
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

Perhaps Not a Free Lunch But At Least a Free

Appetizer

Stefan Droste, Thomas Jansen, and Ingo Wegener

No. CI-45/98

Technical Report ISSN 1433-3325 September 1998

Secretary of the SFB 531 � University of Dortmund � Dept. of Computer Science/XI
44221 Dortmund � Germany

This work is a product of the Collaborative Research Center 531, \Computational
Intelligence", at the University of Dortmund and was printed with �nancial support of
the Deutsche Forschungsgemeinschaft.



PERHAPS NOT A FREE LUNCH BUT AT LEAST

A FREE APPETIZER
�

Stefan Droste Thomas Jansen Ingo Wegener

FB Informatik, LS II, Univ. Dortmund, 44221 Dortmund, Germany

droste, jansen, wegener@ls2.cs.uni-dortmund.de

Abstract

It is often claimed that Evolutionary Algorithms are superior to other opti-

mization techniques, in particular, in situations where not much is known about

the objective function to be optimized. In contrast to that Wolpert and Macready

(1997) proved that all optimization techniques have the same behavior | on aver-

age over all f : X ! Y where X and Y are �nite sets. This result is called No Free

Lunch Theorem. Here di�erent scenarios of optimization are presented. It is argued

why the scenario on which the No Free Lunch Theorem is based does not model

real life optimization. For more realistic scenarios it is argued why optimization

techniques di�er in their e�ciency. For a small example this claim is proved.

�This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative

Research Center \Computational Intelligence" (531).

1



1 Introduction

The importance of optimization problems in computer science, many other research areas,

industrial applications, and even in everyday life is evident. Since a long time a lot of

optimization techniques have been presented and applied, among them gradient methods,

Lagrangian optimization, greedy methods, divide-and-conquer, dynamic programming,

local search, branch-and-bound, simulated annealing, and many variants of Evolutionary

Algorithms. Some of these techniques only work under certain assumptions, others are

claimed to be robust, i. e., to be useful for all types of problems. The techniques have been

compared for certain types of problems but no one was able to prove that one technique

is superior to another one in general. Nevertheless, several advocates of Evolutionary

Algorithms have stated that Evolutionary Algorithms are superior when averaging over

all types of problems. This has been disproved by the No Free Lunch Theorem due

to Wolpert and Macready (1995). Before stating the result we precisely describe the

underlying scenario.

Scenario 1: (No Free Lunch Scenario) The problem is drawn randomly from F = ff :

X ! Y g where X and Y are �nite sets and Y is completely ordered. The aim is to

�nd some x 2 X such that f(x) is maximal (or minimal). The resources used by an

algorithm for f are measured by the number of di�erent x such that f(x) is evaluated.

The assumption of �nite sets X and Y is not really a restriction.

Theorem 1 (No Free Lunch Theorem): With respect to Scenario 1, all optimization

techniques (deterministic and even randomized ones) have the same average behavior.

This result is subject to intense and controversial discussions (compare Culberson (1996),

Radcli�e and Surry (1995), as well as the No Free Lunch Theorem discussion page at

http://lucy.ipk.fhg.de/~mario/nfl/ or the Yin-Yang page about the panel discussion

at the International Conference on Genetic Algorithms 1995 at http://www.aic.nrl.

navy.mil/~spears/yin-yang.html) that are still going on today (compare recent dis-

cussions in comp.ai.genetic). In Section 2, we present a list of other scenarios for

optimization. Common to all scenarios is that we have a set F = ff : X ! Y g, where X

and Y are �nite sets. Furthermore, there is a set F 0 � F that contains the functions that

may be subject to optimization. We investigate the average performance of optimization

algorithms over all f 2 F 0. In the No Free Lunch Scenario we have F 0 = F . We shortly

discuss scenarios where some structural knowledge on the function to be optimized is

given. Then optimization techniques like Evolutionary Algorithms certainly can have an

advantage. But this is no argument in favor of the claim that Evolutionary Algorithms

do better than other optimization techniques, e. g., on average over \all" problems. We

present a general black box optimization scenario for classes of functions whose complexity

or di�culty is restricted in some sense. These scenarios are discussed in detail in Section

3. We give arguments why this scenario �ts much better to real life optimization than

Scenario 1. Then it is argued how optimization techniques can take advantage from the

knowledge that the complexity of the considered function is bounded.

2



In Section 4, the discussion is focused on the possible advantage of Evolutionary Algo-

rithms in black box optimization. Unfortunately, we cannot prove rigorously that di�erent

optimization techniques in general behave di�erently in these scenarios. Indeed, experi-

ences from complexity theory indicate that such a general proof most probably is not

possible. In Section 5, we restrict ourselves to small sets X and Y . Then we can prove

that we gain something by choosing a clever optimization technique. Since X and Y are

quite small, we cannot gain a lot. Therefore, what we get is \perhaps not a free lunch

but at least a free appetizer". Or to state it more seriously: For black box optimization

with the only assumption that the functions are not unrealistically complex it is possible

to gain something by choosing a good optimization technique.

2 Scenarios for Optimization

The No Free Lunch Theorem holds in Scenario 1 where all functions f : X ! Y are

considered. In a speci�c situation one has to optimize one speci�c function.

Scenario 2: (One Shot Scenario). A function f : X ! Y (X and Y �nite, Y completely

ordered) has to be optimized.

It makes no sense to compare optimization techniques in this scenario. One may be lucky

and start with some optimal x� 2 X. Therefore, a problem (from a scienti�c point of

view) has to have a lot of problem instances.

Scenario 3: (Fixed Problem Scenario). We are concerned with a �xed type of problem,

e. g., sorting, linear programming, or the traveling salesman problem TSP.

In this scenario we have some kind of semantic knowledge about the set F 0 of functions

that can be subject to optimization. This is the classical situation attacked by methods

from the research area called E�cient Algorithms. We guess that there are no doubts

that speci�c algorithms like quicksort or heapsort for sorting or the simplex method

for linear programming can be superior to general techniques. For other problems like

TSP the situation is more involved. Speci�c algorithms are very successful but only

recently Michalewicz (1998) has presented a problem speci�c crossover operator (inver-

over) and has obtained some impressive results with Evolutionary Algorithms. It seems

to be necessary to use problem speci�c components for Evolutionary Algorithms in order

to compete with other problem speci�c algorithms.

Scenario 4: (Fixed Function Type Scenario). It is known that the function f is chosen

from some class of functions sharing some structural property like separability, unimodal-

ity or being a polynomial of small degree.

Here, we have some kind of syntactic knowledge about the set F 0 of possible objective

functions. For simple classes of functions, e. g., separable functions or linear functions,

simple optimization techniques are so fast that no general technique can compete with

3



them. In more complex situations general techniques, among them variants of Evolution-

ary Algorithms, are very successful. There is a lot of literature discussing these successes,

we refer for Evolutionary Strategies to Rechenberg (1994) and Schwefel (1995), for Evo-

lutionary Programming to Fogel (1995), for Genetic Algorithms to Goldberg (1989) and

Holland (1975), and for Genetic Programming to Koza (1992). But all these scenarios are

far from the No Free Lunch Scenario and, moreover, successes of Evolutionary Algorithms

in one of these scenarios do not support the claim that Evolutionary Algorithms adapt to

(almost) each type of problem. For such a discussion we suggest the following scenario.

Scenario 5: (Restricted Black Box Optimization). This scenario is the same as the No

Free Lunch Scenario with the only exception that F = ff : X ! Y g is replaced by some

subset F 0 of functions f : X ! Y whose complexity (in a sense to be speci�ed) is not too

large.

In Section 3, we discuss some realistic restrictions. Here we motivate this scenario with

some general remarks. In order to apply optimization techniques which evaluate the

considered function f at a lot of points x it is necessary that the computation of y = f(x)

can be done e�ciently. Hence, the claim that Evolutionary Algorithms are superior to

other optimization techniques is meaningful only in some type of restricted black box

scenario. The No Free Lunch Theorem holds in the no free lunch scenario which also may

be called unrestricted black box optimization scenario. The question is whether the No

Free Lunch Theorem can be generalized to restricted black box optimization scenarios.

3 Some Realistic Black Box Optimization Scenarios

We look for scenarios of restricted black box optimization which do not exclude some

interesting problem from consideration. The �rst idea is to consider only functions from

the complexity class P, i. e., functions where one single evaluation is computable in poly-

nomial time. This complexity class usually is de�ned with respect to Turing machines

which leads people to deny its practical signi�cance. But the de�nition is robust, i. e.,

we may replace Turing machines by random access machines or by our favorite computer

(with a �nite number of processors), given that the memory is su�ciently large for the

task at hand. The typical NP-hard optimization problems have objective functions which

can be evaluated in polynomial time, often in linear time and sometimes even in sublinear

time. E. g., the distance matrix of a TSP instance with n cities has n2 entries but the cost

of a tour can be computed in O(n) time. This indicates that it is meaningful to restrict

the resource bounds for the evaluation of the objective function to bounds like O(n3),

O(n2) or O(n). Then the computation model has to be �xed and it would be stupid to

consider Turing machines. Random access machines (see Garey and Johnson (1979) and

Papadimitriou (1994)) are widely accepted as suitable model but the reader should feel

free to choose his or her own model.

The problem with this approach is that we implicitly consider functions f : �� ! IN, i. e.,

functions with an in�nite support. This excludes by de�nition results like the No Free

4



Lunch Theorem. We restrict ourselves to �nite functions, e. g., f : f0; 1gn ! f0; 1gm for

�xed n and m.

Scenario 5.1: (Time Restricted Black Box Optimization). The restriction is given by

a time bound T on the number of steps to evaluate f .

Having �xed X = f0; 1gn and Y = f0; 1gm we have switched from uniform computation

models (the input length is not �xed) to so-called nonuniform computation models (see

Garey and Johnson (1979) for a thorough discussion of these terms). The most popular

nonuniform computation model is the Boolean circuit with AND-, OR-, and NOT-gates.

Although circuits are a hardware model, they can be used as appropriate model here.

Time restricted computations lead to size restricted circuit representations where the size

bound only is by a logarithmic factor larger than the given time bound (see Garey and

Johnson (1979) and Wegener (1987)).

Scenario 5.2: (Size Restricted Black Box Optimization). The restriction is given by a

bound s on the size of a representation of f , e. g., the circuit size.

The last restriction we like to introduce is a bound on the Kolmogoro� complexity (see

the monograph of Li and Vit�anyi (1993)). This complexity measure is de�ned in a rather

abstract way. The Kolmogoro� complexity of a sequence s of zeros and ones is, for

some universal Turing machine, the length of the shortest program producing s. The

essential Invariance Theorem says that the Kolmogoro� complexity changes only by a

constant additive term if we replace one universal Turing machine by another. This

theory seems to be too strange to have applications. But the theory is very robust and

we may use it for our purposes. A function f : f0; 1gn ! f0; 1gm can be described as

list of all f(x); x 2 f0; 1gn, and, therefore, as 0-1-sequence. Then we may replace the

universal Turing machine by a programming language. Loosely speaking the Kolmogoro�

complexity of f is the minimal length of a standard C++-program which computes the

value table of f . Problems in applications have a small Kolmogoro� complexity, since we

may write a program executing a loop which evaluates and lists all f(x); x 2 X.

Scenario 5.3: (Kolmogoro� Complexity Restricted Black Box Optimization). The

restriction is given by a bound b on the Kolmogoro� complexity of f .

Summarizing we claim that situations where Evolutionary Algorithms can or will be

applied fall into the classes covered by the di�erent restricted black box optimization

scenarios. Hence, comparisons of optimization techniques should be performed within

such scenarios.

5



4 Evolutionary Algorithms and Restricted Black Box

Optimization

First, we recall the most important argument in the proof of the No Free Lunch Theorem.

If all f(x); x 2 X 0 � X, are known, then g : X � X 0 ! Y de�ned by g(x) = f(x) on

the restricted input set is still a random function on X � X 0. By evaluating f on some

inputs x we learn the corresponding values f(x) but nothing else. In restricted black box

optimization we are not confronted with all functions f : X ! Y . Hence, even if f(x) and

also f(x0) takes each value from Y with equal probability, the information that f(x) = y

may lead to the conclusion that a small or large value of f(x0) is less ore more likely. Such

information can be used by optimization techniques in restricted black box optimization

scenarios.

Indeed, all explanations of the success of Evolutionary Algorithms are based on the fact

that we can deduce something on unknown function values from known ones. Mutations

lead in most cases to small changes of the considered x. It is believed that we may follow

some path to better and better inputs. Optimal inputs are not expected to be surrounded

by bad ones only. More involved arguments lead to the hypothesis of gradient di�usion.

Also the building block hypothesis is based on the assumption that the �tness values of

di�erent x are correlated.

Here we have to argue why such correlations are possible in restricted and not in unre-

stricted black box optimization. We have already argued that a time restriction implies

a size restriction for circuits. Since the evaluation of a circuit can be described by a pro-

gram of �nite length, a size restriction for circuits leads to quite small restrictions of the

Kolmogoro� complexity. There are 2m2
n

functions f : f0; 1gn ! f0; 1gm. The theory of

Kolmogoro� complexity implies that almost all of them have a Kolmogoro� complexity

of almost m2n and only an insigni�cant (more exactly exponentially small) fraction of

these functions has a Kolmogoro� complexity bounded above by m2n=2. Let us consider

a small numerical example where n = 100 and m = 20. Programs which generate the

function table typically contain much less than m2n=2 = 20 � 250 bits. The whole function

table with m2n bits is described (implicitly) by perhaps a few thousand bits. On average,

each bit in the program describes a huge number of bits in the function table. Such short

descriptions cannot create independent function values.

It seems to be hard (or even impossible) to use these dependencies for a clever systematic

and deterministic optimization technique which, moreover, leads to a fast algorithm. Ran-

domness can use these dependencies in a much simpler way (see Motwani and Raghavan

(1995)). So one may hope that the random modules of Evolutionary Algorithms implic-

itly bene�t from the dependencies implied by the bounded complexity of the considered

functions.

The claim that one optimization technique is in one of the restricted black box optimiza-

tion scenarios superior to another can, at least in principle, be proved or disproved. Such

results do not exist for sets X and Y of reasonable size, since it is di�cult to prove precise

results on classes of random functions with some complexity bound. This di�culty has

been established for a lot of similar problems in complexity theory.

6



5 A Free Appetizer

Since we cannot analyze optimization techniques in some restricted black box optimization

scenario for reasonable n and m, we restrict ourselves to the toy example X = f0; 1g3

and Y = f0; 1g2. The class of functions F = ff : X ! Y g contains 48 = 65536 functions

which may be handled by case inspection. We interpret the binary strings as binary

representation of numbers which leads to an ordering of Y . The aim of our investigations

is to show how optimization techniques may take advantage from the structure given by

the restriction that f does not belong to the most complex ones.

We consider 10 classes of functions. The circuit class C consists of all f : f0; 1g3 ! f0; 1g2

representable by circuits whose size is bounded by 3. To consider more classes it is more

convenient to investigate representations where it is easier to compute the minimal size

of some function f . Such representations are OBDDs (ordered binary decision diagrams)

introduced by Bryant (1986). This representation is nowadays the state-of-the-art rep-

resentation of Boolean functions with applications in CAD tools and, in particular, for

veri�cation purposes. In the recent years, OBDDs have turned out to be also a quite pow-

erful representation in Genetic Programming. An OBDD (see Figure 1 for an example)

on the variable set Xn = fx1; : : : ; xng is a directed acyclic graph. Sinks are labelled by

Boolean constants from f0; 1g and inner nodes by Boolean variables from Xn. Each inner

node has two outgoing edges one labelled by 0 and the other by 1. Furthermore, there

is an ordering of the variables such that on each path the labelling of the inner nodes

obeys this ordering. An OBDD represents f : f0; 1gn ! f0; 1gm if each output bit fj is

represented at some OBDD node vj. In order to evaluate the function fv represented at v

on input a 2 f0; 1gn we start at v. At a node with label xi we follow the edge with label

ai, then fv(a) is the label of the sink �nally reached. The size of an OBDD is the number

of its inner nodes. The OBDD size of f is the size of the smallest OBDD (minimized

over all n! variable orderings) representing f . In our example we have only six variable

orderings. For a �xed variable ordering it is easy to determine the minimal size of an

OBDD representing f . Indeed we have used one of the available OBDD packages.

Let Fi � F denote the class of all functions f : f0; 1g3 ! f0; 1g2 whose OBDD size is

bounded by i. Then F = F8. Is it possible to use the information that f 2 Fi, i < 8, for

an optimization algorithm?

We investigate three types of optimization algorithms. The �rst one consists of nonadap-

tive algorithms which sample the search space in a prede�ned order, i. e., a nonadaptive

strategy does not react to the information already gathered. A nonadaptive strategy is

a permutation of the search space. We consider all 8! = 40320 nonadaptive algorithms.

Evolutionary Algorithms are adaptive. We investigate the (1 + 1) Evolutionary Algo-

rithm EA� and a slight modi�cation EA>. These Evolutionary Algorithms follow general

optimization techniques. The last two algorithms denoted by MaxOpt and MinMax are

specialized algorithms using some knowledge about the class of considered functions.

We describe EA�, EA>, MaxOpt, and MinMax in more detail. According to our scenario,

there is no stopping criterion. The algorithms stop as soon as an optimal x is sampled.

7



0 1

wvx2

x3 x3

x2

x1x1

0

1 1

0

0

0 1

1
1

1

00

Figure 1: An OBDD for the variable ordering x2; x3; x1 representing at (v; w) the function

f = (f1; f0) such that f1(x) = 1 for x = x1x2x3 2 f001; 011; 100; 111g and f0(x) = 1 for

x = x1x2x3 2 f001; 101; 110; 111g.

The OBDD contains six inner nodes, i. e. its size is 6.

The two (1 + 1) EAs are possibly the most simple variants of an Evolutionary Algorithm

and have been object of various studies (Rudolph (1997)).

Algorithm 1: Evolutionary Algorithm EA�

1. Choose x 2 f0; 1g3 uniformly at random.

2. For i := 1 To 3

With probability 1/3 set yi := 1� xi
Else set yi := xi.

3. If f(y) � f(x) then x := y.

4. Continue at line 2.

Algorithm 2: Evolutionary Algorithm EA>

This algorithm is almost the same as EA�, only line 3 reads

3. If f(y) > f(x) then x := y.

MaxOpt and MinMax are simple greedy algorithms based on an extensive study of the

situation. MaxOpt considers all possible functions and chooses that search point x which

is optimal for the largest number of functions. Either x is optimal and we stop or we

investigate one of the functions where x is not optimal. MinMax also considers the class

8



of possible functions and looks for a search point x which leads to the largest decrease of

the number of possible functions if x is not optimal. Both algorithms need a lot of time to

compute the search points but our complexity measure is the number of di�erent sampled

points. If an algorithm considers some point more than once, this is not counted.

Algorithm 3: MaxOpt

1. Set G := Fi.

2. For each x 2 f0; 1g3 not yet sampled

Set mx := number of g 2 G such that x is optimal for g

3. Sample some x where mx is maximal.

4. Remove all g 2 G that are maximal at x or differ from f(x) at x.

5. Continue at line 2.

Algorithm 4: MinMax

1. Set G := Fi.

2. For each x 2 f0; 1g3 not yet sampled

For each y 2 f0; 1g2

mx;y := size of G after removing all

functions g where g(x) is maximal or g(x) 6= y.

3. For each x 2 f0; 1g3

mx := maxfmx;yg.

4. Sample some x where mx is minimal.

5. Remove all g 2 G that are maximal at x or differ from f(x) at x.

6. Continue at line 2.

In contrast to many other papers we have not performed experiments. In our toy example

it is possible to compute exactly the behavior of each of the algorithms on each of the

functions. For the Evolutionary Algorithms EA� and EA> we have investigated the

Markov chain describing the search process and have computed the expected number

of di�erent sample points. All these computations have been done exactly without any

rounding. Only at the very end the numbers are rounded and presented in Table 1.

Therefore, di�erent table entries imply that it is rigorously proven that the algorithms

belonging to these entries have di�erent behavior.

The �rst column contains the name of the considered class of functions. We remember

that F8 = ff : f0; 1g3 ! f0; 1g2g describes the no free lunch scenario, the other sets

describe size restricted black box optimization scenarios where for Fi the OBDD size is

restricted and for C the circuit size. The next columns describe the size of the sets and

the (expected) number of di�erent sample points of the di�erent algorithms. The notion

n-a avg. stands for the average over all nonadaptive strategies, n-a best and n-a worst for

the best resp. worst nonadaptive strategy.

First of all, for F8 = F all algorithms perform equal as the No Free Lunch Theorem

states. The same holds for F0, since this class contains only the four constant functions,

9



set jsetj EA> EA� n-a avg. n-a best n-a worst MaxOpt MinMax

F0 4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

F1 34 1.79288 1.79594 1.70588 1.44118 2.02941 1.44118 1.44118

F2 280 2.29274 2.29443 2.24408 1.96071 2.52143 1.94643 2.00714

F3 2166 2.50852 2.50887 2.48673 2.26362 2.69575 2.24331 2.23223

F4 8908 2.87136 2.87085 2.86225 2.69185 3.00707 2.64111 2.64042

F5 25694 2.98338 2.98287 2.97920 2.86974 3.05943 2.83518 2.84600

F6 51520 3.02621 3.02609 3.02528 2.98453 3.04926 2.96555 2.97977

F7 65144 3.06392 3.06387 3.06392 3.06126 3.06499 3.05928 3.06219

F8 65536 3.06369 3.06369 3.06369 3.06369 3.06369 3.06369 3.06369

C 1290 2.76581 2.76497 2.74710 2.26744 3.55814 2.13953 2.15736

Table 1: Average number of distinct function evaluations.

and every algorithm �nds an optimal point by sampling the �rst point. For the other

classes there are di�erences.

We have proved that size restricted black box optimization allows di�erent behavior of

optimization techniques. The small size of the example allows only a small pro�t. There-

fore, we do not speak of a free lunch but only of a free appetizer. We list some more

results for our example drawn from Table 1.

� EA> and EA� perform very similar,

� EA> and EA� are worse than the best nonadaptive strategy and even worse (except

for F7) than the average nonadaptive strategy

� the greedy algorithms outperform the other algorithms, in most cases MaxOpt is

the winner,

� it seems to be harder to optimize functions with large complexity than functions

with small complexity.

The fact that we obtain similar results for restrictions on the OBDD and the circuit size

leads to the conjecture that our results are not biased by the chosen representation.

6 Conclusions

The No Free Lunch Theorem is the correct answer to statements that an optimization

technique is on the set of all functions f : X ! Y superior to another one. To resolve the

apparent contradiction between the No Free Lunch Theorem and the observed di�erences

in the behavior of optimization techniques one has to describe clearly the scenario before

one starts discussions on the behavior of optimization techniques. For several scenarios

speci�c techniques are superior to general ones. One main statement is that nobody in

10



applications is concerned with the unrestricted black box optimization scenario which is

the base of the No Free Lunch Theorem. Taking randomly a function f of this class we

have with large probability not enough time to evaluate f at only one sample point. We

suggest restricted black box optimization scenarios to compare the general behavior of

optimization techniques. For a small example we have proved that then a small free lunch

or a free appetizer is possible.

References

Bryant, R. E. (1986): Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers C-35, 677-691.

Culberson, J. C. (1996): On the futility of blind search. Technical Report TR96-18,

University of Alberta.

Fogel, D.B. (1995): Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. IEEE Press.

Garey, M.R. and Johnson, D. S. (1979): Computers and Intractability. A Guide to the

Theory of NP-Completeness. W.H. Freeman Company.

Goldberg, D.E. (1989): Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley.

Holland, J.H. (1975): Adaption in Natural and Arti�cial Systems. The University of

Michigan Press.

Koza, J.R. (1992): Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press.

Li, M. and Vit�anyi, P. (1993): An Introduction to Kolmogorov Complexity and Its Appli-

cations. Springer-Verlag.

Michalewicz, Z. (1998): An evolutionary algorithm for the ETSP. PPSN'98, to appear.

Motwani, R. and Raghavan, P. (1995): Randomized Algorithms. Cambridge University

Press.

Papadimitriou, C.H. (1994): Computational Complexity. Addison-Wesley.

Radcli�e, N. J. and Surry, P.D. (1995): Fundamental limitations on search algorithms:

Evolutionary Computing in perspective. In: J. van Leeuvwen (Ed.): Computer Science

Today: Recent Trends and Developments., LNCS 1000, Springer-Verlag, 275{291.

Rechenberg, I. (1994): Evolutionsstrategie `94. Frommann-Holzboog.

Rudolph, G. (1997): Convergence Properties of Evolutionary Algorithms. Ph.D. Thesis,

Verlag Dr. Kova�c.

Schwefel, H.-P. (1995): Evolution and Optimum Seeking. Wiley.

Wegener, I. (1987): The Complexity of Boolean Functions. Wiley.

11



Wegener, I. (1994): E�cient data structures for Boolean functions. Discrete Mathematics

136, 347{372.

Wolpert, D.H. and Macready, W.G. (1995): No Free Lunch Theorems for search. Tech-

nical Report SFI-TR-95-02-010, Santa Fe Institute.

Wolpert, D.H. and Macready, W.G. (1997): No Free Lunch Theorems for optimization.

IEEE Transactions on Evolutionary Computation 1(1), 67{82.

12


