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Abstract—Although there are many versions of evolutionary algorithms  in general. It has been demonstrated several times that some
that are tailored to multi—criteria optimization, theoretical results are ap- versions of evo'utionary algorithms are able to accompnsh this
parently not yet available. Here, it is shown that results known from the
theory of evolutionary algorithms in case of single criterion optimization task to a reasonable degree. As can be learned from the re(?’ent
do not carry over to the multi—criterion case. At first, three different step ~ surveys in [1], [2], [3] there are numerous suggestions of multi—
size rules are investigated numerically for a selected problem with two con- objective EAs. Moreover, there are some vague empirical rules
flicting objectives. The empirical results obtained by these experiments lead ; - 4; ~ot ; ;
to the observation that only one of these step size rules may have the prop- |nd|c§1t|ng which version works better .than some other under
erty to ensure convergence to the Pareto set. A theoretical analysis finally Certain circumstances whereas theoretical results are apparently
shows that a special version of an evolutionary algorithm with this step size rare. For example, it can be shown that an EA generates at least
rule converges with probability one to the Pareto set for the test problem gnhe stochastic trajectory Converging to the Pareto set with prob-
under consideration. . . e .

o . 4 ability one if the search space is finite, the support of the fixed
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tic convergence to Pareto set mutation distribution covers the search space, and offsprings are

accepted if they dominate the parents [4]. Since these assump-
tion are rather strong it may be instructive to investigate what
happens if some of these assumptions are weakened.

In classical optimization theory it is tacitly assumed that there Here, the analysis will focus on simplified versionof a
exists a single global objective function. But in practical protulti-objective EA originally presented in [5]. Assume there
lems the decision maker is almost always faced wittipie— are two objective functiong, and f, both to be minimized.
usually conflicting—goals. In this situation one often aggregatbgt X; € IR™ be some individual at generatign > 0. An
the vector-valued objective functién: IR” — IR™ (m > 1) offspringYy is generated as follows: After having drawn a ran-
into a scalar—valued surrogate objective functfonlR” — IR, dom vectorM with zero mean and a random variablewith
for example, viaf(x) = w'f(x) with some weight vector P{J =0} =P{J =1} =1/20ne sets
w € IR™. Although this approach opens the door for single cri- Y. = X T X0) - M
teria optimization methods on the one hand, it also introduces a b =Xe (], Xe) -
not negligible degree of uncertainty for the decision maker @ihere the distribution of! is fixed over time and the step size
the other hand: One cannot be sure whether the chosen weights ) may depend ot andX,. If f5(Yx) < f7(Xx) then the
do reflect the importance of each original goal appropriatebfspringY,. is accepted, otherwise rejected. Then the process
In fact, as soon as a specific weight vector has been chosepeats.
the original decision space is considerably and prematurely cukyidently, this method may be seen as a multi-objective gen-
down beforeenough information could be gathered that migh{ralization of the(1 4 1)-EA as it is known in single criterion
justify such a reduction. As a consequence, a huge numbepgtimization. One might be tempted to speculate that the exist-
potential good decisions are precludegriori. . ing theory for the single criteriofl + 1)—EA is easily transfer-

Another approach to attack the problem takes into accouile to the multiple criteria version. But this is a misspeculation,
that the vectors of objective function valugs= f(x) are par- For example, it is numerically shown in Section Il that the step
tially ordered. An objective vector is said to dominate objec- size control must be changed significantly. Moreover, the old
tive vectory if y; < g; foralli = 1,...,mandy; < g; forat notion of “convergence to the optimum” needs a reformulation
least one index. A decision vectox with y = f(x) is called before a theoretical convergence analysis, given in Section Il
Pareto—optimal if there is no decision veckoe IR" for which can begin.

y = f(X) dominatesy. The set of all Pareto—optimal decision

vectors is termed the Pareto—optimal, efficient, or admissible set Il. NUMERICAL PRELIMINARY STUDY

of the problem. The corresponding set of objective vectors is| et - IR?2 _s IR2 be a vector—valued function with
called the nondominated set.

I. INTRODUCTION

If it is possible to determine the Pareto—optimal set (or short: o) = (X%, IIx = 2I* )’ 1)
Pareto set), then the decision maker has the opportunity to Iegrr}?ro £ 7€ IR?. Assume that the two objective functions are to

about the tradeoffs being associated with the problem at hé})ne minimized. The efficient set can be determined analyticall
so that a ranking of the decision maker’s true preferences Gt is iven.b y y
be madeafter all possible solutions are known. Although the 9 y

Pareto set may be determined analytically in exceptional cases, X*={xeR?:x=rz,re[0,1]}.

one has to seek remedy in numerical approximation methods _
In the sequel three different step size rules and two mutation
G. Rudolph is with the Department of Computer Science, University of Dorlistributions are compared numerically. The first mutation dis-
mund, Germany. E-mail: rudolph@icd.de . This work is a result of@bé tripution is the two—dimensional Gaussian distribution with zero
laborative Research Center SFB 58flthe University of Dortmund. Financial d th . . . ix. Th d
support by the German National Science Foundation (DFG) is gratefully a{p-e_an a.n t € _un't. matrix a_s Covar.'anlce matr'x' e Se_co.n mu-
knowledged. tation distribution is the uniform distribution on the unit circle.



To distinguish between the different distributions of the muta-

tion vector we shall writeG resp.U in lieu of M. A two— 400
dimensional random vectdd = (G4,G:)’ is generated by

drawing two independent standard normal random varialiles

and (5, whereas random vect®df = (U1, Us)’ is obtained by 300

drawing random variable uniformly distributedir{ 0, 2 7) and X
settingl/; = cosw andU»; = sinw. Since both distributions are %
spherically symmetric one may choase: (z1,0)" with z; > 0 © 200
without affecting the generality of the results—but the theoreti- §
cal analysis in the next section will be considerably simplified. Xz

o

For example, the distandgx, X'*) = min{||x—x*|| : x* € A*}

of some poink to the Pareto set’* reduces to 100

X ifa <0 ;
d(x, X*) = o] ifO<z <2z ) . ‘ M
IX=2|| o>z, 0O 200 400 600 800 1000

iteration k

For the sake of brevity, the efficient set will be omitted from
the argument list, i.e., we shall simply wri#¢x) to denote the

distance to the efficient set. =00
A. Fixed Step Size \Nl 400

In single criterion optimization it is known that tfie+1)—EA =
with fixed variances? > 0 and Gaussian mutations converges g 300
with probability one to the global optimum under weak regular- —
ity assumptions. This property does not hold for fixed step size e
s > 0 with uniform mutations on the surface of a unit hyperball. -, 200
This difference remains valid even for convex objective func- 8
tions. One might speculate that these result carry over in some § 100
manner to multi—objective EAs. Two simple numerical experi- =
ments, however, reveal that this hypothesis must be rejected.

If z= (100, 0)' then the efficient set is located on thg-axis 0 e ‘
betweerD and100. The initial point is set t&; = (300, 300)’, 0 200 400 600 8OO 1000
the step size is set to= 10 and the variance? is chosen such teration k
thatE[||c G||] = o /7/2 equalsE[|[sU||] = s. The upper

graphs of Figs. 1 & 2 show a typical run in case of Gaussidi- 1- Typical run of the multi-objectivie + 1)—EA under Gaussian mutations
d unif tati tively. O ight be t ted t with fixed variance. The upper graph shows the distani{&s;) to the

and unnorm mutations, respectively. ©ne mig € 1eMPLea 10 pyrero set during the run, while the lower one shows the distdiXcg$and

deduce from these curves that tier- 1)—EA has got stuck pre-  ||x,. — z|| to the single criterion solutions ¢ff, and ;.

maturely in some small region. But this is not the case. Rather,

the sequencéX;, : k > 0) cycles between the two single crite-

rion optima(0, 0)" and (100, 0) as it may become visible from In general, for arbitrary € (0,2) one obtains

the lower graphs of Figs. 1 & 2. In any case, therg is no conver- E[f;(Xe41) | Xk ] = glc) F; (Xi) 4)
gence to the Pareto set regardless which mutation distribution
(Gaussian or uniform) is chosen. which implies a geometrically fast approach to the optimum of
the single criterion problem. In case of Gaussian mutations [6,
B. Optimal Single Objective Step Sizes p. 185f.] the relation
Since both objective functions are strongly convex it might E[£;(Xpg1) | Xi] = 0.81185 - f;(Xx)

appear reasonable to exploit the existing theory for the single
criterion (1 + 1)-EA. Following [6, p. 170f.] the optimal stepwith o, &~ 0.26885 - ||V f;(X4)|| is valid.

size for uniform mutations is When using this type of step size or variance control for the
. multicriteria (1 + 1)—EA there is again hardly a difference in
s (Xp, J) = % IV £7 (X)) = 0.39424 - ||V £7(Xx)]| the convergence behavior between Gaussian and uniform muta-

tions. Since the steps sizes (or variances) in the vicinity of the
wherec* = 0.78847 with g(c*) = 0.7693 is the minimizing Pareto set are often much larger thar= 10, the sequence of
parents( Xy : £ > 0) now cycles more frequently between the

solution o minimizing points of the single criterion problems during 1000
eVE—c? +¢? arcsin(c/2) 2 iterations than the fixed step size version. Therefore, it is re-
gle) =1- - + 9 (3) frained from presenting plots of these runs. But it should be
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Fig. 2. Typical run of the multi-objective + 1)—EA under uniform mutations
with fixed step size. The upper graph shows the distari¢¥g) to the
Pareto set during the run, while the lower one shows the distdixgdsand
[|Xx — z|| to the single criterion solutions g% and f; .
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Fig. 4. The frequency distribution of the first component’s value of the process
stopped as soon @$X;,) < 1078,
noted that the average distance to the Pareto set is much larger

than using fixed step sizes. As a consequence, there is no con-

vergence to the Pareto set when using this type of step size rulés000 experiments. Evidently, the+ 1)—EA converges more
frequently in the vicinity of the solutions of the single criterion

C. Step Sizes Proportional to Distance to Pareto Set problems, but it also converges to other points of the Pareto set.

. The most frequent realizations are closetavhich is closest to
A closer look at the upper graphs of Figs. 1 & 2 reveals th pe starting point.

the average distance to the Pareto set is approximately of umming up: After this numerical preliminary study one may

order of th'e fixed step size= 10 as soon as the seq.uer(oeg) ?onclude that only the third step size rule deserves a theoretical
starts cycling. One might speculate that a decreasing of the ste

size would also decrease the average distance to the Paretd%eq.sngatlon' This is done in the next section.
Therefore, the third step size rule is chosen as follows=
d(Xy). As can be seen from Fig. 3, this step size rule offers a
rapid approach to the Pareto set. Another noteworthy propertyin the sequel the convergence analysis will be restricted to
of this step size rule is illustrated by the following experimentiniform mutations on the circle with step size= d(x;). But

The multicriteria(1 + 1)—EA is started fronX, = (300, 300)’ at first it must be made rigorous what is meant by the notion of
and it is stopped as soon @gX;) < ¢ = 1078, Then the first “convergence to the Pareto set.”

component of vectaX;; is stored to some file and tlie+1)—EA Definition 1: Let (X; : k& > 0) be the sequence of points
is restarted again. Fig. 4 summarizes the results obtained affenerated by the multi-objectiyé + 1)—EA. The EA is said

1. ANALYSIS



to converge (with probability 1, in probability, in mean, etc.Now suppose that it can be shown ti&f d(Xx1+1)] < d(X)

to the Pareto set if the random sequefifg : & > 0) with forall xwithx € R = {y € R? : #; > 2,22 > 0}, i.e.,
Dy = d(X}) converges (with probability 1, in probability, in d(x) = |[x—Z||. Owing to the symmetry property (6) this would
mean, etc.) to zero. O imply E;[d(Xg41)] < d(x) for all x € L. Insertion into (5)
A convenient avenue to establish such a property is shownwguld yield

a customized version of a convergence result proven in [7, pp.

83-84]. E[ Dit1 | X =x] < +/g(1)d(x) x l+ d(X) x E
Theorem 1:Let (D : k£ > 0) be a sequence of nonnega- 2 2
tive random variables and let: IR, — IR, be a continuous _ V) +1 Ld(x)
function vanishing only at the origin. B[ D, ] < co and N 2
19
E[ Dig1 | Fr] < D — (D) < 5 i) (8)
for all £ > 0 then the sequendg);, : k£ > 0) converges to zero for all x € £. But if inequality (8) holds for alk € £ then it
with probability one ag — oc. O must also hold for alk € R which follows immediately from
Thus, it is sufficient to find a functio(-) such that the symmetry property (6).
Thus, to verify inequality (8) it is ecessary to prove inequal-

E[d(Xk41) [ Xi = x] < d(x) — v(d(x)) ity Eo[ d(Xr41)] < d(x) for all x € R. Therefore lek € R so
for all x € IR*. Notice that the distribution af(X} ;) depends that the step size is set fo= d(x) = [[x —Z||. Since
on the location of the current parext and on the two random x+sU if fo(x+sU) < fo(x)
variables/ andw. The stochastic effect of can be “elimi- Xpy1 = { X otherwise
nated” by further conditioning:

one obtains
E[Dey1 | X =x] =
E[Deg1 | Xe =%, J=0]xP{J=0} 4+ (5 d(Xpsr) = dx+sU) if fo(x+sU) < fo(X)
E[Dpy1 [ X =x,J=1]xP{J=1}. T |Ix—12)|  otherwise

But the analysis can be further simplified by exploiting the synfier the random distance of the new parent provided selection is

metries of our particular test problem. Since fona#t IR? and  with respect tof;. Recall from the previous section thdt=

z1 > 0 holds (cosw,sinw)’ wherew is uniformly distributed orj 0, 2 7) and
assume thatwg, wy) with wy < w; represents the interval with

E[Dey1 | Xe = (21, 22), J = 1] = the property:
E[Dig1 [Xe = (21 — @1, 22), J = 0] (6)

the analysis may be restricted to selection with respect to ob- , ) )
jective functionf,. Moreover, it suffices to consider the casd Nen the expectation may be obtained via
x5 > 0 since for allx € IR* holds ws

w € (wp,w1) <= fo(X+sU) < fo(X).

d sU W1 — Wwp
E[ D1 | X = (21, 22)] = E[ Doy | Xe = (21, —02) ] Eo[d“*s“”:/%d“’*”**”(* E )

Wo

As a consequence, one only needs to determine ) ) ) )
Let p andqg with p; < ¢; are the two points of intersection

E[ Dig1 | Xe =%, J =0] = Eo[ Dyy1] of the two circles{y € IR” : |ly — x|| = s} and{y € R” :
. _|ly = z|]| = |Ix = Z)|}. Then the first angle isy = arccos(ho)
for all x with z; € IR andx; > 0. The shorthand expressionyith ,, = (p1 — 21)/||x = 2|| if p2 > 2 andwy = arcsin(ho)

on the r.h.s. of the equation above will be used for notationgherwise, whereas the second angleiis= arccos(h1) with

Convenience'. o i hi = (g1 — x1)/|Ix — 2|| if g2 > 22 andw; = arcsin(hq)
The analysis has to be splitin several subcases. At first cQfnerwise.
H 2 H 2 . . . . .
sider thosex € IR” withx € £ = {y € R” : yn < 0,52 > 0}. Notice that the evaluation of the integral above must take into

Their distances to the Pareto set are givenpy = |[X||. Since  account thak + s (cos w, sinw)’ may move through all sets,

the step size is set to= d(x) = ||V fo(x)||/2 it follows from » “anqe — fy € R? - 0 < 41 < 21,90 > 0} forw €

eqns. (4) and (3) thal fo(Xx+1)] < g(1) fo(x) = 9(1) d*(X) (4 w;). This means that the formula fa(x + s U) changes

with ¢(1) ~ 0.7820. Notice that the relatiofi < d*(Xk+1) < while w moves fromug tow;. As a consequence, the interval

fo(Xk41) is valid in general. This leads to (wo,w1) must be divided into several subsets by determining

9 9 the angles at which there are transitions between thelseats

Eo[d”(Xp41)] < E[fo(Xp41)] < g(1) d*(x). (7) and Rg In general, the transitions betwe@h and C happen

Owing to Jensen’s inequality for conditional expectations awz = arcsin(hz) > ws = arccos(hs) With hy = hs =

taking the square root in (7) one finally obtains (21 — x1)/|[x — Z|| whereas the transitions betwegnand
occur atwy = arcsin(hy) > ws = arccos(hz) with hy = hs =
Eo[d(Xit1)] < Eo[ d*(Xe41) M2 < /(1) d(x). —x5/||x — Z|. The anglessy andws do exist if and only if



x3 > 221 21 — 27, If so then geometrical considerations lead to
the relationsug < wo andws <ws <wg < wy < wy. Thus,

; 100

there are four subcases depending on the valug off w, and 1
ws do not exist then only two cases must be considered. I 085, |

If X+ sU e Cthend(x + sU)/d(X) = x2/||X — Z|| + sinw 80 - / i
which can be easily integrated. The situation changes-if i o \
sU € L orR. In both cases one obtains an expression of the L& 1
type 50 I i

M:\/Ew/l—l—acosw—l—bsinw 9 ;
d(x) -
with v? = a?4+b? < 1. The integral of this expression cannot be 40 i /
expressed in terms of elementary functions in general. In fact, o
using the identityos ¢ cosw + sin ¢ sinw = 1 — 2 sin?((p — @5
w)/2), wherep = arccos(a/v) if b > 0 andy = arcsin(a/v) >
otherwise, one gets 20 I )
01
(l—l-acosw—I—bsinw)l/zdw = olE=", .. ‘ L
9o
- -0
2 (14 0)1? [E<g0290’m)_E<302 1’m)] 100 120 MOX 160 180 200
1

wherem = 2v/(1+v) <1and
Fig. 5. Contour plot oEq[d(x + s U)]/d(x) forx € R.

g 2 \1/2
E(ﬁ,m):/o (1 —msin a)/ do

arcsin(hy) with hy = (q1 — x1)/x2. The transitions be-
denotes the incomplete elliptic integral of the second kind [}veenC and £ occur atws = arcsin(—z1/x2) > w3 =
If x+sU e Lthen(a,b,¢) = arccos(—x1 /x2), whereas the transitions betwegandR hap-
pen atw, = arcsin((z1 — #1)/®2) > ws = arccos((z —

( 25 ||x — 2| 25 ||x — 2| - |Ix]1? ) x1)/x-). Depending on the actual locatiare C it may happen

X2+ ||x = 2||2 " |[X]|2 + ||x — Z)|* [[x — 2|2 that the pair of angles, w3, or the pairw,,ws, or even both

) pairs do not exist.
andifx +sU € R then If x4+ sU € Cthend(x + sU)/d(x) = 1+ sinw which
2, — 71 2o is easily integrated. The other two subcasesd@nd R lead
(a,b,c) = (M’ M’ ) again to expressions of the type given in egn. (9). The constants

(a, b, c) are given by

Notice that the integral over the quotiefik + s U)/d(X) is in- ) )

variant with respect to scale, i.e., the replacement by ¢ x ( 21 2 2z ﬂ)
and ofz by ¢ z with some¢ > 0 changes neither the parameters i+ 223 2 +223 &}
a, b, c) ineqn. (9) nor the value of the angles Therefore one

Enay czloosg arfyz > 0, sayz; = 100, to galculate the values N €@se 0k + s U € £ and by

for Eq[ d(x + s U)]/d(x) over the “critical” subset oR numer- (

ically. As can be seen from Fig. 5, the values are less thard
they rapidly approach unity in the vicinity of the poift,, 0)'.
With some additional effort it may be shown analytically that the, .5<e o +sUER.

relationEq [ d(x+s U)] < d(x) is valid for allx € R. This leads Figure 6 shows the values B[ d(x + s U) ]/d(x) for x & C.

to the conclusion that inequality (8) does indeed hold true Whi@?/idently, the value is less thdrunlessx approaches the Pareto
in turn implies that the precondition of Theorem 1 is fulfilled fogo; * Therefore the region defined by the triangle= {x €

allxe LUR. _ , IR? : 0 < 2y < @1 < z1 — x5} deserves a closer inspection.
Itremains to investigate the case CWIth'd(X) =5=222> Notice thatx € A impliesx + sU € C forallw € (wo,w1).
0. Again, several subcases must be considered separately. Wﬁsequently

let p andqg denote the points of intersection of the two circles

2(x1 —z1) 22 23 n ||X—Z||2
X =2l + 23" |Ix - 2||* + 23’ 3

{y € R?: |y — || = s} and{y € R : |lyl| = |X||}. The Eg[d(x+sU)] 91 4 sinw w1 = wo
. . _ - = _— dw + 1-—
interval (wo, w; ) with the property d(x) g 9 92
wE(wo,wl) < fQ(X—|—SU)<f0(X) = 1_COSC‘)12ﬂ
™
is specified by the angles; = arccos(hg) with iy = (p1 — - 1 (- p-xn
z1)/wa if 1 > x2/2 otherwisewy = arcsin(hg), andw; = o oI Z9 Z9
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For everyz; > 0 the nonnegative rightmost term in eqgn. (105

vanishes if and only i, = 0. Sinced(x) =z, > 0 forx € A
and owing to the symmetry property (6) one obtains

B[ Dgq1 | Xp = x] = d(X) — 7y(d(x))

with

7 <<4x%+3x§>1/z

(4 (w1 — 21)" 4+ 3§)1/?
47 x%—i—x%

1) = (z1 —21)% + a3

and closer to the Pareto set. This fact makes the analysis not
only complicated but it is also the reason why the mean rate of
convergence to the Pareto set is subexponential in general.

Nevertheless, it is still an interesting question whether a sim-
ilar result still holds in a more general situation or not. From a
practical point of view it is necessary to find a method that re-
alizes the step size rule without exploiting the knowledge about
the location of the optimal solutions of both objective functions.
In case of the special problem considered here, it is sufficient to
know the gradients since

%) = 3 min {11(1=) Vo) + X VA (91}

Notice that it is easy to determine the optimahnalytically. If

the objective functions are convex then it may be conjectured
thatd(x) can be bounded from below and above by functions of
the gradients. Provided that these bounds are sufficiently tight
it may happen that the specialized result presented here is trans-
ferable to more general situations.
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provided thatx € A. Thus, the precondition of Theorem 1 is

also fulfilled forx € A. Summing up:
Theorem 2:Let Xy, X5, ..

tive functions be specified by egn. (1). Then tHe+ 1)—
EA converges with probability one to the Pareto 3#t, i.e.,
d(Xy, X*) — 0 with probability one ag — oo. ]

IV. CONCLUSIONS

. be the sequence of parents gen-
erated by the multi—objectivél + 1)-EA and let the objec-

It was shown that the multi—objectié + 1)—EA may con-
verge with probability 1 to the Pareto set if the step size is
proportional to the distance to the Pareto set.
proof itself is admittedly laborious—and only valid for a spe-
cific problem—it is an instructive example already disclosing
the main difficulty which is inherent to this type of problems:

Although the

There exists a subset of the search space in which the probabil-

ity of accepting a point with smaller distance to the Pareto set

decreases td/4 whereas the probability ciiccepting a point
with larger distance increases ¢4 as the parent moves closer



