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Abstract—Although there are many versions of evolutionary algorithms
that are tailored to multi–criteria optimization, theoretical results are ap-
parently not yet available. Here, it is shown that results known from the
theory of evolutionary algorithms in case of single criterion optimization
do not carry over to the multi–criterion case. At first, three different step
size rules are investigated numerically for a selected problem with two con-
flicting objectives. The empirical results obtained by these experiments lead
to the observation that only one of these step size rules may have the prop-
erty to ensure convergence to the Pareto set. A theoretical analysis finally
shows that a special version of an evolutionary algorithm with this step size
rule converges with probability one to the Pareto set for the test problem
under consideration.

Keywords—multi–criteriaoptimization, evolutionary algorithms, stochas-
tic convergence to Pareto set

I. I NTRODUCTION

In classical optimization theory it is tacitly assumed that there
exists a single global objective function. But in practical prob-
lems the decision maker is almost always faced with multiple—
usually conflicting—goals. In this situation one often aggregates
the vector–valued objective functionf : IR

n ! IR
m (m > 1)

into a scalar–valued surrogate objective functionf : IR
n ! IR,

for example, viaf(x) = w0 f(x) with some weight vector
w 2 IR

m. Although this approach opens the door for single cri-
teria optimization methods on the one hand, it also introduces a
not negligible degree of uncertainty for the decision maker on
the other hand: One cannot be sure whether the chosen weights
do reflect the importance of each original goal appropriately.
In fact, as soon as a specific weight vector has been chosen,
the original decision space is considerably and prematurely cut
down beforeenough information could be gathered that might
justify such a reduction. As a consequence, a huge number of
potential good decisions are precludeda priori.

Another approach to attack the problem takes into account
that the vectors of objective function valuesy = f(x) are par-
tially ordered. An objective vectory is said to dominate objec-
tive vector~y if yi � ~yi for all i = 1; : : : ;m andyi < ~yi for at
least one indexi. A decision vectorx with y = f(x) is called
Pareto–optimal if there is no decision vector~x 2 IR

n for which
~y = f(~x) dominatesy. The set of all Pareto–optimal decision
vectors is termed the Pareto–optimal, efficient, or admissible set
of the problem. The corresponding set of objective vectors is
called the nondominated set.

If it is possible to determine the Pareto–optimal set (or short:
Pareto set), then the decision maker has the opportunity to learn
about the tradeoffs being associated with the problem at hand
so that a ranking of the decision maker’s true preferences can
be madeafter all possible solutions are known. Although the
Pareto set may be determined analytically in exceptional cases,
one has to seek remedy in numerical approximation methods
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in general. It has been demonstrated several times that some
versions of evolutionary algorithms are able to accomplish this
task to a reasonable degree. As can be learned from the recent
surveys in [1], [2], [3] there are numerous suggestions of multi–
objective EAs. Moreover, there are some vague empirical rules
indicating which version works better than some other under
certain circumstances whereas theoretical results are apparently
rare. For example, it can be shown that an EA generates at least
one stochastic trajectory converging to the Pareto set with prob-
ability one if the search space is finite, the support of the fixed
mutation distribution covers the search space, and offsprings are
accepted if they dominate the parents [4]. Since these assump-
tion are rather strong it may be instructive to investigate what
happens if some of these assumptions are weakened.

Here, the analysis will focus on asimplified versionof a
multi–objective EA originally presented in [5]. Assume there
are two objective functionsf0 andf1, both to be minimized.
Let Xk 2 IR

n be some individual at generationk � 0. An
offspringYk is generated as follows: After having drawn a ran-
dom vectorM with zero mean and a random variableJ with
Pf J = 0 g = Pf J = 1 g = 1=2 one sets

Yk = Xk + s(J;Xk) �M

where the distribution ofM is fixed over time and the step size
s > 0 may depend onJ andXk. If fJ (Yk) < fJ (Xk) then the
offspringYk is accepted, otherwise rejected. Then the process
repeats.

Evidently, this method may be seen as a multi–objective gen-
eralization of the(1 + 1)–EA as it is known in single criterion
optimization. One might be tempted to speculate that the exist-
ing theory for the single criterion(1 + 1)–EA is easily transfer-
able to the multiple criteria version. But this is a misspeculation.
For example, it is numerically shown in Section II that the step
size control must be changed significantly. Moreover, the old
notion of “convergence to the optimum” needs a reformulation
before a theoretical convergence analysis, given in Section III,
can begin.

II. N UMERICAL PRELIMINARY STUDY

Let f : IR2 ! IR
2 be a vector–valued function with

f(x) = ( kxk2; kx� zk2 )0 (1)

and0 6= z2 IR
2. Assume that the two objective functions are to

be minimized. The efficient set can be determined analytically
and it is given by

X �
= f x 2 IR

2
: x = r z; r 2 [ 0; 1 ] g :

In the sequel three different step size rules and two mutation
distributions are compared numerically. The first mutation dis-
tribution is the two–dimensional Gaussian distributionwith zero
mean and the unit matrix as covariance matrix. The second mu-
tation distribution is the uniform distribution on the unit circle.

1



To distinguish between the different distributions of the muta-
tion vector we shall writeG resp.U in lieu of M . A two–
dimensional random vectorG = (G1; G2)

0 is generated by
drawing two independent standard normal random variablesG1

andG2, whereas random vectorU = (U1; U2)
0 is obtained by

drawing random variable! uniformly distributed in[ 0; 2�) and
settingU1 = cos ! andU2 = sin!. Since both distributions are
spherically symmetric one may choosez = (z1; 0)

0 with z1 > 0

without affecting the generality of the results—but the theoreti-
cal analysis in the next section will be considerably simplified.
For example, the distanced(x;X �

) = minfkx�x�k : x� 2 X �g
of some pointx to the Pareto setX � reduces to

d(x;X �
) =

8<
:

kxk if x1 < 0

jx2j if 0 � x1 � z1
kx� zk if x1 > z1 :

(2)

For the sake of brevity, the efficient set will be omitted from
the argument list, i.e., we shall simply writed(x) to denote the
distance to the efficient set.

A. Fixed Step Size

In single criterion optimization it is known that the(1+1)–EA
with fixed variance�2 > 0 and Gaussian mutations converges
with probability one to the global optimum under weak regular-
ity assumptions. This property does not hold for fixed step size
s > 0 with uniform mutations on the surface of a unit hyperball.
This difference remains valid even for convex objective func-
tions. One might speculate that these result carry over in some
manner to multi–objective EAs. Two simple numerical experi-
ments, however, reveal that this hypothesis must be rejected.

If z = (100; 0)0 then the efficient set is located on thex1–axis
between0 and100. The initial point is set toX0 = (300; 300)0,
the step size is set tos = 10 and the variance�2 is chosen such
thatE[ k�Gk ] = �

p
�=2 equalsE[ ksUk ] = s. The upper

graphs of Figs. 1 & 2 show a typical run in case of Gaussian
and uniform mutations, respectively. One might be tempted to
deduce from these curves that the(1+1)–EA has got stuck pre-
maturely in some small region. But this is not the case. Rather,
the sequence(Xk : k � 0) cycles between the two single crite-
rion optima(0; 0)0 and(100; 0)0 as it may become visible from
the lower graphs of Figs. 1 & 2. In any case, there is no conver-
gence to the Pareto set regardless which mutation distribution
(Gaussian or uniform) is chosen.

B. Optimal Single Objective Step Sizes

Since both objective functions are strongly convex it might
appear reasonable to exploit the existing theory for the single
criterion (1 + 1)–EA. Following [6, p. 170f.] the optimal step
size for uniform mutations is

s�(Xk; J) =
c�

2
krfJ (Xk)k � 0:39424 � krfJ (Xk)k

wherec� = 0:78847 with g(c�) = 0:7693 is the minimizing
solution of

g(c) = 1� c
p
4� c2 + c2 arcsin(c=2)

�
+

c2

2
: (3)

Fig. 1. Typical run of the multi–objective(1+1)–EA under Gaussian mutations
with fixed variance. The upper graph shows the distancesd(Xk) to the
Pareto set during the run, while the lower one shows the distanceskXkk and
kXk � zk to the single criterion solutions off0 andf1.

In general, for arbitraryc 2 (0; 2) one obtains

E[ fj(Xk+1) jXk ] = g(c) fj(Xk) (4)

which implies a geometrically fast approach to the optimum of
the single criterion problem. In case of Gaussian mutations [6,
p. 185f.] the relation

E[ fj(Xk+1) jXk ] = 0:81185 � fj(Xk)

with ��k � 0:26885 � krfj(Xk)k is valid.
When using this type of step size or variance control for the

multicriteria (1 + 1)–EA there is again hardly a difference in
the convergence behavior between Gaussian and uniform muta-
tions. Since the steps sizes (or variances) in the vicinity of the
Pareto set are often much larger thans = 10, the sequence of
parents(Xk : k � 0) now cycles more frequently between the
minimizing points of the single criterion problems during 1000
iterations than the fixed step size version. Therefore, it is re-
frained from presenting plots of these runs. But it should be
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Fig. 2. Typical run of the multi–objective(1+1)–EA under uniform mutations
with fixed step size. The upper graph shows the distancesd(Xk) to the
Pareto set during the run, while the lower one shows the distanceskXkk and
kXk � zk to the single criterion solutions off0 andf1 .

noted that the average distance to the Pareto set is much larger
than using fixed step sizes. As a consequence, there is no con-
vergence to the Pareto set when using this type of step size rules.

C. Step Sizes Proportional to Distance to Pareto Set

A closer look at the upper graphs of Figs. 1 & 2 reveals that
the average distance to the Pareto set is approximately of the
order of the fixed step sizes = 10 as soon as the sequence(Xk)

starts cycling. One might speculate that a decreasing of the step
size would also decrease the average distance to the Pareto set.
Therefore, the third step size rule is chosen as follows:sk =

d(Xk). As can be seen from Fig. 3, this step size rule offers a
rapid approach to the Pareto set. Another noteworthy property
of this step size rule is illustrated by the following experiment:
The multicriteria(1 + 1)–EA is started fromX0 = (300; 300)0

and it is stopped as soon asd(Xk) � " = 10
�8. Then the first

component of vectorXk is stored to some file and the(1+1)–EA
is restarted again. Fig. 4 summarizes the results obtained after

Fig. 3. The distance to the Pareto set of the multi–objective(1 + 1)–EA with
step size rules = d(Xk) under uniform mutations (typical run).

Fig. 4. The frequency distribution of the first component’s value of the process
stopped as soon asd(Xk) < 10�8.

10,000 experiments. Evidently, the(1+ 1)–EA converges more
frequently in the vicinity of the solutions of the single criterion
problems, but it also converges to other points of the Pareto set.
The most frequent realizations are close toz, which is closest to
the starting point.

Summing up: After this numerical preliminary study one may
conclude that only the third step size rule deserves a theoretical
investigation. This is done in the next section.

III. A NALYSIS

In the sequel the convergence analysis will be restricted to
uniform mutations on the circle with step sizes = d(xk). But
at first it must be made rigorous what is meant by the notion of
“convergence to the Pareto set.”

Definition 1: Let (Xk : k � 0) be the sequence of points
generated by the multi–objective(1 + 1)–EA. The EA is said
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to converge (with probability 1, in probability, in mean, etc.)
to the Pareto set if the random sequence(Dk : k � 0) with
Dk = d(Xk) converges (with probability 1, in probability, in
mean, etc.) to zero. 2

A convenient avenue to establish such a property is shown by
a customized version of a convergence result proven in [7, pp.
83–84].

Theorem 1:Let (Dk : k � 0) be a sequence of nonnega-
tive random variables and let
 : IR+ ! IR+ be a continuous
function vanishing only at the origin. IfE[Dk ] <1 and

E[Dk+1 j Fk ] � Dk � 
(Dk)

for all k � 0 then the sequence(Dk : k � 0) converges to zero
with probability one ask !1. 2

Thus, it is sufficient to find a function
(�) such that

E[ d(Xk+1) jXk = x ] � d(x) � 
(d(x))

for all x 2 IR
2. Notice that the distribution ofd(Xk+1) depends

on the location of the current parentxk and on the two random
variablesJ and!. The stochastic effect ofJ can be “elimi-
nated” by further conditioning:

E[Dk+1 jXk = x ] =

E[Dk+1 jXk = x; J = 0 ]� Pf J = 0 g +

E[Dk+1 jXk = x; J = 1 ]� Pf J = 1 g :
(5)

But the analysis can be further simplified by exploiting the sym-
metries of our particular test problem. Since for allx 2 IR

2 and
z1 > 0 holds

E[Dt+1 jXt = (x1; x2); J = 1 ] =

E[Dt+1 jXt = (z1 � x1; x2); J = 0 ] (6)

the analysis may be restricted to selection with respect to ob-
jective functionf0. Moreover, it suffices to consider the case
x2 � 0 since for allx 2 IR

2 holds

E[Dt+1 jXt = (x1; x2) ] = E[Dt+1 jXt = (x1;�x2) ] :

As a consequence, one only needs to determine

E[Dk+1 jXk = x; J = 0 ] = E0[Dk+1 ]

for all x with x1 2 IR andx2 > 0. The shorthand expression
on the r.h.s. of the equation above will be used for notational
convenience.

The analysis has to be split in several subcases. At first con-
sider thosex 2 IR

2 with x 2 L = fy 2 IR
2
: y1 < 0; y2 > 0g.

Their distances to the Pareto set are given byd(x) = kxk. Since
the step size is set tos = d(x) = krf0(x)k=2 it follows from
eqns. (4) and (3) thatE[ f0(Xk+1) ] � g(1) f0(x) = g(1) d2(x)
with g(1) � 0:7820. Notice that the relation0 � d2(Xk+1) �
f0(Xk+1) is valid in general. This leads to

E0[ d
2
(Xk+1) ] � E[ f0(Xk+1) ] � g(1) d2(x) : (7)

Owing to Jensen’s inequality for conditional expectations and
taking the square root in (7) one finally obtains

E0[ d(Xk+1) ] � E0[ d
2
(Xk+1) ]

1=2 �
p
g(1) d(x) :

Now suppose that it can be shown thatE0[ d(Xk+1) ] � d(x)
for all x with x 2 R = fy 2 IR

2
: x1 > z1; x2 > 0g, i.e.,

d(x) = kx�zk. Owing to the symmetry property (6) this would
imply E1[ d(Xk+1) ] � d(x) for all x 2 L. Insertion into (5)
would yield

E[Dk+1 jXk = x ] �
p
g(1) d(x)� 1

2
+ d(x) � 1

2

=

p
g(1) + 1

2
� d(x)

<
19

20
� d(x) (8)

for all x 2 L. But if inequality (8) holds for allx 2 L then it
must also hold for allx 2 R which follows immediately from
the symmetry property (6).

Thus, to verify inequality (8) it is necessary to prove inequal-
ity E0[ d(Xk+1) ] � d(x) for all x 2 R. Therefore letx 2 R so
that the step size is set tos = d(x) = kx� zk. Since

Xk+1 =

�
x + sU if f0(x + sU) < f0(x)

x otherwise

one obtains

d(Xk+1) =

�
d(x + sU) if f0(x + sU) < f0(x)
kx� zk otherwise

for the random distance of the new parent provided selection is
with respect tof0. Recall from the previous section thatU =

(cos !; sin!)0 where! is uniformly distributed on[ 0; 2�) and
assume that(!0, !1) with !0 � !1 represents the interval with
the property:

! 2 (!0; !1) () f0(x + sU) < f0(x) :

Then the expectation may be obtained via

E0[ d(x+sU) ] =

!1Z
!0

d(x + sU)

2�
d!+kx�zk

�
1� !1 � !0

2�

�
:

Let p and q with p1 < q1 are the two points of intersection
of the two circlesfy 2 IR

2
: ky � xk = sg andfy 2 IR

2
:

ky � zk = kx � zkg. Then the first angle is!0 = arccos(h0)

with h0 = (p1 � x1)=kx� zk if p2 � x2 and!0 = arcsin(h0)

otherwise, whereas the second angle is!1 = arccos(h1) with
h1 = (q1 � x1)=kx � zk if q2 � x2 and!1 = arcsin(h1)

otherwise.
Notice that the evaluation of the integral above must take into

account thatx + s (cos !; sin!)0 may move through all setsL,
R, and C = fy 2 IR

2
: 0 � y1 � z1; y2 > 0g for ! 2

(!0; !1). This means that the formula ford(x + sU) changes
while ! moves from!0 to !1. As a consequence, the interval
(!0; !1) must be divided into several subsets by determining
the angles at which there are transitions between the setsL, C,
andR. In general, the transitions betweenR and C happen
at !2 = arcsin(h2) � !3 = arccos(h3) with h2 = h3 =

(z1 � x1)=kx � zk whereas the transitions betweenL and C
occur at!4 = arcsin(h4) � !5 = arccos(h5) with h4 = h5 =

�x2=kx � zk. The angles!4 and!5 do exist if and only if
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x22 � 2x1 z1� z21. If so then geometrical considerations lead to
the relations!0 � !2 and!3 � !5 � !4 � !2 � !1. Thus,
there are four subcases depending on the value of!0. If !4 and
!5 do not exist then only two cases must be considered.

If x + sU 2 C thend(x + sU)=d(x) = x2=kx� zk + sin!

which can be easily integrated. The situation changes ifx +

sU 2 L or R. In both cases one obtains an expression of the
type

d(x + sU)

d(x)
=
p
c �
p
1 + a cos! + b sin! (9)

with v2 = a2+b2 � 1. The integral of this expression cannot be
expressed in terms of elementary functions in general. In fact,
using the identitycos' cos! + sin' sin! = 1� 2 sin

2
(('�

!)=2), where' = arccos(a=v) if b � 0 and' = arcsin(a=v)

otherwise, one gets

Z �1

�0

(1 + a cos! + b sin!)1=2 d! =

2 (1 + v)1=2
�
E

�
'� �0

2
;m

�
�E

�
'� �1

2
;m

��

wherem = 2 v=(1 + v) � 1 and

E(�;m) =

Z �

0

(1�msin2�)1=2 d�

denotes the incomplete elliptic integral of the second kind [8].
If x + sU 2 L then(a; b; c) =

�
2x2 kx� zk

kxk2 + kx� zk2 ;
2x2 kx� zk

kxk2 + kx� zk2 ; 1 +
kxk2

kx� zk2
�

and ifx + sU 2 R then

(a; b; c) =

�
x1 � z1

kx� zk ;
x2

kx� zk ; 2
�
:

Notice that the integral over the quotientd(x + sU)=d(x) is in-
variant with respect to scale, i.e., the replacement ofx by � x
and ofz by � z with some� > 0 changes neither the parameters
(a; b; c) in eqn. (9) nor the value of the angles!i. Therefore one
may choose anyz1 > 0, sayz1 = 100, to calculate the values
for E0[ d(x+ sU) ]=d(x) over the “critical” subset ofR numer-
ically. As can be seen from Fig. 5, the values are less than1 and
they rapidly approach unity in the vicinity of the point(z1; 0)

0.
With some additional effort it may be shown analytically that the
relationE0[ d(x+sU) ] � d(x) is valid for allx 2 R. This leads
to the conclusion that inequality (8) does indeed hold true which
in turn implies that the precondition of Theorem 1 is fulfilled for
all x 2 L [R.

It remains to investigate the casex 2 C with d(x) = s = x2 �
0. Again, several subcases must be considered separately. Now
let p andq denote the points of intersection of the two circles
fy 2 IR

2
: ky � xk = sg andfy 2 IR

2
: kyk = kxkg. The

interval(!0; !1) with the property

! 2 (!0; !1) () f0(x + sU) < f0(x)

is specified by the angles!0 = arccos(h0) with h0 = (p1 �
x1)=x2 if x1 > x2=2 otherwise!0 = arcsin(h0), and!1 =

Fig. 5. Contour plot ofE0[d(x + sU) ]=d(x) for x 2 R.

arcsin(h1) with h1 = (q1 � x1)=x2. The transitions be-
tween C and L occur at!2 = arcsin(�x1=x2) � !3 =

arccos(�x1=x2), whereas the transitions betweenC andR hap-
pen at!4 = arcsin((z1 � x1)=x2) � !5 = arccos((z1 �
x1)=x2). Depending on the actual locationx 2 C it may happen
that the pair of angles!2; !3, or the pair!4; !5, or even both
pairs do not exist.

If x + sU 2 C thend(x + sU)=d(x) = 1 + sin! which
is easily integrated. The other two subcases forL andR lead
again to expressions of the type given in eqn. (9). The constants
(a; b; c) are given by

�
2x1 x2

x21 + 2x22
;

2x22
x21 + 2x22

; 2 +
x21
x22

�

in case ofx + sU 2 L and by

�
2 (x1 � z1)x2

kx� zk2 + x22
;

2x22
kx� zk2 + x22

; 1 +
kx� zk2

x22

�

in case ofx + sU 2 R.
Figure 6 shows the values ofE0[ d(x+ sU) ]=d(x) for x 2 C.

Evidently, the value is less than1 unlessx approaches the Pareto
set. Therefore the region defined by the triangle� = fx 2
IR

2
: 0 < x2 � x1 < z1 � x2g deserves a closer inspection.

Notice thatx 2 � implies x + sU 2 C for all ! 2 (!0; !1).
Consequently,

E0[ d(x + sU) ]

d(x)
=

Z !1

!0

1 + sin!

2�
d! +

�
1� !1 � !0

2�

�

= 1� cos!1 � cos!0

2�

= 1� 1

2�

�
q1 � x1

x2
� p1 � x1

x2

�
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Fig. 6. Contour plot ofE0[d(x + sU) ]=d(x) for x 2 C.

= 1� 1

2�
� q1 � p1

x2

= 1� x2 �
(4x21 + 3x22)

1=2

2� kxk2 : (10)

For everyx1 > 0 the nonnegative rightmost term in eqn. (10)
vanishes if and only ifx2 = 0. Sinced(x) = x2 > 0 for x 2 �

and owing to the symmetry property (6) one obtains

E[Dk+1 jXk = x ] = d(x)� 
(d(x))

with


(x2) =
x22
4�

�
(4x21 + 3x22)

1=2

x21 + x22
+

(4 (x1 � z1)
2
+ 3x22)

1=2

(x1 � z1)2 + x22

�

provided thatx 2 �. Thus, the precondition of Theorem 1 is
also fulfilled forx 2 �. Summing up:

Theorem 2:Let X1;X2; : : : be the sequence of parents gen-
erated by the multi–objective(1 + 1)–EA and let the objec-
tive functions be specified by eqn. (1). Then the(1 + 1)–
EA converges with probability one to the Pareto setX �, i.e.,
d(Xk;X �

)! 0 with probability one ask !1. 2

IV. CONCLUSIONS

It was shown that the multi–objective(1 + 1)–EA may con-
verge with probability 1 to the Pareto set if the step size is
proportional to the distance to the Pareto set. Although the
proof itself is admittedly laborious—and only valid for a spe-
cific problem—it is an instructive example already disclosing
the main difficulty which is inherent to this type of problems:
There exists a subset of the search space in which the probabil-
ity of accepting a point with smaller distance to the Pareto set
decreases to1=4 whereas the probability ofaccepting a point
with larger distance increases to1=4 as the parent moves closer

and closer to the Pareto set. This fact makes the analysis not
only complicated but it is also the reason why the mean rate of
convergence to the Pareto set is subexponential in general.

Nevertheless, it is still an interesting question whether a sim-
ilar result still holds in a more general situation or not. From a
practical point of view it is necessary to find a method that re-
alizes the step size rule without exploiting the knowledge about
the location of the optimal solutions of both objective functions.
In case of the special problem considered here, it is sufficient to
know the gradients since

d(x) =
1

2
min

0���1
f k (1� �)rf0(x) + �rf1(x) k g :

Notice that it is easy to determine the optimal� analytically. If
the objective functions are convex then it may be conjectured
thatd(x) can be bounded from below and above by functions of
the gradients. Provided that these bounds are sufficiently tight
it may happen that the specialized result presented here is trans-
ferable to more general situations.
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