
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

On the Analysis of the (1 + 1) Evolutionary

Algorithm

Stefan Droste, Thomas Jansen, and Ingo Wegener

No. CI-21/98

Technical Report ISSN 1433-3325 February 1998

Secretary of the SFB 531 � University of Dortmund � Dept. of Computer Science/XI
44221 Dortmund � Germany

This work is a product of the Collaborative Research Center 531, \Computational
Intelligence", at the University of Dortmund and was printed with �nancial support of
the Deutsche Forschungsgemeinschaft.

On the Analysis of the (1 + 1) Evolutionary Algorithm
�

Stefan Droste Thomas Jansen Ingo Wegener

FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany

droste, jansen, wegener@ls2.cs.uni-dortmund.de

Abstract

Many experimental results are reported on all types of Evolutionary Algorithms

but only few results have been proved. A step towards a theory on Evolutionary

Algorithms, in particular, the so-called (1+1) Evolutionary Algorithm is performed.

Linear functions are proved to be optimized in expected time O(n lnn) but only mu-

tation rates of size �(1=n) can ensure this behaviour. For some polynomial of degree

2 the optimization needs exponential time. The same is proved for a unimodal func-

tion. Both results were not expected by several other authors. Finally, a hierarchy

result is proved. Moreover, methods are presented to analyze the behaviour of the

(1 + 1) Evolutionary Algorithm.

1 Introduction

Evolutionary Algorithms are a class of search algorithms that are often used as function

optimizers for static objective functions. There are a lot of di�erent types of Evolution-

ary Algorithms, the best known are Evolution Strategies (Rechenberg (1994), Schwefel

(1995)), Evolutionary Programming (Fogel (1995)), Genetic Algorithms (Holland (1975),

Goldberg (1989)), and Genetic Programming (Koza (1992)). Each type of Evolutionary

Algorithm itself is an algorithm paradigm that has many di�erent concrete instances. The

�eld of Evolutionary Algorithms, though the �rst origins can be found in the early 1960s,

is still a quite young and evolving area of mostly practical e�orts. The very successful

application of Evolutionary Algorithms in very di�erent domains led to strongly practical

oriented interests. Today, theory is far behind \experimental knowledge". There are,

of course, theoretical investigations about some properties of Evolutionary Algorithms,

though rigorous research is hard to �nd. This implies that even the best known results

are still subject to controversial discussions. To put an end to this, a solid theory has to

be build up that starts with simple examples and shows how results can be obtained in

a rigorous fashion. The most important questions concerning Evolutionary Algorithms,

as long as function optimization is the objective, are how e�cient an Evolutionary Algo-

rithm will optimize a given objective function, which classes of objective functions can be

optimized e�ciently and which cannot.

In order to make a step towards this goal we investigate the running time behavior of a

very simple variant, that is called (1 + 1) Evolutionary Algorithm ((1 + 1) EA). As the

�This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative

Research Center \Computational Intelligence" (531).

1

name \Evolutionary Algorithm" suggests, evolution as it is observed in nature is imitated.

It is believed that the repeated process of recombination, mutation, and selection leads to

individuals that are increasingly adapted to their environment, i. e., they are assumed to be

of increasing �tness. Therefore, in EAs a possible solution to the optimization task is called

an individual and a set of individuals is called a population. From this population in one

step or generation a subset of parents is selected according to their function values under

the objective function, i. e., their �tness. The individuals are recombined by application

of crossover and the resulting individuals are mutated. Then some replacement strategy is

applied to determine the next population that may contain some of the newly generated

children as well as some of their parents. The choice of concrete algorithms to perform

selection, crossover, mutation, and replacement as well as the choice of the concrete

representation of the individuals o�ers a great variety of di�erent EAs.

The analysis here concentrates on the most simple variant of an EA that is still of theo-

retical and practical interest (Juels and Wattenberg (1994), Rudolph (1997)). We restrict

the size of the population to just one individual and do not use crossover. Since we assume

the objective function to have Boolean inputs we represent the current individual as a

bit string. This is the usual choice for Genetic Algorithms. We use a bitwise mutation

operator that
ips each bit independently of the others with some probability pm that

depends on the length of the bit string. We replace the current bit string by the new

one if the �tness of the current bit string is not superior to the �tness of the new string.

This replacement strategy is taken from Evolution Strategies and is called (1+1)-strategy

there: the new generation is chosen as the best individual of one parent and one child. We

always assume that the objective or �tness function f : f0; 1gn ! IR has to be maximized

here. Therefore, we can formalize the (1 + 1) EA as follows.

Algorithm 1.1: 1. Set pm := 1=n.

2. Choose randomly an initial bit string x 2 f0; 1gn.

3. Repeat the following mutation step: Compute x0 by
ipping independently each bit

xi with probability pm. Replace x by x0 i� f(x0) � f(x).

Algorithm 1.1 is sometimes regarded as a special variant of a hillclimber and is denoted

as randomized or stochastic hillclimber then (compare e. g. Ackley (1987)). Like a hill-

climber it uses only one current point in the search space and never accepts a new point

with inferior function value. Unlike normal hillclimbers the (1 + 1) EA has no clearly de-

�ned neighborhood, or, stated otherwise, it can reach in one single step any point in the

search space, while the probability of reaching a point decreases with increasing Hamming

distance to the current point.

One may consider the (1 + 1) EA as a degenerated kind of Simulated Annealing (Kirk-

patrick, Gelatt, and Vecchi (1983)), where the cooling scheme is trivial since the tem-

perature is constantly zero. In this case, again, the probabilistic kind of neighborhood is

quite unusual.

We start o� here with giving some basic de�nitions that will be helpful during the analysis.

More concepts and notions are introduced in the sections, when they are needed.

2

De�nition 1.2: A function f : f0; 1gn ! IR is called �tness function. We assume that f

has to be maximized.

De�nition 1.3: For two bit strings x; y 2 f0; 1gn we de�ne the Hamming distance of x

and y by

H(x; y) :=
nX
i=1

jxi � yij:

De�nition 1.4: A �tness function f : f0; 1gn ! IR can be written as polynomial

f(x1; : : : ; xn) =
X

I�f1;:::;ng
cf(I) �

Y
i2I

xi

with coe�cients cf(I) 2 IR. The degree of f is de�ned as

deg(f) := max fi 2 f0; : : : ; ng j 9I with jIj = i and cf(I) 6= 0g :

De�nition 1.5: The expected running time E(T) of the (1 + 1) EA on a �tness function

f is de�ned as the mean of the number of function evaluations of Algorithm 1.1 before

the current bit string is a global optimum of f . The number of function evaluations is

given by the number of times line 3 is executed increased by 1 for the initial bit string.

The expected running time of the (1 + 1) EA on a class of �tness functions F is de�ned

as the supremum of the expected running times on f for all f 2 F .

The (1 + 1) EA, under many di�erent names as we mentioned above, has already been

subject to various studies. As examples for theoretical investigations we mention three

publications, though undoubtly a lot of other papers can be found. B�ack (1992) inves-

tigates the question which mutation rate should be chosen. M�uhlenbein (1992) gives a

sharp upper bound on the expected running time on a very simple linear �tness func-

tion. A number of di�erent upper bounds on the expected running time, also for more

interesting and challenging functions, can be found in Rudolph (1997).

In the following section we give a general upper bound on the expected running time of

the (1 + 1) EA for all �tness functions. We demonstrate that �tness functions exist, that

require that amount of time asymptotically. We present a �tness function of degree 2

that has this worst case property. In Section 3 we prove that �tness functions of degree

one, i. e., linear functions, are always solvable in expected time O(n logn). In Section 4

we deal with unimodal functions which are a superclass of the linear functions discussed

in Section 3. We derive lower bounds on the expected running time for two concrete

unimodal �tness functions and show that this class has exponential expected running

time in the worst case. After dealing with extreme running times only, in Section 5 we

give a de�nition of n functions where the expected running time for the m-th function is

�(n logn+nm) for 1 � m � n. Finally, in Section 6 we discuss a variant of Algorithm 1.1

and demonstrate that very little changes in the algorithm can cause huge di�erences in

the expected running time.

3

2 Worst case bounds and worst case examples

As we are interested in the e�ciency of the (1 + 1) EA for di�erent �tness functions, we

should compare the expected running time of the (1 + 1) EA with other optimization

algorithms. The most simple algorithm for function optimization, complete enumera-

tion, needs O(2n) steps to �nd the global optimum of an arbitrary �tness function over

n Boolean variables. In Subsection 2.1 we show, that the (1 + 1) EA �nds the global

optimum of every �tness function after at most nn steps, which is worse than O(2n).

Because this upper bound does not imply the existence of �tness functions, so that the

(1 + 1) EA has an expected running time of �(nn), we explicitly present two �tness

functions with expected running time �(nn) in Subsections 2.2 and 2.3. While the �rst

�tness function is of degree n, the second one has degree 2, showing that the separation

of the set of all �tness functions according to the degree of a function is not reasonable

with respect to its indications on the running time of the (1 + 1) EA.

2.1 A general upper bound for the expected running time

Theorem 2.1: The expected running time of the (1 + 1) EA for an arbitrary �tness

function is at most nn.

Proof: Let x 2 f0; 1gn be an arbitrary bit string and x� a global optimum of the �tness

function. As H(x; x�) � n, the probability of mutating from x to x� in one step is

(1=n)H(x;x�) � (1 � 1=n)n�H(x;x�) � n�n. Hence, the expected time until this event occurs

is at most nn. Because this event implies, that a global optimum of the �tness function

is found, the expected running time of the (1 + 1) EA is at most nn. 2

As in this proof the exact expected running time of the (1 + 1) EA is only roughly upper

bounded, it is not clear, if any �tness function exists, so that the (1 + 1) EA needs on

average �(nn) steps for optimizing it. The next subsection presents an explicit function

with this property.

2.2 A function of degree n with expected running time �(nn)

A �tness function is assumed to be di�cult to be optimized, if it gives \misleading hints"

regarding the position of its global optimum. The (1 + 1) EA most often makes only

small mutations, which are accepted if they do not decrease the �tness function value.

Therefore, the expected running time of the (1 + 1) EA should be high, if for most bit

strings their \neighbors", i.e. bit strings with small Hamming distance, with higher �tness

lead away from the global optimum.

The function Trap:f0; 1gn ! IR (see Ackley (1987)), de�ned by

Trap(x1; : : : ; xn) :=
nX

i=1

xi + (n+ 1) �
nY
i=1

(1� xi);

4

ful�lls these requirements: the global optimum is (0; : : : ; 0), but for every other x 2 f0; 1gn

all bit strings with more ones than x have higher �tness, leading away from the global

optimum. Hence, the expected running time of the (1 + 1) EA when starting in a bit string

x should increase with jxj, the number of ones in x. The following theorem rigorously

proves that these argumentations are correct.

Theorem 2.2: The expected running time of the (1 + 1) EA for Trap is �(nn).

Proof: The basic idea of the proof is, that for almost all initial bit strings it is very

likely that the (1 + 1) EA will run into the local optimum (1; : : : ; 1), because all muta-

tions increasing the number of ones are accepted. But as the only possible successful

mutation from (1; : : : ; 1) leads to the global optimum (0; : : : ; 0) and has probability n�n,

the expected waiting time for this mutation is nn.

Let E(Tk) for k 2 f0; : : : ; ng be the expected running time of the (1 + 1) EA, when

starting with a bit string with k ones, which is properly de�ned, because Trap is a

symmetric function, i.e., its function value depends only on the number of ones in its

input. Because the initial bit string is chosen randomly, E(T), the expected running time

of the (1 + 1) EA, is

E(T) = 2�n �
nX

k=0

n

k

!
� E(Tk):

Because of Theorem 2.1, it is su�cient to show that the expected running time for Trap

is
(nn) in order to show that it is �(nn). In the following we show that Prob(Zk ; Zn),

the probability of reaching the bit string with n ones, when starting from an arbitrary bit

string with k 2 f2; : : : ; ng ones and using arbitrarily many steps in between, is at least a

constant c > 0. As the probability of mutating from (1; : : : ; 1) to (0; : : : ; 0) is n�n, E(Tn)
is nn, implying:

E(T) = 2�n �
nX

k=0

n

k

!
� E(Tk)

� 2�n �
nX

k=2

n

k

!
� (Prob(Zk ; Zn)E(TkjZk ; Zn)+

Prob(Zk 6; Zn)E(TkjZk 6; Zn))

� 2�n �
nX

k=2

n

k

!
� c � nn = c � nn �

2n � 1� n

2n
=
(nn):

So we have to show, that Prob(Zk ; Zn) � c, i.e. Prob(Zk 6; Zn) � 1 � c for all

k 2 f2; : : : ; ng. Prob(Zk 6; Zn) is the probability of not reaching (1; : : : ; 1), while starting

from a bit string with k ones. This event is equivalent to reaching a bit string with

i 2 fk; : : : ; n � 1g ones, but no bit string with i0 > i ones. Let Prob(Zi 6; Zi+) be the

probability of not reaching any bit string with i0 > i ones, while starting in a bit string

with i ones, in arbitrarily many steps. As the probability of reaching a bit string with i
ones, while starting from a bit string with k ones is at most one, Prob(Zk 6; Zn) can be

bounded above by
Pn�1

i=k Prob(Zi 6; Zi+).

5

Let p�i be the probability of mutating from a bit string with i ones in one step to (0; : : : ; 0)

and p+i the probability of mutating from a bit string with i ones in one step to a bit string

with more than i ones. Then the following equation holds:

Prob(Zi 6; Zi+) =
1X
t=0

�
1� p+i � p�i

�t
� p�i =

p�i
p�i + p+i

=

1 +

p+i
p�i

!�1
:

Using an upper bound ~p�i for p�i and a lower bound ~p+i for p+i the probability Prob(Zi 6;
Zi+) can be bounded above in the following way:

Prob(Zi 6; Zi+) =

1 +

p+i
p�i

!�1
�

1 +

~p+i
~p�i

!�1
=

~p�i
~p�i + ~p+i

�
~p�i
~p+i
:

The probability of mutating a bit string with i ones to (0; : : : ; 0) is exactly (1=n)i � (1�
1=n)n�i. Assuming that only the mutation of exactly 1 of the n � i zeros leads to a bit

string with i + 1 ones, the lower bound
�
n�i
1

�
� 1=n � (1� 1=n)n�1 on p+i follows. Putting

together these bounds, we obtain the following upper bound for Prob(Zi 6; Zi+):�
1

n

�i
�
�
1� 1

n

�n�i
�
n�i
1

�
� 1

n
�
�
1� 1

n

�n�1 :

Hence, Prob(Z2 6; Zn) is bounded above by the following sum:

n�1X
i=2

�
1

n

�i
�
�
1� 1

n

�n�i
n�i
n
�
�
1� 1

n

�n�1 �
n�1X
i=2

�
1

n

�i�1
�
�
1�

1

n

�1�i
(as (1� 1=n)n�2 � exp(�1))

� exp(1) �
1X
i=1

�
1

n

�i
� exp(1) �

1

n
�

1

1� 1=n
= exp(1) �

1

n� 1
! 0 (for n!1):

Therefore, Prob(Z2 ; Zn) and, in general, Prob(Zk ; Zn) for k 2 f2; : : : ; ng is at least

a constant greater 0. So the expected number of steps of the (1 + 1) EA for Trap is

�(nn). 2

2.3 A function of degree two with expected running time �(nn)

So far we have shown in this section that the (1 + 1) EA needs running time at most nn

and that a function of degree n with expected running time �(nn) exists. As the degree

of a function is a measure for the degree of dependency between the variables, one might

assume that the degree of a �tness function is an indicator for the expected running time

of the (1 + 1) EA while optimizing it. But in the following we show that this assumption

is not correct in general.

To do this, we explicitly present a function of degree 2 with expected running time �(nn),

showing that functions of degree 2 are in fact hard to optimize for the (1 + 1) EA.

6

0

20

40

60

80

100

120

0 5 10 15 20

number of ones

D
is
t
a
n
c
e

Figure 1: The function Distance for n = 20

Theorem 2.3: The (1 + 1) EA has an expected running time of �(nn) for the function
Distance, de�ned by

Distance(x1; : : : ; xn) =

nX

i=1

xi �
�
n

2
+

1

3

�!2

:

Proof: This function is of degree 2 and to get a graphical impression, it is plotted in

Figure 1 for n = 20. The basic idea of the proof is the same as for Theorem 2.2: for a

constant-sized part of all initial bit strings the probability of reaching the local optimum

(1; : : : ; 1) is constant. As the only bit string with higher �tness is the global optimum

(0; : : : ; 0), the expected runtime of the (1 + 1) EA, when starting in (1; : : : ; 1) is nn.

Hence, the expected running time of the (1 + 1) EA is �(nn).

As the value of Distance is only dependent on the number of ones in its input, let

Distance(k) be its function value for an arbitrary input with k 2 f0; : : : ; ng ones. As

its function value is the square of the distance between the number of ones in the input

and n=2 + 1=3, it can be rewritten as (where i � 0):

Distance(k) =

(
(i� 1

3
)2; if k = n

2
+ i

(i + 1

3
)2; if k = n

2
� i

:

7

Hence, the order of the function values is as follows (w.l.o.g. n is even):

Distance(
n

2
) < Distance(

n

2
+ 1) < Distance(

n

2
� 1) < Distance(

n

2
+ 2) < : : :

Distance(n� 1) < Distance(n) < Distance(0);

i.e., starting from a bit string with n=2+ i ones every bit string with at most n=2� i and

every bit string with at least n=2 + i can be reached. This implies, that starting from

(1; : : : ; 1) only (0; : : : ; 0) (besides (1; : : : ; 1) itself) can be reached. As (0; : : : ; 0) is the

global optimum, the expected running time of the (1 + 1) EA, when starting in (1; : : : ; 1),

is nn. Analogously to Section 2.2 we will now prove that the probability Prob(Zk ; Zn)

of reaching (1; : : : ; 1), while starting with a bit string with k ones and using arbitrarily

many steps, is at least a constant c > 0 for all k � n=2 + 1.

What is the probability of randomly initializing with a bit string having at least n=2 + 1

ones? The number of bit strings with at least n=2+1 ones is
Pn

k=n=2+1

�
n

k

�
� 2n�1�

�
n

n=2

�
=

(2n). Hence, the initialization leads to a bit string having at least n=2 + 1 ones with

constant probability.

To get a lower bound for Prob(Zk ; Zn), let us consider a su�cient condition for the

(1+1) EA to reach (1; : : : ; 1): starting from a bit string with k ones a bit string with i > k

ones has to be reached, while only visiting bit strings with k ones in between. Then a

bit string with i0 > i ones has to be reached, while only visiting bit strings with i ones
in between, and so on, until (1; : : : ; 1) has been reached. This neglects that mutating to

a bit string with less ones than the current bit string does not in general imply that the

(1+1) EA cannot reach (1; : : : ; 1) anymore.

Let Prob(Zi ; Zi+) be the probability of reaching a bit string with i0 > i ones when
starting in a bit string with i ones and using only bit strings with i ones in between.

Then the following inequality holds

Prob(Zk ; Zn) �
n�1Y
i=k

Prob(Zi ; Zi+):

Hence, it is su�cient to show that
Qn�1

i=k Prob(Zi ; Zi+) is at least a constant greater

than 0. To get a lower bound for Prob(Zi ; Zi+), the probabilities p
+
i (to mutate from a

bit string with i ones to a bit string with more ones) and p�i (to mutate successfully from

a bit string with i ones to a bit string with less ones) are bounded: if at least one of the

n� i zeros mutates, but no bit with value one, then a bit string with more ones is reached

(hence, p+i � (1 � 1=n)i � (1� (1� 1=n)n�i)); in order to switch to a bit string with less

ones, it is necessary that 2(i�n=2) = 2i�n ones mutate (hence, p�i �
�

i

2i�n

�
� (1=n)2i�n).

Analogously to Subsection 2.2 this leads to the following lower bound

Prob(Zi ; Zi+) =
p+i

p+i + p�i
�

�
1�

�
1� 1

n

�n�i�
�
�
1� 1

n

�i
�
1�

�
1� 1

n

�n�i�
�
�
1� 1

n

�i
+
�

i

2i�n

�
�
�
1

n

�2i�n =: a�1i :

8

Hence, we get the lower bound
�Qn�1

i=n=2+1
ai
��1

for Prob(Zn=2+1 ; Zn). This expression

is at least a constant greater than 0, if
Qn�1

i=n=2+1
ai is bounded above by a constant, which

is the case i�
Pn�1

i=n=2+1 ln(ai) is bounded above by a constant. Since ln(1 + x) � x and ai
has the form 1 + bi, where

bi =

�
i

2i�n

�
�
�
1

n

�2i�n
�
1�

�
1� 1

n

�n�i�
�
�
1� 1

n

�i ;

it is su�cient to show that
Pn�1

i=n=2+1
bi is bounded above by a constant.

If i � 2n=3 (w.l.o.g. n is divisible by 6), the denominator of bi is at least (1�exp(�1=3)) �
exp(�1), while for the numerator we use the estimation

i

2i� n

!
�
�
1

n

�2i�n

�
�
i

n

�2i�n
�
�
4

9

�i�n=2
:

Hence, the sum
P2n=3

i=n=2+1
bi is bounded above by

1

(1� exp(�1=3)) � exp(�1)
�
n=6X
i=1

�
4

9

�i
�

4

5 � (1� exp(�1=3)) � exp(�1)
:

If i 2 f2n=3 + 1; : : : ; n� 1g, then (1� 1=n)n�i � 1� 1=n and the denominator of bi is at

least exp(�1)=n. For the nominator we use the estimation
�

i

2i�n

�
=
�

i

n�i

�
� nn�i. Hence,

the whole numerator is at most n2n�3i. Since i � 2n=3 + 1, this can be estimated above

by n�3. Therefore,
Pn�1

i=2n=3+1
bi is bounded above by

exp(1) �
n�1X

i=2n=3+1

1

n2
�

exp(1)

n
:

Altogether,
Pn�1

i=n=2+1
bi is bounded above by

4

5 � (1� exp(�1=3)) � exp(�1)
+

exp(1)

n
:

Hence, the expected number of steps of the (1 + 1) EA for the Distance-function is

�(nn). 2

3 Linear functions�

We know from the previous section that �tness functions of degree at least 2 can be very

di�cult for the (1 + 1) EA. Fitness functions of degree 0 are, of course, trivial, since they

�The results of this section have been presented at the ICEC '98 (Droste, Jansen, and Wegener (1998)).

9

are constant. Fitness functions of degree 1 remain as an interesting class of functions,

and they are in fact easy for the (1 + 1) EA as we will prove here. We call these functions

linear, since they can be written as

f(x) =
nX
i=1

gi(xi);

where gi(xi) = wixi + �i for i with 1 � i � n and wi; �i 2 IR holds.

For the analysis in this section we make w. l. o. g. some assumptions. Constant additive

terms have no in
uence on the behavior of the (1 + 1) EA, so we assume �i = 0 for all

i. We assume that all weights are non-negative. Otherwise one may replace xi by 1� xi.

Furthermore, the weights wi are assumed to be integers. Finally, we assume that the

weights are sorted, i. e., w1 � � � � � wn. It follows that the all one string is always a

global optimum. Moreover, if all weights are positive, the all one string is the only global

optimum.

Before we consider an arbitrary linear function f , we introduce two special linear functions
that are of particular interest.

De�nition 3.1: The linear function OneMax has all weights set to 1, i. e.,

OneMax(x) =
nX

i=1

xi:

The linear functionBin has set the i-th weight according to wi := 2n�i, i. e., Bin interprets

a bit string as binary representation of an integer.

These two functions are in some sense two extreme examples from the class of linear

functions. The weights of Bin are so strongly decreasing that wi >
Pn

j=i+1wj holds for

all i with 1 � i < n. This implies that it is always the leftmost
ipping bit alone that

decides, whether a mutation is accepted. The weights of OneMax are all equal, so that

it is only the number of bits
ipping to one compared with the number of bits
ipping to

zero that decides, whether a mutation is accepted.

The function OneMax is easy to analyze, upper bounds for the expected running time

have been presented, e. g., by M�uhlenbein (1992). As for all symmetric functions, mutation

steps to bit strings with equal number of ones can be ignored. In successful steps the

number of ones is increased by at least 1, so at most n successful steps are su�cient. If

the number of zeros in the current bit string equals i, the probability for a successful step

is bounded below by
�
i

1

�
n�1(1� 1=n)n�1, so we get

nX
i=1

i

1

!
1

n

�
1�

1

n

�n�1!�1
� exp(1)n

nX
i=1

1

i
= O(n lnn)

as upper bound for the expected running time. A lower bound of equal order of growth is

easy to �nd, too. Furthermore, it is valid for all linear functions with all non-zero weights.

10

Lemma 3.2: The expected number of steps the (1 + 1) EA takes to optimize a linear

function with all non-zero weights is
(n lnn).

Proof: By our assumptions in this section all weights wi are positive. Since the all one

bit string is the only optimum, it is necessary that each bit that is zero after random

initialization
ips at least once. Hence, the average time until each of these bits has tried

to
ip at least once is a lower bound on the considered expected time. The following

considerations are similar to the example called \coupons collector problem" by Motwani

and Raghavan (1995).

Let T denote the random variable describing the �rst point of time where each of these

bits has tried to
ip at least once. Since T takes only positive integers, we have

E(T) =
1X
t=1

t � Prob(T = t) =
1X
t=1

Prob(T � t):

W. l. o. g. n is even. With probability at least 1=2 at least half of the bits are zero after

random initialization. (1� 1=n)t�1 describes the probability that one bit does not
ip at

all in t� 1 steps. So, 1� (1� 1=n)t�1 is the probability that it
ips at least once in t� 1

steps. Therefore, we have (1 � (1 � 1=n)t�1)n=2 as probability that this is the case with

n=2 bits. Finally, 1 � (1 � (1 � 1=n)t�1)n=2 is the probability for the event that at least

one of n=2 bits never
ips in t� 1 steps. So, we have

E(T) �
1

2

1X
t=1

0
@1�

1�

�
1�

1

n

�t�1!n=2
1
A

�
1

2
(n� 1)(lnn)

0
@1�

1�

�
1�

1

n

�(n�1) lnn!n=2
1
A

�
1

2
(n� 1)(lnn) (1� exp(�1=2)) =
(n lnn):

2

For Bin an upper bound is harder to �nd. Since it is only the leftmost
ipping bit

that decides, whether a mutation is accepted, the Hamming distance to the optimal

all one string may be increased during optimization. Even extreme steps like the one

from (0; 1; 1; : : : ; 1) to (1; 0; 0; : : : ; 0) are possible though extremely unlikely. In order to

measure the progress during optimization we distinguish between the bits in the left half

(i. e., x1; : : : ; xn=2) and the bits in the right half of the current bit string. We consider the

bits in the left half to be more important and analyze the optimization in two phases. In

the �rst phase only the bits in the left half are considered. We derive an upper bound on

the expected time before these bits all are ones. Such leading ones are never replaced by

zeros, so in the second phase, when we consider the bits of the right half, we are sure that

nothing changes in the left half. Adding up the expected time for the left and the right

half yields an upper bound for the expected running time of the (1 + 1) EA on Bin.

11

Lemma 3.3: The expected number of steps of the (1 + 1) EA on Bin is �(n lnn).

Proof: The lower bound is given in Lemma 3.2, so we only prove an upper bound.

W. l. o. g. n is even. Let T be the random variable describing the �rst point of time where

the (1 + 1) EA reaches the optimal all one bit string. As described above we distinguish

two phases and denote the �rst point of time where the n=2 bits of the left half are all

one by T1. The rest of the time is given by T2, so we have T = T1 + T2.

In order to derive an upper bound on E(T1) we distinguish the mutations: steps that

change at least one of the bits in the left half are called successful. Unsuccessful steps

may only change bits in the right half and are not important for us.

Let Xi be the random variable describing the �rst point of time where the left half of the

current bit string x contains at least i ones, in particular X0 = 0. Then we have

T1 = Xn=2 = (X1 �X0) + (X2 �X1) + � � �+ (Xn=2 �Xn=2�1):

We distinguish between successful and unsuccessful mutations and therefore introduce the

random variables Yi that describe the random number of successful steps in the interval

[Xi�1 + 1; : : : ; Xi], as well as Zi that describe the random number of unsuccessful steps

during that period of time. This yields

T1 = Y1 + Z1 + Y2 + Z2 + � � �+ Yn=2 + Zn=2;

and we can investigate successful and unsuccessful steps separately.

We begin with Yi. In a successful step the leftmost
ipping bit
ips from zero to one.

In order to get an upper bound on Yi we pessimistically assume that all other
ipping

bits
ip from one to zero. The expected number of further
ipping bits is maximal, if

the leftmost
ipping bit is the leftmost bit in the bit string. If we look at the bits on

positions 2; : : : ; n=2, we see that they may all
ip independently of each other and the

�rst bit. So, the distribution of the random number of
ipping bits among these positions

is a binomial distribution with parameters n=2� 1 and 1=n. We conclude that regardless

of the actual position of the leftmost
ipping bit the expected number of further
ipping

bits is bounded above by 1=2. Let Dk describe the random di�erence in the number

of ones among the bits of the left half of x after and before the k-th successful step

among the steps Xi�1 + 1; : : : ; Xi. Then under our pessimistic assumptions, Dk � 1 and

E(Dk) � 1� 1=2 = 1=2. Let Sk = D1 +D2 + � � �+Dk. Then Yi is bounded above by k�,

the smallest index k where Sk = 1. The process S0; S1; S2; : : : is a random walk on the

line starting at S0 = 0. In the �rst step we move to S0 +D1 = S1, then to S1 +D2 = S2,

and so on. Since Dk � 1, we reach one as �rst point to the right of zero. Then the process

stops and we are interested in the average stopping time E(k�).

Our random walk is homogeneous with respect to time and place. After the �rst step the

distance to 1 equals 1�D1. Besides the �rst step we have to wait on average (1�D1)E(k
�)

further successful steps until we reach 1 for the �rst time. Hence,

E(k�) = 1 +
1X

d=�n=2+2

Prob(D1 = d)(1� d)E(k�)

12

= 1 + E(k�)� E(k�)
1X

d=�n=2+2

dProb(D1 = d)

= 1 + E(k�)� E(k�)E(D1):

We conclude that E(k�) = 1=E(D1), and with E(Dk) � 1=2 for all k we have E(k�) � 2.

This implies E(Yi) � 2 for all i. The equality E(k�)E(D1) = 1 is known in more general

form in probability theory as Wald's identity (Feller (1971)).

Now, we look for some lower bound for p, the probability of a successful mutation. Given

p, the average time until we have k successful mutations equals k=p, so we have

E(Yi + Zi) =
X
k

Prob(Yi = k) � E(Yi + Zi j Yi = k)

=
X
k

Prob(Yi = k) �
k

p
=

E(Yi)

p
�

2

p
:

During the steps Xi�1 + 1; : : : ; Xi the number of ones in the left half of x is bounded

above by i� 1. A su�cient condition for a successful step is that all bits equal to one do

not try to
ip and exactly one of the bits equal to zero tries to
ip. The probability of

this event is bounded below by
n=2� (i� 1)

1

!
1

n

�
1�

1

n

�n=2�1
�
�
n

2
� i+ 1

�
exp(�1=2)

n
:

Altogether we have for n � 10

n=2X
i=1

E(Yi + Zi) � 2

n=2�1X
i=0

 �
n

2
� i

�
exp(�1=2)

n

!�1

= 2 exp(1=2)n
n=2X
i=1

1

i
� 2 exp(1=2)n lnn = O(n lnn):

The investigation of the second phase can be carried out analogously. Only the probability

of a successful step changes, since it is necessary to guarantee that no bit of the left half

of x tries to
ip. We achieve this by replacing (1� 1=n)n=2�1 by (1� 1=n)n�1. This yields
the upper bound 2 exp(1)n lnn, so we have for n � 10

E(T) = E(T1) + E(T2) � 2(exp(1) + exp(1=2))n lnn = O(n lnn):

2

For an arbitrary linear function things are a little more complicated. On the one hand a bit

that
ips from zero to one can have such a large weight that it allows several other bits to

ip from one to zero simultaneously, as it is the case for Bin. On the other hand, di�erent

to Bin, it may well be true that leading ones are not guaranteed to remain unchanged,

as it is the case with OneMax. But the main idea from the proof of the upper bound

on the expected running time for Bin can be carried over: one can distinguish more and

less important bits according to their weights.

13

Theorem 3.4: The expected running time of the (1 + 1) EA on the class of linear func-

tions is �(n lnn).

Proof: In order to prove the statement a lower bound and an upper bound have to be

proven. The lower bound follows from Lemma 3.2, so we only have to prove an upper

bound on the expected running time of the (1 + 1) EA on an arbitrary linear function of

size O(n lnn).

Let f be an arbitrary linear function. W. l. o. g. we assume that n is even, all weights wi

are positive integers and the weights are sorted, i. e., w1 � � � � � wn.

We measure the progress the (1 + 1) EA makes in some value val : f0; 1gn ! IR, such

that val becomes maximal for the optimal all one string. We de�ne

val(x) := 2

n=2X
i=1

xi +
nX

i=n=2+1

xi:

So, we distinguish between the bits in the left and right half of the current bit string x
and consider the bits of the left half to be more important.

Like in the proof of Lemma 3.3 we consider successful steps, but we call every accepted

mutation successful, here. We describe a random walk on the line such that the variable

describing this random walk grows slower than the function val. We want to estimate

the average time until starting at x a bit string x� with val(x�) = val(x) + 1 is reached.

In order to ensure that such a bit string is reached at all, we have to ensure that val
increases at most by 1. We can apply Wald's identity if we additionally can prove that

the expected value of val increases in each step at least by a constant c > 0. It will turn

out that c = 0:08 is appropriate.

For successful steps there must be at least one bit that
ips from zero to one. We consider

the leftmost bit xi
ipping from zero to one and distinguish two cases according to the

position of this bit.

Case 1: i � n=2. The bit xi that belongs to the left half of the bit string
ips from zero

to one. Taking only this into account the value of val is increased by 2. Since we want

to apply Wald's identity and since we are interested in the �rst point of time when our

random walk with respect to val reaches the next point to the right, we like to ensure

that val increases at most by 1. Therefore, we let no other bit
ip from zero to one, and

if no bit
ips from one to zero, we choose a bit from the right half and let it
ip from

one to zero. Because we have f(x0) � f(x) in successful steps, we are overestimating the

number of new zeros.

We assume that each zero bit may
ip to one with probability 1=n. If there are j1 zeros in

the left half and j2 zeros in the right half, the number of
ipping zeros is on the average

j1=n in the left and j2=n in the right half. This decreases the value of val on average

by (2j1 + j2)=n. Only if no bit
ips, val increases by 2. In this case we decrease val by

1 by
ipping one bit in the right half from one to zero. This happens with probability

14

(1� 1=n)j1+j2. Altogether

E (val(x0)� val(x)) � 2�
2j1 + j2

n
�
�
1�

1

n

�j1+j2

:

This function takes its minimum for maximal values of j1 and j2. Since j1 � n=2� 1 and

j2 � n=2, we obtain for n � 5

E (val(x0)� val(x)) � 2�
3

2
�
�
1�

1

n

�n�1
> 0:08:

Case 2: i > n=2. In this case there is no bit in the left half that
ips from zero to one.

Since we consider an accepted mutation we have f(x0) � f(x). We assume the weights

wi to be sorted, so it follows that the number of bits of the right half that
ip from zero

to one is an upper bound on the number of bits of the left half that may
ip from one to

zero. From the right half all bits may
ip from one to zero.

If k denotes the number of zeros in x, we see that the worst case with respect to val is

given by

xn=2+1 = � � � = xn=2+k = 0;

w1 = � � � = wn=2 = � � � = wn=2+k = n; wn=2+k+1 = � � � = wn = 1:

Let j + 1 be the number of bits
ipping from zero to one. Then we have the following

two upper bounds on the number of bits that
ip from one to zero.

1. At most j + 1 bits from the left half can
ip but no bit from the right half.

2. At most j bits from the left half can
ip and all bits from the right half.

We work under the assumption that xn=2+1
ips from zero to one. Let L0 be the random

number of bits from the left half that
ip from one to zero, let R0 be the random number

of bits from the right half that
ip from one to zero. Finally, let Z be the random number

of bits among xn=2+2; : : : ; xn=2+k that
ip from zero to one. Since we assume that the

leftmost bit that
ips from zero to one belongs to the right half, we may assume that all

zeros in the current bit string are among the bits of the right half and k � n=2 holds.

Hence,

E (val(x0)� val(x)) =
n=2�1X
j=0

Prob(Z = j) � E (val(x0)� val(x) j Z = j) :

We distinguish the two cases according to L0 as described above.

In the �rst case we have

E (val(x0)� val(x) j Z = j) = j + 1� 2E (L0 j L0 � j + 1) :

Obviously,

E (L0 j L0 � j + 1) � E(L0) �
1

2

15

and

E(L0 j L0 � 0) = 0:

We know that

E(L0 j L0 � 1) = Prob(L0 = 1 j L0 � 1)

=
Prob(L0 = 1)

Prob(L0 � 1)

=

�
n=2

1

�
(1=n)(1� 1=n)n=2�1

(1� 1=n)n=2 +
�
n=2

1

�
(1=n)(1� 1=n)n=2�1

=
1

2(1� 1=n) + 1
� 0:43

if n � 3. So, we have

E (val(x0)� val(x)) =

n=2�1X
j=0

Prob(Z = j)E (val(x0)� val(x) j Z = j)

� Prob(Z = 0)(1� 2 � 0:43) +
n=2�1X
j=1

Prob(Z = j) � 0

= 0:14 � Prob(Z = 0) � 0:14 � exp(�1=2) > 0:08:

In the second case we have

E (val(x0)� val(x) j Z = j) = j + 1� 2E(L0 j L0 � j)� E(R0):

Obviously,

E(L0 j L0 � j) � E(L0) �
1

2

and

E(R0) �
1

2
:

So, we have

E (val(x0)� val(x)) =

n=2�1X
j=0

Prob(Z = j)E (val(x0)� val(x) j Z = j)

� Prob(Z = 0)(1� 0:5)

+

n=2�1X
j=1

Prob(Z = j) � (j + 1� 2E(L0 j L0 � j)� 0:5)

� 0:5 � exp(�1=2) + 0 > 0:08:

Now, by Wald's identity the average time that our random walk starting at some point

a = val(x) reaches a + 1 for the �rst time is bounded by a constant. The value val has

16

to increase at most by (3=2)n, since 0 is the minimal and (3=2)n the maximal function

value of val. The probability for a successful step can be estimated like in Lemma 3.3.

If the current value of x is d away from the maximal value (3=2)n, there are at least d=2

zeros in x. Hence, we have to consider each of the cases of k zeros, 0 � k � n, twice. So,

altogether we have the upper bound O(n lnn). 2

We see that the (1 + 1) EA optimizes linear functions quite e�ciently. One may ask

whether the performance depends on the mutation probability pm, whether the perfor-

mance can be improved substantially by using other values then 1=n for pm.

The \correct" mutation probability has already been subject to some research, see, e. g.,

B�ack (1993). The choice of pm = 1=n is the most often recommended one, but the

reasoning is basically based on experimental experience. We prove here that mutation

probabilities of c=n for positive constants c are optimal for linear functions and that much

smaller or larger probabilities increase the expected running time.

Setting pm to c=n for any positive constant c does not change the order of growth of the

expected running time. For c � 1 the proof of Theorem 3.4 remains valid without any

change. For c > 1 we can carry out an analogous analysis using dce+ 1 phases instead of

two.

For much smaller mutation probabilities we expect that the waiting time until all bits

have tried to
ip becomes too long. For much larger probabilities in each step on average

a lot of bits try to
ip, so we expect the probabilities of successful steps to become too

small. We justify this reasoning by two formal statements.

Theorem 3.5: The (1 + 1) EA with mutation probability pm = (�(n)n)�1, where �(n)!
1 for n!1, needs on average
(�(n)n lnn) steps until it reaches the optimal value of

a linear function with positive weights, if it starts at x = (0; : : : ; 0).

Proof: Like in the proof of Lemma 3.2 let T be the random variable describing the �rst

point of time where each bit has tried to
ip. If Prob(T � t) � c for some constant c

and all t � �(n)n lnn � lnn, then the theorem follows. Let t = (n�(n) � 1) lnn. Then

(1� 1=n�(n))t � e� lnn = 1=n and

Prob(T � t+ 1) = 1�

0
@1�

1�

1

n�(n)

!t
1
A

n

� 1�
�
1�

1

n

�n
� 1� exp(�1):

2

Theorem 3.6: The (1 + 1) EA with mutation probability pm = �(n)=n, where �(n) !
1 for n!1, needs on average exp(
(�(n)))n lnn =
(�(n)n lnn) steps until it reaches

for Bin the optimal value, if it starts at x = (x1; : : : ; xn) where xi = 1, if i � n=2, and
xi = 0, if i > n=2.

Proof: Because of the de�nition ofBin a step only can be successful, if none of the leading

n=2 bits tries to
ip. The probability that a step is successful is, therefore, bounded above

17

by (1� �(n)=n)
n=2

= exp (�
 (�(n))). We prove that the average number of successful

steps is
 (n(lnn)=�(n)). Hence, the average total run time is

 ((exp (
 (�(n)))n lnn) =�(n)) = exp (
 (�(n)))n lnn:

For the lower bound on the number of successful steps it is su�cient to remark that each

of the n=2 not leading bits has to
ip in at least one successful step. Similarly to the

proof of Theorem 3.5 we choose t = (n=�(n)� 1) lnn. Then (1� �(n)=n)
t � 1=n and

Prob(T � t + 1) = 1�

0
@1�

1�

�(n)

n

!t
1
A
n=2

� 1�
�
1�

1

n

�n=2
� 1� exp(�1=2):

Since we only are considering n=2 bits the outer exponent is here n=2 instead of n leading

to the constant 1� exp(�1=2) instead of 1� exp(�1). 2

4 Unimodal functions

Linear functions are our �rst example of a class of functions where the (1 + 1) EA is

expected to �nd the global optimum quite e�ciently. Of course, we would like to identify

more and larger classes of functions where some polynomial upper bound on the expected

running time can be given. Since we know from Section 2 that already functions with

degree 2 can be most di�cult for the (1 + 1) EA, we need some other criterion to recognize

a �tness function as easy.

In this section we consider unimodal functions. Since we are considering �tness functions

with Boolean inputs, it is not totally obvious how \unimodal" should be de�ned. In

fact, there are di�erent de�nitions in the literature which yield quite di�erent classes of

functions. Here, we use that de�nition which appears to be the most natural one.

De�nition 4.1: Let f : f0; 1gn ! IR be a �tness function. We call x 2 f0; 1gn a local

maximum, i�

8y 2 f0; 1gn : H(x; y) = 1) f(y) � f(x):

The function f is unimodal i� f has exactly one local maximum.

Obviously, all linear functions with all nonzero weights are unimodal. Moreover, the most

striking similarity between unimodal and linear functions is that for all x 2 f0; 1gn that

are not the global optimum there is always another point with Hamming distance one

with greater �tness. So there is always a mutation of exactly one bit that improves the

function value. This leads M�uhlenbein (1992) to the remark that all unimodal functions

can be optimized by the (1 + 1) EA in expected O(n logn) steps. We disprove this claim

in this section.

18

4.1 A quadratic lower bound for a unimodal �tness function

Already Rudolph (1997) doubts M�uhlenbein's claim and presents a �tness function and

believes that the (1 + 1) EA has expected running time �(n2) on that function. He proves

an upper bound of O(n2) steps and presents experiments that con�rm the lower bound,

but does not give a formal proof. We use his example and present the lower bound.

De�nition 4.2: The function LeadingOnes : f0; 1gn ! IR is de�ned by

LeadingOnes(x1; : : : ; xn) :=
nX

i=1

iY
j=1

xj:

The function value of LeadingOnes(x) equals the number of leading ones in x. Since

the function value can always be increased by appending a single one to the leading ones,

LeadingOnes is obviously unimodal. The (1 + 1) EA accepts a mutation i� the number

of leading ones is not decreased by this mutation. It is quite obvious that the expected

number of steps for the (1 + 1) EA on LeadingOnes is O(n2). There is always exactly
one position in the bit string that has to
ip to increase the number of leading ones,

namely the bit with value zero that follows immediately after the leading bits with value

one. Waiting for this zero to
ip while simultaneously no bit of the leading ones
ips takes

on average time �(n), so the upper bound O(n2) follows. Since after random initialization

the expected number of ones is n=2 and in successful steps the number of ones in the bit

string is on average not further increased, it may be supposed that we need about n=2
steps, so the lower bound of
(n2) would follow. We make this idea precise.

Theorem 4.3: The expected running time for the (1 + 1) EA on LeadingOnes is �(n2).

Proof: We repeat the easy proof of the upper bound. The number of leading ones is

never decreased. So we ignore steps where the number of leading ones remains unchanged

and assume that no other ones are in the bit string. This can only increase the expected

running time. We have to wait for at most n steps where the number of leading bits is

increased by at least 1, each with probability at least (1=n)(1 � 1=n)i, if i denotes the
current number of leading bits. As upper bound on the expected running time we get

n�1X
i=0

n(1� 1=n)�i < exp(1)n2 = O(n2):

Now we need a lower bound. We distinguish two di�erent types of accepted mutations.

If the number of leading ones is increased, we call such a mutation important. The other

accepted mutations are called unimportant.

Let T denote the number of steps until the (1 + 1) EA reaches the optimal all one string.

Let Ti denote the number of steps between the (i�1)-th and i-th important mutation. Let

M denote the number of important mutations until the optimum is reached. Obviously,

19

M � n holds. So we have

E(T) = E

MX
i=1

Ti

!
=

nX
j=1

E

MX
i=1

Ti jM = j

!
� Prob(M = j)

=
nX

j=1

jX
i=1

E(Ti jM = j)Prob(M = j)

for the expected number of steps. The probability for an important mutation is at most

1=n, so E(Ti jM = j) � n holds for all values of i. We conclude that

E(T) �
nX

j=1

jX
i=1

nProb(M = j) � cn2Prob(M � cn)

holds for any constant c with 0 < c < 1. If we can prove, that after random initialization

and cn important mutations the probability, that there is at least one zero in the current

bit string, is bounded below by some constant greater than 0, then we have proven that

E(T) =
(n2).

We distinguish the ones in the current bit string after i important mutations according

to their origins.

(1) The initially chosen bit string contains ones.

(2) Important mutations create new ones. First, at least one new leading one is ap-

pended. Second, more new ones that may or may not belong to the leading ones

can be created.

(3) Finally, unimportant mutations can create eventually new ones that do not belong

to the leading ones.

We now derive upper bounds on the number of ones created in the di�erent cases.

Lemma 4.4: After random initialization the number of ones is less than (1=2+c1)n with

probability at least 1� (exp(2c1)=(1 + 2c1)
1+2c1)

n=2
for any constant c1 with 0 < c1 < 1=2.

Proof: All bits are chosen independently as one or zero with probability 1=2. Therefore,
the expected number of ones is n=2. We use Cherno�'s bounds (Hagerub and R�ub (1989))

and see that the probability, that the number of ones a is less than (1=2 + c1)n, can be

bounded by

Prob(a < (1=2 + c1)n) = 1� Prob(a � (1 + 2c1)n=2) � 1�

exp(2c1)

(1 + 2c1)1+2c1

!n=2

:

2

20

Lemma 4.5: In c2n important mutations the number of ones is increased by less than

(c2 + c3)n with probability at least

1�

exp(c3=c2 � 1)

(c3=c2)c3=c2

!c2n

for any constants c2 and c3 with c3 > c2 > 0.

Proof: In each important mutation the number of leading ones is increased by at least

1. All the bits behind that new leading one may
ip. We are at most overestimating

the number of new ones if we assume every
ipping bit to become a one. We denote the

number of such
ipping bits in c2n steps by m. Since these bits are independent of each

other, the expectation of m is bounded above by c2n. We use Cherno�'s bounds to derive

a lower bound for the probability thatm is less than c3n. We use c3n = (1+(c3=c2)�1)c2n

and therefore need (c3=c2)� 1 to be a positive number. Since we assume c3 > c2 to hold,

this is always true. So we have

Prob(m < c3n) = 1� Prob(m � (1 + c3=c2 � 1)c2n) � 1�

exp(c3=c2 � 1)

(c3=c2)c3=c2

!c2n

:

2

Lemma 4.6: The probability, that k bits that are initializied randomly and only are

subject to unimportant mutations, all have the value one, is 2�k.

Proof: After random initialization k bits all have the value one with probability 2�k.

Since unimportant mutations are always accepted, this probability does not change. 2

We now combine the di�erent bounds to obtain the desired result. We choose the constants

c1, c2, and c3 in such a way that 1=2+ c1+ c2+ c3 < 1 and c2 < c3 hold. We see that after

c2n important mutations we still have at least (1=2� c1� c2� c3)n zeros with probability

0
@1�

exp(2c1)

(1 + 2c1)1+2c1

!n=2
1
A �

1�

exp(c3=c2 � 1)

(c3=c2)c3=c2

!c2n
!
;

if we neglect the ones that are created in unimportant mutations. In the worst case these

are all leading ones. Then we have (1=2 � c1 � c2 � c3)n � 1 bits, which are candidates

for new ones due to unimportant steps. So according to Lemma 4.6 with probability

1 � 2�(1=2�c1�c2�c3�1=n)n there is at least one zero in these bits. It follows that with

probability converging exponentially fast to 1, after c2n important steps there is still at

least one zero in the current bit string. This proves E(T) =
(n2), so together with the

upper bound we have E(T) = �(n2). 2

21

4.2 An exponential lower bound for a unimodal �tness function

It is obvious that the (1 + 1) EA reaches the optimum of a unimodal function with k

di�erent function values afterO(kn) steps (Rudolph (1997)). For unimodal functions there

is always at least one possible mutation that increases the function value and requires only

the mutation of exactly one bit. Since such mutations have probability (1=n)(1�1=n)n�1,

the expected time until such a mutation occurs is bounded above by exp(1)n. At most

k such mutations are su�cient, so the bound O(kn) follows. To enforce large expected

running times on unimodal functions one needs a �tness function where only a large

number of 1 bit mutations is su�cient to reach the optimum by such \small steps". The

idea is to construct functions where only a small \path" to the optimum exists: a path

is a sequence of bit strings that are all reachable via mutations of exactly one bit such

that this mutation is the only mutation of exactly one bit that is accepted. If this path

is exponentially long, one may hope that the (1 + 1) EA needs exponentially many steps

to �nd the optimum in the expected case.

Such long paths were introduced by Horn, Goldberg, and Deb (1994). They performed

several experiments and compared the (1 + 1) EA and some other hillclimbers with a

Genetic Algorithm. Though they were convinced to observe exponential running times of

the (1 + 1) EA, Rudolph (1997b) proved that the expected running time is only O(n3).
The problem is that already a mutation of two bits simultaneously enables the (1 + 1) EA

to take a shortcut and this reduces the number of required steps dramatically. To overcome

this problem Rudolph (1997) formally de�nes a more general version of long paths (already

informally described by Horn, Goldberg, and Deb (1994)), such that no mutation of at

most k bits is su�cient to take a short cut. These paths are called long k-paths. The

parameter k can be chosen, though with increasing k the length of the path decreases.

We start with de�ning long k-paths and a few simple statements about them that are

taken from Rudolph (1997).

De�nition 4.7: Let n � 1 hold. For all 1 < k that ful�ll (n� 1)=k 2 IN the long k-path
of dimension n is a sequence of bit strings from f0; 1gn. The long k-path of dimension

1 is de�ned as P k
1 := (0; 1). The long k-path of dimension n is de�ned using the long

k-path of dimension n � k as basis as follows. Let the long k-path of dimension n � k

be given by P k
n�k = (v1; : : : ; vl). Then we de�ne the sequences of bit strings S0, Bn, and

S1 from f0; 1gn, where S0 := (0kv1, 0
kv2, : : : ; 0

kvl), S1 := (1kvl, 1
kvl�1, : : : ; 1

kv1), and
Bn := (0k�11vl, 0

k�211vl; : : : ; 01
k�1vl). The points in Bn build a bridge between the points

in S0 and S1, that di�er in the k leading bits. Therefore, the points in Bn are called bridge

points. The resulting long k-path P k
n is constructed by appending S0, Bn, and S1, so P

k
n

is a sequence of
���P k

n

��� = jS0j+ jBnj+ jS1j points. We call
���P k

n

��� the length of P k
n . The i-th

point on the path P k
n is denoted as pi, pi+j is called the j-th successor of pi.

The recursive de�nition of long k-paths allows us to determine the length of the paths

easily.

Lemma 4.8: The long k-path of dimension n has length
���P k

n

��� = (k + 1)2(n�1)=k � k + 1.

All points of the path are di�erent.

22

Proof: For n = 1 the length is (k + 1)20 � k + 1 = 2. Let the statement hold for

values smaller than n. By de�nition of long k-paths we have
���P k

n

��� = 2
���P k

n�k

��� + k � 1 =

2(k + 1)2(n�k�1)=k � 2k + 2 + k � 1 = (k + 1)2(n�1)=k � k + 1. By de�nition all points on

the path are di�erent. 2

The most important property of long k-paths are the regular rules that hold for the

Hamming distances between each point and its successors.

Lemma 4.9: Let n and k be given such that the long k-path P k
n is well de�ned. For all

i with 0 < i < k the following holds. If x 2 P k
n has at least i di�erent successors on the

path then the i-th successor of x has Hamming distance i of x and all other points on the

path that are successors of x have Hamming distances di�erent from i.

Proof: The statement is obviously true for n = 1 and all values of k. Assume that it

holds for P k
n�k. We know that P k

n is constructed by appending S0, Bn, and S1, with���P k
n

��� = (k + 1)2(n�1)=k � k + 1, jS0j = jS1j = (k + 1)2(n�k�1)=k � k + 1, and jBnj = k � 1.

Let x be the p-th point of P k
n . We distinguish several cases according to the value of p.

If p < jS0j and p + i � jS0j, then the statement holds by assumption, since S0 has the

same structure as P k
n�k.

If p � jS0j and jS0j < p + i � jS0j+ jBnj, then the Hamming distance from x to the last

point in S0 is jS0j� p which is at least 0 and less than k by the assumption 0 < i < k. By
de�nition of Bn the j-th point in Bn di�ers from the last point of S0 in j bits, so there is

exactly one point in Bn with Hamming distance i. All points in S1 have greater Hamming

distance, since the �rst k bits of points in S0 and S1 are all di�erent.

If jS0j < p < jS0j + jBnj and p + i � jS0j + jBnj, the statement is obviously true. All

points in Bn just di�er on the �st k bits, the Hamming distance of any point to its j-th
successor is j so x has exactly one successor in Bn with Hamming distance i. All points
in S1 have greater Hamming distance.

If jS0j < p � jS0j+ jBnj and jS0j+ jBnj < p+ i hold, then the situation is essentially the

same as for the second case. The parts S1 and S0 have the same structure, only the k
leading bits di�er and the ordering of S1 is reversed. So the same remarks apply.

Finally, if jS0j + jBnj < p, the statement holds by assumption, since S1 has the same

structure as P k
n�k. 2

We are interested in unimodal �tness functions, so for a �tness function f : f0; 1gn ! IR

exactly 2n function values have to be de�ned. Since the long k-path of dimension n
consists of only (k + 1)2(n�1)=k � k + 1 points, we have to embed this path in a unimodal

function. The following de�nition di�ers from the one given by Rudolph (1997) in the

way that bit strings not belonging to the long k-path are treated. This little modi�cation

helps us to establish the lower bound while it does not matter for the upper bounds that

were already given by Rudolph.

23

De�nition 4.10: Let n � 1 hold, let 1 < k be given such that k ful�lls (n � 1)=k 2 IN.

The long k-path function of dimension n is called PathFunctionk : f0; 1g
n ! IN and is

de�ned by

PathFunctionk(x) =

(
n2 + l if x is the l-th point of P k

n

n2 � n
Pk

i=1 xi �
Pn

i=k+1 xi if x =2 P k
n

:

We have already mentioned that a �tness function f is unimodal i� for all points x 2
f0; 1gn we have that either x is the global maximum or there exists y 2 f0; 1gn with

H(x; y) = 1, such that f(x) < f(y) holds. For PathFunctionk this is obviously the

case. For all points on the path except the last one, which is the global optimum, this

holds, since there is always 1 successor on the path with Hamming distance exactly 1

according to Lemma 4.9. For points not on the path decreasing the number of ones by 1

always yields a bit string with increased function value. By De�nition 4.7 it is obvious,

that the all zero bit string is the �rst point on the path.

Rudolph (1997) establishes two di�erent upper bounds on the expected running time that

both yield exponential values for k =
p
n� 1, so he speculates that the expected running

time may in fact be exponential for this choice of k. We prove this here, and thereby

answer the open question, whether unimodal functions exists, on which the (1 + 1) EA

has exponential expected running time.

Lemma 4.11 (Rudolph (1997)): The expected running time of the (1 + 1) EA on

PathFunctionk is bounded above by O
�
nk+1=k

�
and O

�
n
���P k

n

����.
Proof: We distinguish two di�erent ways to reach the optimum. If we assume that the

(1 + 1) EA advances by mutations of exactly one bit only, we see that at most
���P k

n

��� +
n such mutations are necessary, so the upper bound O

�
n
���P k

n

���� follows. If we assume

that mutations of k bits
ipping simultaneously are taken to reach the optimum, i. e.,

the (1 + 1) EA takes shortcuts, then we notice that n=k such mutations are su�cient,

implying the other upper bound. 2

Theorem 4.12: The expected running time of the (1 + 1) EA on PathFunctionpn�1

is �
�
n3=22

p
n
�
.

Proof: For k =
p
n� 1 we have

���Pp
n�1

n

��� = (
p
n� 1 + 1)2

p
n�1 �

p
n� 1 + 1 according

to Lemma 4.8, so the upper bound follows directly from Lemma 4.11.

The idea for the proof of the lower bound is roughly speaking the following. We assume

that the (1 + 1) EA reaches the path somewhere in the �rst half of the bridge points. If

only mutations with at most
p
n� 1�1 bits
ipping simultaneously occur, the (1 + 1) EA

has to follow the long path, so the expected number of steps is about n
���P np

n�1

��� =2.
Let T denote the number of steps until the (1 + 1) EA reaches the optimum. Let Ti denote

the number of steps until the (1 + 1) EA reaches the optimum, if it is started in the i-th

point on the path. Let Et be the event that in t steps no mutation of at least
p
n� 1

24

simultaneously
ipping bits occurs. Since the future steps of the (1 + 1) EA depend only

on the current state and not on the \history" of the current run, Ti describes the number

of steps until the optimum is reached after the i-th point of the path is reached, too. We

use the notation \i 2 I" to describe the event that the (1 + 1) EA reaches at least one of

the points on the path with index in I. By Im we denote the set of integers from 1 to m,

i. e., Im = f1; : : : ; mg.

By De�nition 4.7 we have that
���Pp

n�1
n

��� = 2
���Pp

n�1
n�

p
n�1

��� +p
n� 1� 1 holds for the length

of P
p
n�1

n . We want to estimate the expected running time of the (1 + 1) EA if the

�rst point on the path does not belong to S1, i. e., it does belong to the �rst a :=���Pp
n�1

n�
p
n�1

���+p
n� 1� 1 points on P

p
n�1

n .

Therefore, we have

E(T) � Prob (i 2 Ia) �min fE (Ti j Et) j i 2 Iag � Prob (Et) :

We start with estimations for the two probabilities. For any k, the probability that at

least k bits mutate simultaneously is bounded above by
�
n

k

�
n�k, so this happens at least

once in t steps with probability at most t
�
n

k

�
n�k. We can use

�
n

k

�
� nk=k! and Stirling's

formula for the bound
p
2�kkk= exp(k) � k! to get t exp(k)=(

p
2�kkk) as upper bound.

So we have

Prob (Et) � 1�
t exp(

p
n� 1)q

2�
p
n� 1

p
n� 1

p
n�1

for k =
p
n� 1.

We know that P k
n is constructed from S0, S1, and Bn as described in De�nition 4.7. We

are interested in the �rst point on the path that the (1 + 1) EA reaches after random

initialization. In particular we are looking for a lower bound on the probability that this

point belongs to S0 or Bn.

If the initial bit string is on the path, then the probability that this string does not belong

to S1 is 1�
���P k

n�k

��� = ���P k
n

��� > 1=2. Now we are left with the case that the initial bit string

is o� the path. In this case a mutation is accepted i�

1. the path is reached,

2. the number of ones in the �rst k bits is decreased, or

3. the number of ones in the �rst k bits remains unchanged, and the number of ones

in the bit string is not increased.

Since the probability of reaching a point in S1 as �rst point on the path decreases with

increasing number of zeros in the �rst k bits, we are overestimating the probability of �rst

reaching S1, if we assume that no mutation steps o� the path are accepted. After random

initialization before the �rst step the probability of reaching S0 is obviously equal to the

probability of reaching S1 for symmetry reasons. It follows that the probability that the

25

�rst bit string on the path belongs to S0 or Bn is greater than 1=2. So in any case we

have Prob (i 2 Ia) > 1=2.

Now we need a lower bound for E(Ti j Et) for i 2 Ia. We call the number of points on

the path between the i-th point (our starting point) and the global optimum the distance

d and have d =
���Pp

n�1
n

���� i+ 1. We denote the number of points between the i-th point

on the path and the current point on the path after j steps by aj. Using these notions

we have

E (Ti j Et) � t � Prob (Ti � t j Et)

= t � Prob (at < d j Et)

= t � (1� Prob (at � d j Et)) :

Using Marko�'s inequality we get

E (Ti j Et) � t �

1�

E (at j Et)

d

!
:

The most important property of long
p
n� 1-paths is that a mutation of j bits simulta-

neously (with j <
p
n� 1) implies an advance of at most j points (Lemma 4.9). This

yields

E (at j Et) � t �E (a1 j Et) ;

so we have

E (Ti j Et) � t �

1�

t � E (a1 j Et)

d

!
:

We use

E (a1 j Et) �
2

n
;

which can be proven as follows.

Since we want an upper bound for the expected gain in one step under the condition that

only mutations with less than
p
n� 1 simultaneously
ipping bits occur, we have

E (a1 j Et) =

p
n�1�1X
i=1

i � Prob(Mi);

if Mi denotes the event that the only accepted mutation of exactly i simultaneously
ip-

ping bits occurs. According to Lemma 4.9 there is always exactly one accepted mutation

of exactly i bits. It follows that the probability of the \correct" i-bit mutation equals

n�i(1� 1=n)n�i. This implies

E (a1 j Et) �

p
n�1�1X
i=1

i

ni
<

1X
i=1

i

ni
=

1X
i=1

1X
j=i

n�j =
n

(n� 1)2
�

2

n
;

for n � 4. The last equality follows from an easy calculation using the fact that
Pt�1

s=0 q
s =

(1� qt)=(1� q) holds for jqj < 1 and all integers t > 1.

26

So we have

E (Ti j Et) � t �
�
1�

2t

nd

�
:

We know that d =
���Pp

n�1
n

���� i + 1 and i �
���Pp

n�1
n�

p
n�1

���+p
n� 1� 1, so we have

d �
���Pp

n�1
n�

p
n�1

���+ 2 =
�p

n� 1 + 1
�
2
p
n�1�1 �

p
n� 1 + 1:

For t = n3=22
p
n�5 we get

E (Ti j Et) =

�
n3=22

p
n
�

and together with the upper bound this �nishes the proof. 2

5 Enforcing expected running times

We have a class of �tness functions which the (1 + 1) EA optimizes e�ciently, and we know

several examples where the expected running time of the (1 + 1) EA is exponential. In

this section we de�ne n di�erent �tness functions Jump1; : : : ; Jumpn, where the expected

running time is �(nm+ n logn) for Jumpm. So we can enforce a large variety of di�erent

expected running times. This result can be interpreted as a hierarchy result for the

performance of the (1 + 1) EA. Each additional factor n for the expected time enlarges

the class of functions which can be optimized. The construction of the functions Jumpm
is done in a way that shows the understanding of the way Algorithm 1.1 works. The main

idea is to use a construction similar to the Trap-function, but to adjust the distance

between the local and the global maximum, so that the expected running time, that is

dominated by the time for the jump over that distance, can be controlled. The function

Jumpm, which is given in the following de�nition, is visualized in Figure 2 for n = 40 and

m = 6. With growing m the size of the gap widens, for m = n the function Jumpn equals

Trap. For m = 1 we get the linear function OneMax.

De�nition 5.1: Given n with n > 1 and m 2 f1; 2; : : : ; ng, let the function Jumpm :

f0; 1gn ! IR be de�ned by

Jumpm(x) :=

(
m+

Pn
i=1 xi if

Pn
i=1 xi � n�m or

Pn
i=1 xi = n

n�
Pn

i=1 xi otherwise
:

Theorem 5.2: The expected running time of the (1 + 1) EA on Jumpm is �(nm+n logn)

for m 2 f1; 2; : : : ; ng.

Proof: As we mentioned above, form = 1 the function Jump1 essentially equalsOneMax

(in fact it gives OneMax+ 1), so the expected running time �(n logn) follows from the

results of Section 3.

27

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40

number of ones

J
u
m

p

Figure 2: The function Jumpm

Now we assume that m > 1 holds. We partition the search space into three disjoint sets

A1, A2, and A3 with

A1 :=

(
x 2 f0; 1gn j n�m <

nX
i=1

xi < n

)

A2 :=

(
x 2 f0; 1gn j

nX
i=1

xi � n�m

)

A3 := f(1; : : : ; 1)g :

The de�nition of the sets is done in a way that ensures that bit strings in Ai have greater

function values as bit strings in Aj, i� i > j holds. So after reaching some bit string

in Ai the (1 + 1) EA can only reach bit strings in Aj with j � i. Since Jumpm is

a symmetric function, we can ignore steps where the number of ones in the bit string

remains unchanged.

We begin with an upper bound on the expected running time. The expected number of

steps until the (1 + 1) EA reaches a bit string with exactly m zeros or the global optimum

is O(n logn). If the current bit string belongs to A1, then steps towards bit strings with

more zeros are accepted. The situation is similar to the linear function f(x) = �
Pn

i=1 xi,
except for steps to the global optimum, which are, of course, accepted. We conclude

that after O(n logn) steps either the global maximum or a bit string from A2 is reached.

So we now assume that the current bit string belongs to A2. The situation is similar

28

to OneMax, as long as the number of zeros in the current bit string is at least m.

We conclude that again after O(n logn) steps either the global maximum or a bit string

with exactly m zeros is reached. Once the (1 + 1) EA reaches a bit string with exactly m

zeros, only mutations to other bit strings with exactlym zeros and mutations to the global

maximum are accepted. The probability for reaching the global maximum by an m-bit

mutation equals n�m(1� 1=n)n�m, so the expected number of steps until this happens is

bounded below by nm and bounded above by exp(1)nm. We conclude that we have an

upper bound of O(nm) until the optimum is reached.

Now we derive the lower bound. Let T denote the number of steps until the optimum is

reached. If q is the probability that some bit string with exactly m zeros is reached, then

E(T) � q � nm

holds.

Let Xt denote the event that the current bit string x of the (1 + 1) EA after t steps

contains exactly m zeros. Let Yt denote the event that the (1 + 1) EA has reached the

optimal all one string after at most t steps. Let Zt denote the event that after t steps the
current bit string of the (1 + 1) EA contains neither exactly m zeros nor no zeros at all.

We then have

Prob
�
Xt

�
= Prob (Yt) + Prob (Zt) :

We begin with an upper bound on Prob(Yt) =: yt. Obviously, after random initialization

we have y0 = 2�n. If wt denotes the probability for a mutation from a non optimal bit

string to the optimum in one step under the probability distribution after t� 1 steps, we

have yt = yt�1 + (1� yt�1)wt. Given an upper bound w on wt this implies

yt � 1� (1� w)t (1� y0) = 1� (1� w)t
�
1� 2�n

�
< 1� (1� w)t:

We have wt =
Pn

i=1 qi;tn
�i(1 � 1=n)n�i, if qi;t denotes the probability that the current

bit string after t � 1 steps contains exactly i zeros. After random initialization we have

qi;1 = 2�n
�
n

i

�
. In the following steps the probabilities qi;t change. We distinguish the bit

strings according to our partition of the search space.

For bit strings that belong to A1, accepted mutations can only lead to bit strings with

at least the same Hamming distance to the optimum or the optimum itself. So the

probability for a direct jump to the optimal all one string can only decrease. We see

that we are overestimating the probability wt, if we assume that the probability for direct

jumps does not change.

For bit strings that belong to A2, things are just the other way round. Accepted mutations

can only lead to bit strings with at most the same Hamming distance to the optimum.

So the probability for a direct jump to the optimal all one string can only increase. We

see that we are overestimating the probability wt, if we assume that the probability for a

direct jump to the optimum is given by n�m(1�1=n)n�m for all bit strings. Furthermore,

one is a trivial upper bound on the probability to be in one of the bit strings from A2,

i. e., on
Pn

i=m qi;t, for all t.

29

So we altogether have

wt �
m�1X
i=1

2�n

n

i

!
n�i(1� 1=n)n�i + n�m(1� 1=n)n�m

<
nX
i=0

2�n

n

i

!
n�i(1� 1=n)n�i + n�m(1� 1=n)n�m

= 2�n + n�m(1� 1=n)n�m;

and we can use w := 2�n+n�m(1� 1=n)n�m as an upper bound for wt. Using this upper

bound we get yt � 1� (1� 2�n� n�m(1� 1=n)n�m)t as upper bound for Prob(Yt). Since

the expression n�m(1 � 1=n)n�m decreases strongly monotone with m, we get an upper

bound on w for m = 2. We set t to n log2 n and get

Prob
�
Yn log2 n

�
= yn log2 n � 1�

�
1� 2�n � n�2(1� 1=n)n�2

�n log2 n

� 1�

1� 2�n �

�
n

n� 1

�2 1

exp(1)n2

!n log2 n

� 1�

1�

1

exp(1)(n� 1)2

!(exp(1)(n�1)2�1)� n log2 n

exp(1)(n�1)2�1

� 1� exp
�
�n log2 n=

�
exp(1)(n� 1)2 � 1

��
:

The last bound converges to 0.

Now we need an upper bound on Prob(Zt). As we saw earlier, the expected number of

steps before a bit string with exactly m zeros is reached, is bounded above by cn logn for

some constant c > 0. So using Marko�'s inequality it follows that

Prob
�
Zn log2 n

�
�

cn logn

n log2 n
=

c

logn
:

By combining the bounds we get

E(T) � Prob (Xn2) � n
m

�

exp

�
�n log2 n=

�
exp(1)(n� 1)2 � 1

��
�

c

logn

!
� nm =
 (nm) ;

since the lower bound for the probability converges to 1 with increasing values of n.

Together with the upper bound this yields �(nm) for the expected running time of the

(1 + 1) EA on Jumpm with m > 1. 2

6 A variant of the (1 + 1) EA

When we take a closer look at the (1 + 1) EA, i.e. Algorithm 1.1, we see that the old bit

string x is replaced by a new bit string x0, even if f(x) = f(x0). This strategy of accepting

30

equal-valued bit strings is often used in many Evolutionary Algorithms, as it is assumed to

help the algorithm to escape from plateaus, i.e. sets of neighboring bit strings with equal

�tness value: if the actual bit string is \surrounded" by bit strings of the same �tness

value and Algorithm 1.1 would only accept bit strings with higher �tness, it would need

a long time to make an improvement. By accepting bit strings with the same �tness,

the (1 + 1) EA can make random steps on this plateau, which can bring it nearer to bit

strings with higher �tness, therefore making it more likely to escape from this plateau.

Now we will show that this common-sense argumentation for the strategy of accepting

equal-valued bit strings can be rigorously proven for the Peak-function to lower the

growth of the expected running time of the (1 + 1) EA substantially. The Peak-function

is de�ned by

Peak(x1; : : : ; xn) :=
nY
i=1

xi:

The Peak-function should be well suited for our purpose, as it has only one peak, while

all other bit strings form one big plateau, therefore giving no \hints" about the peak.

Theorem 6.1: The (1 + 1) EA has an expected running time of O(exp(2n + ln(n)=2))
for Peak. If the (1 + 1) EA only accepts bit strings with higher �tness, the expected

running time for Peak is �(exp(n ln(n)� n ln(2))).

Proof: Let us �rst take a look at the expected running time of the original form of the

(1 + 1) EA. In order to upper bound this for Peak, we lower bound the probability of

reaching the global optimum (1; : : : ; 1) after n steps independent of the initial bit string.

A su�cient condition to mutate from a bit string with k < n ones to (1; : : : ; 1) is that in
every step exactly one of the zeros mutates, but no other bit. This event has probability

n�1Y
i=k

n� i

1

!
�
1

n
�
�
1�

1

n

�n�1
�

n!

nn
�
�
1�

1

n

�n(n�1)
�

n

exp(1)

!n

�

p
2�n

exp(n) � nn
=

p
2�n

exp(2n)
:

So we have to wait at most exp(2n)=
p
2�n blocks of n steps each in the expected case

until the (1 + 1) EA reaches the global optimum, independent of the initial bit string.

Hence, the expected running time of the (1 + 1) EA for Peak is at mostr
n

2�
� exp(2n) = O(exp(2n+ ln(n)=2)):

If the (1 + 1) EA is changed in such a way that it only accepts bit strings with higher

�tness the expected running time can be computed exactly. Because now the expected

running time of the (1 + 1) EA is nk � (n=(n� 1))n�k, if the initial bit string has k zeros.

As the initial bit string is chosen randomly, the expected running time is now

nX
k=1

n

k

!
� 2�n � nk �

�
n

n� 1

�n�k
= 2�n �

nX

k=0

n

k

!
� nk �

�
n

n� 1

�n�k!
�
�

n

n� 1

�n!

= 2�n �
��

n +
n

n� 1

�n

�
�

n

n� 1

�n�
= �

��
n

2

�n�
= �(exp(n ln(n)� n ln(2))):

2

31

So we have proven that the strategy of accepting equal-valued bit strings can improve the

order of growth of the expected running time. But do functions exist, where the expected

running time of the (1 + 1) EA increases, when equal-valued bit strings are accepted? It

is known that there are functions where for explicit values of n the expected running time

is worse when equal-valued bit strings are accepted, but it is an open question, if there

are functions so that the order of growth of the expected running time increases, when

accepting equal-valued bit strings, too.

7 Conclusion

We have presented several methods to analyze the (1 + 1) EA. These methods yield

results for the classes of linear functions, polynomials of degree 2, and unimodal functions,

and they can be used to obtain a hierarchy result. The next step is to analyze Evolutionary

Algorithms which allow populations of subjects and crossover.

References

Ackley, D.H. (1987). A Connectionist Machine for Genetic Hillclimbers. Kluwer Aca-

demic Publishers, Boston.

B�ack, Th. (1993). Optimal mutation rates in genetic search. In S. Forrest (Ed.), Pro-

ceedings of the Fifth International Conference on Genetic Algorithms (ICGA). Morgan

Kaufman, San Mateo CA, 2{8.

Droste, S., Jansen, Th., and Wegener, I. (1998). A rigorous complexity analysis of the

(1 + 1) Evolutionary Algorithm for linear functions with Boolean inputs. To appear

in: Proceedings of the IEEE International Conference on Evolutionary Computation

(ICEC'98).

Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Volume

II. Wiley, New York.

Fogel, D.B. (1995). Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. IEEE Press, Piscataway, NJ.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley, Reading, Mass.

Hagerup, T. and R�ub, C.R. (1989). A guided tour of Cherno� bounds. Information

Processing Letters (33), 305{308.

Holland, J.H. (1975). Adaption in Natural and Arti�cial Systems. University of Michigan,

Michigan.

Horn, J., Goldberg, D.E., and Deb, K. (1994). Long path problems. In Y. Davidor,

H.-P. Schwefel, and R. M�anner (Eds.): Parallel Problem Solving From Nature (PPSN

III), 149{158. Springer, Berlin. LNCS 866.

32

Juels, A. and Wattenberg, M. (1994). Stochastic hillclimbing as a baseline method for

evaluating Genetic Algorithms. Technical Report, University of California, Computer

Science Department, CSD-04-834.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Optimization by Simulated

Annealing. Science 220, 671{680.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, Mass.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge University

Press, Cambridge.

M�uhlenbein, H. (1992). How Genetic Algorithms really work. Mutation and hill-climbing.

In R. M�anner and R. Manderick (Eds.), Parallel Problem Solving from Nature (PPSN

II), 15{25. North-Holland, Amsterdam.

Rechenberg, I. (1994). Evolutionsstrategie '94. Frommann-Holzboog, Stuttgart.

Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Ph.D. Thesis.

Verlag Dr. Kova�c, Hamburg.

Rudolph, G. (1997b). How mutation and selection solve long-path problems in polynomial

expected time. Evolutionary Computation 4(2), 195{205.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley, New York.

33

