergraphs without any restriction on their chromatic number. It achieves

an approximation ratio of O(n=(log(k�1) n)2) for the chromatic number. Thus, if ap-

plied to k{uniform hypergraphs which are l{colorable for a �xed l > 0, our algorithm

also only uses a sublinear number of colors, though in the case l = 2, the bound

from [16] is better.

Nevertheless, it seems that the technique from [16] can not be applied to hyper-

graphs with chromatic number larger than 2. In particular, it was shown in [16] by

using semide�nite programming, that 2-colorable hypergraphs where each edge has

cardinality at most 3 can be colored with at most O(n2=9 � (logn)17=8) colors in poly-

nomial time. In their arguments the assumption on 2-colorability was essential. The

semide�nite programming approach does not seem to be applicable for k-uniform

hypergraphs where k � 4, cf. [16].

Our approximation ratioO(n=(log(k�1) n)2) is sublinear, but still rather large. Again,

one should note that (assuming NP 6= ZPP ) there is no polynomial time algorithm

which approximates the chromatic number of hypergraphs on n vertices within a

factor O(n1��) for every given � > 0.

2 An Approximation Algorithm

In addition to the notions given in the introduction, we also use the notion of a clique

in a k-uniform hypergraph which is a complete subhypergraph of H, i.e., contains,

say, l vertices and all
� l
k

�
edges. Note that an approximation algorithm for computing

independent sets can always be applied to the complement of a hypergraph to obtain

an approximation algorithm for cliques, with the same approximation ratio.

The case k = 2, i.e., graphs, has been treated by Boppana and Halld�orsson [5], who

described the following algorithm 2{Ramsey.
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Algorithm 2{Ramsey: Transform the graph into a binary tree, its vertices cor-

responding to the vertices of the graph, in such a way that for each vertex the set

of its left descendants contains exactly the non-neighbours of v. Given a path to

a leaf in this tree, the root and the set of vertices reached by a right edge form a

clique. Furthermore, the root and the set of vertices reached by a left edge form an

independent set. Compute the path with the largest number of right edges and the

path with the largest number of left edges and the corresponding sets C and I . A

Ramsey-type argument shows:

Theorem 2.1 [5] In graphs on n vertices, algorithm 2{Ramsey returns an indepen-

dent set I and a clique C such that jI j � jCj � 1=4 � (logn)2.

In order to describe the algorithm for approximating maximum independent sets in

k-uniform hypergraphs, we use some transformation which constructs (k�1)-uniform

hypergraphs from k-uniform hypergraphs:

De�nition 2.2 Let 2 � g < k, and letHg and Hk be g{ and k{uniform hypergraphs,

respectively, both with the same totally ordered vertex set V .

Then, Hk is the ordered canonical extension of Hg whenever the following holds for

all k{element subsets E = fv1; : : : ; vkg with v1 < : : : < vk of the vertices:

E is an edge in Hk if and only if fv1; : : : ; vgg is an edge in Hg.

Moreover, Hk is the unordered canonical extension of Hg whenever the following

holds for all k{element subsets E of the vertices:

E is an edge in Hk if and only if there is some edge e in Hg such that e � E.

It is rather easy to show that if the k-uniform hypergraph Hk is the (unordered)

canonical extension of some g-uniform hypergraph Hg with g < k, then all cliques

of size at least k in Hg are also cliques in Hk and all independent sets of size at least

k in Hg are also independent sets in Hk . De�ne an algorithm k{Ramsey as follows:

Algorithm k{Ramsey: If k = 2, apply the procedure by Boppana and Halld�orsson.

Otherwise, compute some induced subhypergraph of Hk which is the ordered canon-

ical extension of a (k�1)-uniform hypergraph Hk�1 and which has 
((logn)1=(k�1))

vertices. Apply (k�1){Ramsey to Hk�1.

Return the clique C and the independent set I that (k�1){Ramsey returns.

The crucial point is that Hk�1 should have a number of vertices which is not too

small. The fact that such a hypergraph exists, follows from the next lemma which

is due to Erd�os and Rado [7], see also [17].

Lemma 2.3 [7] Let k � 2 be �xed. Given a k-uniform hypergraph Hk on n

vertices, one can �nd in polynomial time a subset S of the vertices with jSj =
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((logn)1=(k�1)), and a (k�1)-uniform hypergraph Hk�1 such that the induced sub-

hypergraph of Hk on S is the ordered canonical extension of Hk�1.

Proof. Let A;B � f1; : : : ; ng be nonempty sets such that maxA < minB. We say

that (A;B) is good if the following holds:

For each (k�1){element subset S of A and for all x; y 2 B it holds that S [ fxg is

an edge in Hk if and only if S [ fyg is an edge in Hk .

Assume that we are given a good pair (A;B). Set A0 := A[fminBg and let j := jAj.

We claim that there is a subset B0 � B such that (A0; B0) is good and such that

jB0j � (jBj � 1)=2(
j

k�2) : (1)

To see this, consider all (k�1){element subsets S0 of A0. If S0 does not contain

minB, then the goodness condition holds for S0 since (A;B) is good.

There are
� j
k�2

�
subsets Si of A

0 which have cardinality (k�1) and which contain

minB. Mark each b 2 B n fminBg with a bitstring of length
� j
k�2

�
with the mean-

ing that the i{th bit is 1 if Si [ fbg is an edge in Hk and 0 otherwise. By the

pigeonhole principle, there must be a subset B0 � B nfminBg of cardinality at least

(jBj � 1)=2(
j

k�2) in which all are marked with the same bitstring. Hence, (A0; B0) is

good. It is clear that B0 can be found in polynomial time. We apply the following

procedure:

A = f1; : : : ; k�2g;B = fk�1; : : : ; ng; j = k�2;

while B 6= ; do

compute B0 from B as sketched above ;

A = A [ fminBg ; B = B0; j = j + 1;

end;

return A;

The induced subhypergraph of Hk on the returned vertex set A is the ordered

canonical extension of a (k�1){uniform hypergraph on the same vertex set.

It remains to estimate jAj. Before each execution of the while-loop, the cardinality

of B is 
(n=2(
j

k�1)). This is clear at the �rst execution and after that, we have by

(1):

jB0j = 
(n=(2(
j

k�1) � 2(
j

k�2))) = 
(n=2(
j+1

k�1)) :

Thus, the while-loop is executed 
((logn)1=(k�1)) times which is also a lower bound

for the cardinality of A. During the whole procedure, each edge is only considered

a constant number of times which means that it can be run in polynomial time. ut
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Theorem 2.4 Let k � 2 be a �xed integer. Given a k-uniform hypergraph Hk

on n vertices, algorithm k{Ramsey returns in polynomial time a clique C and an

independent set I such that jCj � jI j � c � (log(k�1) n)2 for some constant c > 0.

Proof. By induction. For k = 2, see Theorem 2.1. In the induction step, algorithm

(k�1){Ramsey is applied to a hypergraph with 
((logn)1=(k�1)) vertices. We then

apply the induction hypothesis. ut

Algorithm k{Ramsey guarantees that we either �nd a reasonable large clique or an

independent set in a given k-uniform hypergraph. If however the hypergraph does

not contain any large clique, then the size of an independent set should be large.

The idea, as in [5], is to remove independent sets.

In step i, algorithm k{Ramsey is applied and returns a clique Ci and an independent

set Ii. Remove the vertices from Ii and all incident edges from the hypergraph.

This is repeated until no vertex is remaining. Let C be the clique Ci of maximum

cardinality and let ni denote the number of remaining vertices before step i.

Note that the removed independent sets Ii, i = 1; : : : ; COL, yield a proper coloring

of the original hypergraph.

The following lemma was used in [5] for graphs, it also holds for hypergraphs and

an implicit proof of it can be found in [18], Section 1.4.

Lemma 2.5 If one can �nd an independent set of size at least f(i) in k-uniform

hypergraphs on i vertices, where f(i) is non-decreasing and f(i) > 0, then one can

�nd a proper coloring for a hypergraph on n vertices with at most
Pn

i=1 1=f(i) colors.

The sets Ci and Ii satisfy jCij � jIij � c � (log(k�1) ni)
2, i.e., f(i) � c � (log(k�1) i)2=jCj:

By Lemma 2.5, we have (for n � n0):

COL �

nX
i=1

1

c
�

jCj

(log(k�1) i)2
�

2

c
�

n � jCj

(log(k�1) n)2
:

Let cl(H) denote the size of a largest clique in H. Noting that cl(H) � (k�1) ��(H),

one obtains

cl(H)

k � 1
� �(H) � COL �

2

c
�

n � jCj

(log(k�1) n)2
�

2

c
�

n � cl(H)

(log(k�1) n)2
� ck �

n � �(H)

(log(k�1) n)2
: (2)

From this chain of inequalities, one obtains the upper bounds for cl(H)=jCj as well

as for COL=�(H) expressed in the following theorem:

Theorem 2.6 Let k � 2 be a �xed integer. There is a polynomial time algorithm

which approximates the independence number �(H), the clique number cl(H) and

the chromatic number �(H) of a k-uniform hypergraph H on n vertices with approx-

imation ratio O(n=(log(k�1) n)2).
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One might consider the question how well the algorithm is performing on random

hypergraphs. The answer is that unfortunately, the approximation ratio which we

can guarantee is only slightly better than the trivial algorithms which pick one vertex

as the independent set and color the graph with n colors.

Consider for example random k-uniform hypergraphs on n vertices where edges

are present with probability 1=2 independently of each other. For such a random

hypergraph, one can show that almost always cl(H); �(H) = (1+o(1))�(k!�logn)
1

k�1 .

Moreover, almost always �(H) satis�es �(H) = (1 + o(1)) � n=(k! � log n)
1

k�1 . This

can be seen by using similar techniques as in the case of graphs, cf. [3].

Considering the product

cl(H)

jCj
�
COL

�(H)
�

cl(H)

jCj
� ck �

n � jCj

(log(k�1) n)2
�

1

�(H)
;

we see that it is almost always bounded by

O

0
@ (logn)

2

k�1

(log(k�1) n)2

1
A :

Note that for k = 2, this is a constant, while for k � 3, it is growing with n.

The trivial strategies on the other hand almost always lead to a product of the

approximation ratios of O((logn)2=(k�1)).

3 Excluding l-Cliques

Very often, the approximation ratio can be improved if we know that our input

graphs are taken from a certain subset of all graphs only. A particularly interesting

subset which has often been considered in the literature is the set of all graphs which

for some �xed l � 2 do not contain any clique on l vertices (\l{clique").

Boppana and Halld�orsson observed in [5] that if a graph G on n vertices does not

contain any l-clique for some l � 2 logn, then G contains an independent set of size

at least 
(l � n1=(l�1)), and for �xed l � 2 such an independent set can be found in

polynomial time. They also showed that this implies that in graphs G on n vertices

with �(G) � n=l +m, where l � 3 is �xed, one can always �nd in polynomial time

an independent set of size at least 
(m1=(l�1)).

If we are given a hypergraph without l{cliques, then the reduction technique used

in the algorithm k{Ramsey also guarantees that the graph to which we apply 2{

Ramsey is also without l{cliques, hence instead of using 2{Ramsey in the �nal step

of k{Ramsey, any of the procedures mentioned above can also be used.

As an example, one obtains

Theorem 3.1 In every k{uniform hypergraph on n vertices which does not contain

any l{cliques (for some �xed l), one can �nd in polynomial time an independent set

of size at least 
((log(k�2) n)1=(2(l�1))).
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4 Negative Results

The negative results follow from a straightforward transformation from the negative

results for graphs. We list those results here for completeness. They follow from

considering the unordered canonical extensions.

Theorem 4.1 Let k � 2 be a �xed integer and let � > 0 be �xed. One cannot

approximate in polynomial time the size of a maximum independent set (or clique) in

k-uniform hypergraphs on n vertices within a factor of O(n1��), unless NP = ZPP .

Proof. For k=2, the assertion holds by the result of H�astad [12]. Now assume

k > 2 and that we had an approximation algorithm with ratio O(n1��) for k-uniform

hypergraphs. Construct an approximation algorithm for graphs with the same ratio

as follows: First, we check in polynomial time O(nk) whether the independence

number of a graph G is smaller than k. If this is the case, then we can compute

the independence number exactly. Otherwise, let Hk be the k-uniform hypergraph

which is the unordered canonical extension of the graph G. Then it is rather easy

to show that G and Hk have the same independence number. ut

We apply a similar transformation to the approximation of the chromatic number:

Theorem 4.2 Let k � 2 be a �xed integer and let � > 0 be �xed. One cannot

approximate in polynomial time the chromatic number of a k-uniform hypergraph on

n vertices within a factor of O(n1��), unless NP = ZPP .

Proof. For k=2, the assertion holds by the result of Feige and Kilian [8]. For k � 3,

consider the unordered canonical extension Hk of a given graph G. Then,

�(Hk) � �(G) � (k � 1) � �(Hk) :

The �rst inequality holds since every proper coloring of G is a proper coloring of

Hk and for the second inequality observe that if we have a coloring of Hk with color

classes C1; : : : ; Cl, then for all jCij � k, we can color the corresponding vertices of G

with the same color. If, however jCij < k, then we color the corresponding vertices

in G by jCij distinct colors. An approximation algorithm for k-uniform hypergraphs

can hence be turned into an algorithm for graphs with an approximation ratio which

is only worse by at most the constant factor (k�1). ut

5 Final Remarks and Questions

Can the approximation algorithm from [10] replace algorithm 2{Ramsey as the un-

derlying procedure in an approximation algorithm for k{uniform hypergraphs?
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Is it possible to improve the approximation ratio for the coloring problem or the

maximum independent set problem in k-uniform hypergraphs to o(n=(log(k�1) n)2)?

It might also be interesting to investigate the approximation ratio with respect to

polynomial time algorithms for the maximum independent set problem in l{clique

free graphs or hypergraphs on n vertices. The algorithm from [5] can be seen as an

approximation algorithm for graphs with approximation ratio of O(n
1� 1

l�1 ) which

shows that the inapproximability results from [12] do not carry over to this case,

when l is �xed.
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