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Abstract

The application of evolutionary algorithms (EAs) requires as a basic design
decision the choice of a suitable representation of the variable space and appro-
priate genetic operators. In practice mainly problemspecific representations
with specific genetic operators and miscellaneous extensions can be observed.
In this connection it attracts attention that hardly any formal requirements
on the genetic operators are stated.

In this article we first formalize the representation problem and then pro-
pose a package of requirements to guide the design of genetic operators. By
the definition of distance measures on the geno- and phenotype space it is pos-
sible to integrate problem-specific knowledge into the genetic operators. As
an example we show how this package of requirements can be used to design
a genetic programming (GP) system for finding Boolean functions.

1 Introduction

The application of evolutionary algorithms (EAs) requires as a basic design deci-
sion the choice of a suitable representation of the variable space and appropriate
genetic operators. The choice of a suitable representation for a given problem and
of the appropriate genetic operators requires a basic understanding of the mecha-
nism that makes EAs work. Unfortunately up to now there are only hypotheses
on the functioning of EAs. Historically standard representations like binary strings
or real-valued vectors with their corresponding genetic operators emerged, which
stand in a strong relation to the relevant hypotheses on the working mechanisms of
the corresponding EAs.

For real-world optimizing tasks, a trivial translation into standard representa-
tions is not always given. One possibility is to fall back on a standard represen-
tation by using a suitable mapping between geno- and phenotype space, though
the choice of a suitable mapping is not without problems. For instance the coding
functions are often non-linear and sometimes not even continuous. Therefore in
practice another proceeding established. The literature gives multiple examples of
problem-specific representations with special genetic operators, repair mechanisms,
and various extensions. The algorithms presented have often very little in common
with the canonical forms of EAs, e.g. genetic algorithms (GAs) (see [Hol75]) or
evolution strategies (ESs) (see [Rec94, Sch95]). In particular it attracts attention
that hardly any formal requirements on the genetic operators are stated.
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In this article a set of requirements will be presented towards which the design of
representation and operators can be orientated. Through the definition of distance
measures on the geno- and phenotype space problem-specific knowledge can be
integrated into the genetic operators. The article 1s two-fold. In the first part
the representation problem will be formalized and the set of requirements will be
motivated and discussed.

In the second part we show how the requirements can be used to design a genetic
programming (GP) system for finding Boolean functions. The designed GP system
shows in comparison to other GP systems a remarkable increase in efficiency. For
instance it was possible to solve the 12-parity problem with GP for the first time.

2 The Representation Problem

In order to clarify some important notations, we take at first a brief look at the
biological model. Afterwards the representation problem of EAs will be formalized.

2.1 The Biological Model

The building plan of living beings is linearly encoded in the deoxyribonucleic acid
(DNA). The alphabet of the genetic information in which the plan is written down
consists of four components (called nucleotide bases). The entirety of genetic make-
up is called genotype. The creation of an organism (phenotype) from its genetic
building plan (genotype) is a very complex process. A description of this process
is beyond the scope of this article, so we only give a very short overview (see also
[Bac96]).

The carrier of the phenotype are the proteins. Proteins are long chains of amino
acids. The finite alphabet of amino acids consists of twenty (natural) acids. Certain
chemical interactions between the amino acids cause a three-dimensional folding of
the chain. The linear sequence of the amino acid chain is encoded in the following
way. Three subsequent nucleotide bases (called codons) in the DNA strand encode a
certain amino acid at a time. Since there are 43 = 64 different symbols to encode the
20 natural amino acids, the genetic code is redundant. The biosynthesis of proteins
starts with the transcription of the DNA information into a RNA form (messenger
ribonucleic acid, m-RNA). The m-RNA transfers the genetic information to the
ribosomes, where it is used to synthesize the corresponding protein. The ribosome
which consists of ribonucleic acid and proteins performs the mapping from triplets
of nucleotide bases to amino acids (translation). The sequence of codons (about
100 to 1000) that encodes a protein is called gene.

The impact of genes on phenotypical features of an organism can not be de-
scribed by a simple one-to-one correspondence between genes and features. Several
genes can have an influence on one phenotypical characteristic (polygeny). On the
other hand it i1s also possible that one gene has an influence on several phenotypical
features (pleiotropy). Moreover there can exist sequences of codons (called introns)
which do not have any genetic information for the phenotype at all. It is important
to state that information is only passed from genotype to phenotype:

DNA — RNS — Protein.

During the reproduction process the genotype is influenced by mutation and
recombination. Fach single individual with its own phenotypical characteristics is
in an environment with limited resources subject to selection. The better the indi-
vidual is adapted to the environment the greater is the chance, that the individual
lives for a longer while and will be able to generate offsprings and transmit parts
of his genotype to his descendants. The indeterministic nature of reproduction



leads to a constant generation of new genetic material and so to always varying
offsprings. This very short summary of the biological genotype and its translation
into phenotype shows already that it is too complicated to copy the biological model
exactly.

2.2 Representation and genetic operators in EAs

Within EAs one distinguishes between the genotype space, here the representation
of the search space, and the phenotype space, the original variable space (see Figure

).
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Figure 1: The connection between genotype G and phenotype P. See text for more
information.

The connection between the genotype space G and the phenotype space P be-
comes clearer, when the course of an EA is formalized in a suitable way (the notation
follows [Bac96]).

In the context of EAs it is sufficient to store an individual in form of its genotype,
as the geno-phenotype mapping h : G* — P* is deterministic and environmental
influences are not taken into consideration (yet). That is why we can denote a
population at generation ¢ by Pop(t) € G#*. Here pu denotes the number of parents
and A the number of offsprings in a generation. The mapping h : G* — P* can
be composed simply out of the reduced mapping ' : G — P, which represents the
geno-phenotype mapping for single individuals:

h(g) = (h'(g1), ..., K (92), 9= 1(91,-...9x) €G". (1)

So the mapping h' : G — P stands for the process of protein biosynthesis
(translation) and the development of the phenotype (ontogenesis). Mutation and
recombination are working on the genotype space G only. The recombination op-
erator 7 : G* x 2, — G* generates the genetic building plan for A offsprings out of



the parent population by mixing the parental genetic information. The considera-
tion of the probabilistic influence is done by the probability space (€, P.). After
recombination the mutation of the A offsprings by the operator m : G* x Q,, — G*
follows. Here (Qy,, Pr) is the underlying probability space.

The selection creates the next population Pop(t+ 1) € G* from the offsprings of
generation Pop(t). The assessment of an individuum is based directly or indirectly
on the objective function f : P — W (e.g. W =IR). The objective function assesses
only the phenotypic expression of the genotype. The selection operator

s:GM x PP xQ, = G (2)

makes this connection clear (with probability space (€25, Ps)). So an evolutionary
algorithm can be described by the iterated use of the genetic operators and the
selection operator. With the auxiliary function

R* o G =G x P, (3)
h*(g) = (g,h(g)) forge g (4)

the equation
Pop(t 4+ 1) = s(h* (m(r(Pop(t),wr), wm)), ws), (5)

1s valid with
Wy €EQp, Wiy € Qy, and w, € Q. (6)

Canonical forms of EAs use a binary representation (GAs) or real-valued vectors
(ESs) with corresponding mutation and recombination operators. As an example
let us take a look at continuous parameter optimization problems. The function
/ :IR"™ = IR has to be minimized. For a canonical GA we have the setting:

G=B, P=R", W=7T. (7)

Here T : B' — [/, [ui, v;] is a decoding function to decode a binary string into
the corresponding rational value. For this the use of a simple base two representation
or a Gray code interpretation is widespread.

In comparison for ESs the setting

G=R", P=R", I=1I (8)

is valid. Here [ is the identity. So genotype space and phenotype space are identi-
cal. In [Rec94] further remarks on the differentiation between genotype space and
phenotype space can be found.

From (5) the strong connections and dependencies between genotype space G,
phenotype space P, mapping h, recombination r, and mutation m can be seen.
How are G, r, m, and h to be chosen, if a certain variable space P and an objective
function f:P — W are given?

One possibility is to choose a standard genotype space (G = B’ for GAs or
G = IR" for ESs) and the corresponding genetic operators of the canonical EAs.
The task is then to design a suitable mapping A’ : G — P. Since in the past
the basic research concentrated upon the standard representations, it is possible in
this case to use existing theoretical results (see [Rud97]), e.g. about convergence
properties, and recommendations, e.g. for a suitable setting of the parameters of an
EA. But the choice of a suitable mapping &’ : G — P is not without problems. An
example for this is the continuous parameter optimization with GAs (see [Bac96]).
The used standard GA with coding function (A’ = T) shows in comparison with
an ES, which can be used directly for continuous parameter optimization (h' = I),
clear problems in the convergence speed and reliability (see [BS93, Bac96]).



One possible explanation is, that the coding function reduces the causality be-
tween genotype and object function value. One has to take into account that the
coding function (the mapping) is often nonlinear and sometimes even not continu-
ous. We will deal with the term causality in section 3.2 in more detail. In [SKvS97]
an approach is presented to formalize the term causality regarding the mapping.

For many real-world problems a canonical mapping in standard representation
is not given (e.g. mixed-integer optimization [BS95, SS96], structure optimization
[GHM96]). Take as an example the synthesis of chemical plants. How should the
different objects like pumps, heat-exchangers, process units, and the connections
between them be represented in this case? A further problem can be the loss
of information about the context of “the genotypical atoms” (genes) implied by
the coding. GroB et al. [GHM™T96] are comparing e.g. a standard representation
and a graph representation for heat exchanger networks. The operators of the
graph representation are able to use information about the connections between the
streams and the heat exchangers. It is difficult to extract this kind of information
out of a standard representation.

Nevertheless the use of standard representations was recommended by basic re-
search for a long time. In particular in the area of GAs it was argued, that the
binary representation is superior to other representations because of its similarity
to the biological model [Hol75]. But this statement is seen more and more critical.
This problem will be discussed in section 3. In practice another proceeding can
be observed. The literature gives numerous examples of problemspecific represen-
tations with specific operators and miscellaneous extensions. These evolutionary
algorithms often have very little in common with the canonical forms of EAs.

The choice of G and the design of 7, m, and h’ follow a more pragmatic point of
view (see e.g. [Mic96, Dav90]). The working mechanisms are not questioned enough
and useful requirements on the operators are hardly stated (an exception is the
approach of Radcliffe [Rad94, RS95]). Often it seems that it depends only on how
the operators roughly behave (recombination: there is an exchange of information;
mutation: there are probabilistic modifications). In practice the lack of theoretical
results leads to questionable ad hoc solutions that are not thought through to the
end. So there are no results about convergence and efficiency available for this kind

of EAs.

3 Building Block vs Gradient Diffusion

In order to choose a suitable representation with suitable genetic operators, a ba-
sic understanding of the mechanisms of EAs is essential. What are the principles
of EAs, how and why are they finding optima? Unfortunately there are only hy-
potheses on the working mechanisms of EAs available until now. The two best
known hypotheses are the building block hypothesis and the hypothesis of gradient
diffusion. In the following section we will judge these two hypotheses.

3.1 GAs and the Schema Theorem

The so called schema theorem [Hol75, Gol89] forms the basis of a widespread in-
terpretation of the functioning of GAs. A schema is a subset of strings which are
equal at certain string positions. It can be defined as a string over the alphabet
{0,1,*}. The * serves as a wild card and matches both 0 and 1. So every position
in a string that does not equal # is a fixed position. The number of fixed positions is
the order of the schema. The defining length of a schema 1s given by the maximum
distance of fixed positions. For a GA with proportional selection, higher reproduc-
tion rates for better individuals, one point crossover with fixed crossover probability,



and small, fixed mutation rates the schema theorem shows the exponential increase
of schemata with above average fitness within the population.

On the assumption that the population contains the globally optimal solution
at some time, the solution will only then persist definitely in the population, when
neither mutation nor recombination is used. The schema theorem only considers
the disruptive effect of mutation. The probability that a schema will be destroyed
by mutation is exponentially decreasing with the order of the schema. Whether
recombination 1s destructive or not depends on the position of the crossover point
and on the parents. The larger the defining length of a schema, the higher is the
probability that the schema will be destroyed by recombination.

From this point of view schemata with a small defining length, small order and
above average fitness are of particular interest. The schemata of this kind are often
denoted as building blocks (an exact and homogeneous definition of building blocks
is still missing). From the representation of the schema theorem the statement is
often derived, that building blocks will have an exponential increase in the following
generations. In this form the schema theorem plays a decisive role in determining
the interpretation on the working method of GAs. Short schemata with small
order and above average fitness will be put together by recombination to strings
with potentially higher fitness. This interpretation is often denoted as building
block hypothesis. Simply speaking the recombination operator assembles the “good
parts” of the genotype of the involved individuals to a new individual, whose fitness
goes beyond the fitness of its parents in the ideal case. The schema theorem is valid
for other than binary alphabets, too. The strong preference of binary alphabets
arises from the observation, that a binary alphabet offers the maximum number
of schemata under all discrete alphabets. It is often referred to the similarities
between the binary representation and the biological model, too. The manipulation
of bit strings in GAs seems not very unsimilar to the recombination and mutation
of chromosoms (in contrast to discrete recombination and mutation of real-valued
vectors in ESs).

But the schema theorem and its conclusions are often criticized. The discussion
on the schema theorem should not be repeated at this place. Instead we give
a listing of the most frequently used subjects of criticism and the corresponding
bibliographical references:

e The schema theorem says nothing about the convergence and so it seems not
to be appropriate to explain the functioning of GAs as function optimizers

[Bey95, Bey97, Rud97].

e Mainly the harmful effects of mutation and recombination are considered

[Sch95].
e In practice only populations of finite size are available [Bac96].
e Proportional selection is not of interest for function optimization [Rad97].

e The building block hypothesis seems to assume the separability of the objec-
tive function [Rad97].

e The argument of implicit parallelism and the preference of binary alphabets

is not valid [Ant89, Bey97, FG97, WMO7].

3.2 EAs=gradient strategies?

In biology mutations are appearing very rarely nowadays. The changes of the
genetic material are caused by several factors. The simplest form of mutation is a
replication error switching a specific base pair in the original DNA strand to the



other possible base pair in the copy. For the human genom Gottschalk gives a
probability of 6 - 107 up to 8 - 1075 for the occurrence of a spontaneous mutation
of a specific gene [Got89)].

Moreover the genetic code seems to be build up in a way that mutations can
only cause very small changes of the genotype. Because of their chemical bonding
properties the amino acids can be divided into different groups. Is an amino acid
replaced by a amino acid out of the same group, the change in the folding of the
accessory proteins will be smaller than by amino acids with strongly varying bonding
properties. The genetic code is build up in a way that a change of a nucleotide base
within a code word will more frequently lead to a amino acid out of the same group
such as the original code word [Rec73].

In Section 2.1 we have already pointed out the redundancy of the genetic code.
Is a code word changed by mutation the new code word does not necessarily code
another amino acid. In that case mutation has no direct effect on the phenotype.

This indicates that evolution gropes its way with mainly small steps in a smooth
fitness landscape. Only small changes in the genotype space happen, which lead due
to a suitable encoding and a special translation process to only small changes in the
phenotype space. Large movementsin the phenotype space caused by mutations are
possible but happen very rarely. The transition from an individual to a descendant
with a very similar phenotypical appearance will generally result in a small change
in the fitness.

Rechenberg [Rec94] pointed out that one can see here the principle of strong
causality (similar causes have similar effects). He sees in the existence of the strong
causality (between genotype space and fitness) the fundamental basis for the func-
tioning of evolution':

“Strong causality is the guiding principle for all human action. Strong
causality is the basis of evolution also.”

“Without strong causality the optimizer gets lost in the immensity of
the high-dimensional space”

The term “smooth fitness landscape” must also be seen in the context of strong
causality. The high-dimensional fitness landscape has to be made in such a way
that small changes in position result only in small changes of the height.

To Rechenberg evolution strategies (ESs) with their small (groping) steps in a
world (fitness landscape) of strong causality are doing nothing else than exploring
the gradient. The population is then simply running down the gradient found. The
strength of ESs is established by the fact that the gradient will not be followed
exactly, rather a gradient diffusion is taking place (caused by setting the new search
points without any direction). Because of that the danger of convergence to the
next local optima is reduced. Accordingly GAs act in a very fuzzy way by following
the gradient in the IR" (see Section 4).

But also this approach to explain the functioning of EAs as a gradient diffusion
in a world of strong causality is not without questions. On the one hand ESs have
shown their ability to work with good performance on even very noisy object func-
tions [Bac96, BH94]. And GAs are still working without considering the guiding
principle of strong causality directly (see Section 4 and [SKvS97]). On the other
hand the connection between genotype space and phenotype space is not always as
obvious as indicated in section 3.2. In biology there is not always a strong causality
between genotype and phenotype with respect to fitness. From comparative molec-
ular genetics there are some indications that there need not be a strong connection
between genetic and morphological evolution. The genotype can be object of strong

I Translated from the german original by the authors.



changes without observing consequences on the phenotype. But also the other case,
a strong change of the phenotype caused by a small genetic change can be observed.
Not least in the last 30 years the research to nonlinear dynamics has shown that
the world view based on strong causality only is incomplete.

4 Recombination and Mutation in EAs

We have already seen that the biological evolution cannot be transferred and imi-
tated directly because of its complexity. Moreover the biological information pro-
cessing has not been examined to such an extend so far to derive knowledge directly
from biology to guide the design of the genetic operators and the geno-phenotype
mapping. Therefore, EAs are a strong abstraction of a few mechanisms of the bio-
logical evolution considered to be pivotal. But there are varying interpretations of
these mechanisms. There are only hypotheses of the working mechanisms of EAs.

In the following we will first take a closer look at recombination/crossover and
mutation in GAs and ESs. Here we do not look at the implementation of the opera-
tors (we assume that this is known) as described many times [BFM97, Bac96, Fog95,
Sch95, Gol89], but we have a more general discussion on the concepts and the (pos-
sible/intended) mechanisms of the operators. Afterwards we propose requirements
towards which the design of the genetic operators can be orientated.

4.1 Recombination

In EAs recombination is used to generate a new individual (descendant) out of two
or more individuals (parents). The genotype of the descendant is put together out
of the parental genotypes according to specific rules.

GAs often use a bit string representation as genotype. The crossover operator
(e.g. one-point crossover, multi-point crossover) generates the offspring by mixing
parts of the parental genotypes. This procedure does not seem to be unsimilar to
the recombination in biology. The idea that useful segments (parts of the genotype)
of different parents will be combined to an offspring with better genetic information
(bit combination) by means of crossover suggests itself. We will not go into the
open discussions round the building block hypothesis (see Section 3.1). But an
example from [Sch95] (see p. 155fF) should be helpful to illustrate the differences to
recombination used in ESs. The crossover in GAs can lead to an erratic behavior
in the phenotype space. The recombined offspring of two parents that are closely
related in the phenotype space may largely deviate from both parental positions
there. Table 1 shows a situation with two parents producing two offsprings by
means of two point crossover. The bit string has length eight and the two phenotypic
variables in the range [0, 15]? are encoded in the standard Boolean form. In real life
such extreme deviations of an offspring from its parents are very rare.

genotype phenotype
parent 1 0111 1100 | 7 12
parent 2 1000 1011 | 8 11
offspring 1 | 0000 1000 | 0 8
offspring 2 | 1111 1111 | 15 15

Table 1: The effect of two point crossover within a GA on the phenotype.

Within ESs the effect of recombination is limited. For the two-dimensional case
Figure 2 ([Bac96], p. 75) shows schematically the possible results of different re-
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Figure 2: 2-dimensional schema of different recombination mechanisms.

combination mechanisms within ESs. Here P; and P indicate the position of the
two parental object variables. Since the mapping h : G — P is the identity, this
example is valid for both the phenotype space P and the genotype space G. Note
that no offspring generated from P, and P> by means of recombination can leave the
n-dimensional hyperbody formed by the parent population. The offsprings must al-
ways have a certain phenotypic similarity with their parents. Discrete recombination
can only reach the corners (indicated (1) in the figure) of the rectangle. Intermedi-
ate recombination generates an offspring at the center (2) of the rectangles’” diagonal
lines. Generalized intermediate recombination can reach points located anywhere
on the diagonal line (3). Finally panmictic generalized intermediate recombination
allows offsprings located at an arbitrary point somewhere within the rectangle (4)
(here the parents are still restricted to P; and Ps).

The working mechanism of crossover within GAs can be induced by the building
block hypothesis. But what may be the benefit, when the offspring has a pheno-
typic similarity with its parents? From theoretical research concerning (u, A)- and
(1/ 11, A)-ES Beyer [Bey94] tries to derive basic principles of ESs, especially of mu-
tation and recombination.

The examination of the normalized progress rate ¢* := % for the sphere model
shows that the progress (positive or negative) is composed out of a progress gain
and a progress loss (EBvolutionary Progress Principle (FEPP)). The progress rate
¢ = E{AR} is the expected distance-to-optimum change AR observed from gen-
eration g to generation g 4+ 1. So mutation has a useful part and a harmful part.
Results from the (u/pr, A)-theory show, that intermediate recombination reduces
the harmful part (progress loss) by a factor of % As the basic principle of in-
termediate recombination the so-called Genetic Repair (GR) [Bey94] is identified.
For dominant recombination (global discrete recombination) the principle reads:
“Mutation Induced Species by Recombination (MISR)”.

The application of dominant recombination and of mutation to generate an
offspring population can be replaced by a special surrogate mutation of the center
of mass (“wild-type”) of the parent population. Besides Beyer concludes an implicit
GR for (u/pip, A)-strategies (see [Bey94]). There are clues that the EPP, MISR and
GR principles could be transferred to EAs.



4.2 Mutation

Originally mutation was only of small importance within GAs. Mainly mutation
served to reintroduce correct bits which were lost by crossover into finite popula-
tions. But recent studies have shown, that the importance of mutation should not
be underrated. It is often helpful to begin with a large mutation rate which is de-
creasing over the course of evolution. The effects of mutation on the phenotype are
not of special interest in the field of GAs. We have already indicated in Section 2.2
that it 1s not advisable to ignore the connections between phenotype and genotype.
Different mappings can have a varying influence on the performance of a GA. For
instance the Gray code which has the property that neighboring values differ in one
bit position only has some advantages over standard base two coding [CS88, Biac96].
The normal binary code probably suffers from Hamming cliffs. Depending on its
position a single bit flip (smallest possible mutation concerning the genotype) can
cause a small but also a very large change on the level of phenotype? [Bac96, Sch95].
But really problematic is the situation when a small change of the phenotype can
only be achieved by a great change of the genotype, so that an EA has to wait for
a long time if it prefers small changes.

Within ESs mutation is a very important operator. The mutation operator must
obey some rules:

e The mutation has no bias, i.e. without selective pressure resp. under a con-
stant objective function mutation makes a pure random walk.

e Smaller mutations occur more often than large ones.

Since within ESs for real-valued optimization problems the genotype space co-
incides with the phenotype space the identity (h = I) can be used as a mapping.
Analogously GAs have the advantage that no mapping is needed when trying to
solve problems which have a natural binary encoding like combinatorial problems.
So in both cases the extent of a mutation is related to both the genotype space and
the phenotype space. Since in both spaces the same distance measure (metric) is
used, it 1s additionally valid:

e Small changes of the genotype lead to only small changes in the phenotype
(regarding the FEuclidean distance). Being more precisely the changes are
identical in both spaces.

5 Requirements on Recombination and Mutation
Operators: A Proposal

We assume that an optimization task is given, so that the function
f:P >R (9)

has to be optimized. The space P is already built in a way, that the objective
function f can be evaluated efficiently. In general there are two approaches to
tackle this task with EAs.

1. A standard EA is used (e.g. a GA). As genotype space e.g. G = B’ will be
chosen and a mapping h : G — P will be defined. After that the canonical
operators can be applied.

2Even for a Gray code a single bit flip may cause large changes to the corresponding integer
values [Bac96].
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2. The representation is designed as close as possible to the characteristics of the
phenotype space. The genotype space then needs special genetic operators
which are adjusted to the genotype space.

The first approach suffers from using a mapping which usually induces additional
nonlinearities together with the genetic operators, so that the change of the genotype
allows no statement about the change in fitness. With the second approach one
tries to avoid the problem by choosing a representation which is very similar to the
phenotype space and designing operators which allow some insight into the working
mechanisms and using pre-knowledge. Since no formal requirements on the genetic
operators let alone design instructions are available, a bad proliferation in designing
problem-specific EAs can be observed (see Section 2.2).

In general EAs are used for parameter optimization. In this connection it is
important to look not only at the biological model in order to identify new principles
which can possibly enhance the performance of EAs. But it is also helpful to consider
this problem from a more mathematical point of view, because the balance between
biological inspiration and mathematical foundation gets lost to the disadvantage of
the latter. For an EA as a optimization algorithm the following questions are of
importance:

e Can each permissible solution be reached from an arbitrary initial population?

e Are the operators (mutation, recombination) generating an additional bias
which superimposes the real selection process?

Unfortunately very often nobody goes to the trouble of answering these questions
when designing a problem-specific EA. Jones and Forrest (see [JF95]) introduced the
so-called fitness distance correlation, which measures the relation between fitness
and distance to next optimum for an objective function in order to predict the
behaviour of EAs for this function. But as their definition of distance is not directly
related to the used genetic operators, their method, although its idea is related to
ours, shows no concrete guidelines how to design genetic operators.

In the following we will present some requirements on genetic operators and the
mapping. Our aim is here to support a smooth motion of the search process through
the fitness landscape. So the requirements are more orientated towards the gradient
diffusion hypothesis than towards the building block hypothesis. But neither should
this be a final judgment, nor it is said that the gradient diffusion describes the evo-
lutionary search completely. Though there are some pointers that representations
and operators supporting a smooth motion through the fitness landscape have an
advantage over that kind showing an erratic behavior [Bac96, SKvS97]. Such an
erratic behavior may have the advantage of reducing the danger of premature con-
vergence to a suboptimal solution. However further advantages are hard to find
especially when looking at the search in high dimensional space.

It is important to mention once again that causality has to exist between the
genotype space and the objective function (the fitness function). The genetic op-
erators are only working on the genotype space and selection considers only the
fitness of the individuals. With this in mind to find an optimal representation for a
problem is at least as difficult as to find the global optimal solution. The represen-
tation 1s then only suitable for the problem at hand, at most for a specific problem
domain. Similar to the No-Free-Lunch Theorem (see [WM97]) Radcliffe and Surry
have shown that all representations are equivalent when their behavior is considered
on average over all possible objective functions [RS95].

We are assuming that we have certain information about the phenotype space
concerning a specific problem domain. This pre-knowledge will be used to form a

11



distance measure. This distance measure shows the similarity between two pheno-
types regarding a certain mark of quality, 1.e. two elements of the phenotype space
with small distance should have similar quality. This mark of quality should be
strongly connected to the objective function to be optimized. The pre-knowledge
should be used as good as possible by formulating the requirements on the operators
on the basis of the distance measure. The performance of the EAs will then mainly
depend on the suitability of the distance measure, i.e. on the quality of the available
pre-knowledge about the problem domain.

But we have already seen that we cannot ask for more [WM97, RS95, FGI7].
It is of no use, when the object function i1s used directly to obtain the distance
measure. In this case the optimum must be found before the development of the
operators takes place. Moreover the EAs should be designed for a whole problem
domain of suitable size and not only for one objective function. Considering this
aspect we are assuming that a suitable metric dp : P x P — IR} on the phenotype
space P is chosen. A metric must fulfill the following requirements:

Definition 1 (Metric) A metric on a set X is a mapping d : X x X — IR, such
that Vv, W, % € X :

W) = 0 &
@) < d(,F) +

QS
[l

g

—_

[y

()

=

g
&8y

(@, Z). (11)

If d is a metric on X, so (X, d) is called a metric space. In a metric space for all
v, W € X follows:

bl

) = d(d, ) (12)
@) > 0 (13)

In the following both the genotype space and the phenotype space are assumed
to be finite spaces. To extend our proposal on infinite spaces, one can either extend
our formalization to infinite spaces by using continous probability spaces or restrict
the infinite spaces to finite aprroximations (e.g. by using fixed-length representations
of real numbers with finite precision as it is used in every computer).

5.1 Mapping

Assuming that the mapping h is injective the metric dp induces automatically a
metric dg : G x G — IR on the genotype space through

dg(91,92) = dp(h(g1), h(g2)) V91,92 €G. (14)

If a genetic operator causes a small change regarding dg, this will result in just
a small change in the phenotype space. The reversal is valid on condition that
h is bijective. In general the assumption that A is injective does not seem to be
useful. If one thinks of neutral mutations or introns it is not impossible that two
different genotypes are coding exactly the same phenotype. On the other hand
two perfect identical individuals require that the ontogenesis of the individuals has
to take place under exactly the same environmental factors. If one rules out such
constant environmental factors the assumption that A is injective seems possible
again. Of course the mapping does not consider the effect of environmental factors
so far.

If £ is not injective (so (14) is not valid), the following requirement can be stated
on the mapping:
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Requirement H 1

Yu,v,w € G :
dg(u’v) < dg(u’w)
= (15)
dp(h(u), h(v)) < dp(h(u), h(w))

If h is bijective, with (14) requirement H 1 is automatically valid.

5.2 Recombination

For the recombination operator it should at first be guaranteed that the offspring
has a certain similarity with its parents. In the following we look at the way an
individuum is created by recombination. Instead of the general form it suffices
to present the reduced recombination operator ' : G? x Q. — G, with a finite
probability space (,/, P./). The recombination operator v’ : G x Q,, — G assigns
with probability

Po(r'(u,v)) :i= Pr({w € Q| 7' (u,v,w) = w}) (16)

two parents u, v € G an offspring w € G (with w € Q).
The first requirement on the recombination operator has the following form:

Requirement R 1

Vu,v € G,w € Qpry 2 =7 (u,v,w) :
max(dg(u, 2),dg(v, 2)) < dg(u,v) (17)

So the genotype of the offspring is not allowed to be further away from his
parents (regarding dg) than the parents from each other.

Moreover the recombination operator should not generate an additional bias in-
dependent of the parents. This will be illustrated by Figure 2. Using a discrete
recombination an offspring can reach the corners of the rectangle indicated (1).
But if one of these points has now a higher probability to be reached by recombi-
nation than the rest of the points, the recombination operator induces a direction
independent of the parents. So a recombination operator should fulfill additionally:

Requirement R 2

Yu,v € G,Va > 0:
Po(dg (' (u,0)) = @) = Pou(dg (v, (u,0)) = a) (18)

For recombination operators using more than two parents the requirements can
be formulated in an analogous way.

On account of pre-knowledge, experiences or implementation details (see exam-
ple of use) the requirements R 1 and R 2 can be extended or specialized. Interme-
diate recombination, which is often used in ESs; e.g. limits the space of offsprings
available by panmictic generalized intermediate recombination to a special area.

5.3 Mutation

The mutation operator m : G*xQ,, — G can basically work on all A individuals at
the same time. Since the mutation of an individual is independent from the other
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individuals it is sufficient to look at the reduced mutation operator m’ : G x€Q,,,, — G
with the finite probability space (£, Ppy). With probability

P (m/ (u) = v) := P ({w € Qe | M/ (u,w) = v}) (19)

the mutation operator m’ generates out of an element v € G a new element v € G.
The first requirement should guarantee that from each point ¢ € G each other
point u € G can be reached in one mutation step:

Requirement M 1
Vg, u€g: P (m'(g) = u) > 0. (20)

This requirement can be weakened by replacing the mutation with a finite se-
quence of mutations (where m’ o m’(g,w) = m'(m’(g,w))) >

Vg,u € G, da € N with a < 0o :
Poi(m o...om/(g) = u) > 0. (21)

a

Moreover small mutations (measured with dg) must occur more often than larger
mutations:

Requirement M 2

Ya, b€ INY, VgegG:
a<b = Pnl(dg(g,m'(g)) =a)> Pul(dg(g,m'(g)) =b)  (22)

For a given ¢ € G all genotypes u € G which have the same distance to g should
have the same probability to be reached by mutation of g:

Requirement M 3

Vg, u,v €G:
dg(g,u) = dg(g,v) = P (m'(g9) = u) = Pp(m(9) =v).  (23)

This requirement guarantees that the mutation operator does not induce a bias
(on its own). Since at the beginning of search there is no information on the
position of the global optimum the mutation should not give the population a
certain direction. By working with a dynamic adaptation of step-size (e.g. self-
adaptation of n > 1 step-sizes) requirement M 3 can be violated. By learning an
internal model of the topology the preference of a certain search direction can be
useful. But whenever there is no suitable information about the topology of the
search space available anymore, it should be guaranteed that a state can be reached

in which M 3 1s fulfilled.

5.4 Metric Based Evolutionary Algorithm (MBEA)

Since all requirements are based on the definition of a suitable metric on genotype
and phenotype space, an EA which fulfills the requirements H 1, R 1, R 2, M 1,
M 2 and M 3 for a given metric and mapping is called Metric Based Evolutionary
Algorithm (MBEA).

3In this case it must be possible that elements with lower fitness can be preferred over elements
with higher fitness.
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6 Metric Based Genetic Programming

If one looks at all the requirements that define a MBEA, it is not obvious how a
MBEA can be build. Therefore, we will give an example of an Metric Based Genetic
Programming (MBGP )-System in this section to show how crossover and mutation
operators conforming with our requirements can be build. The paradigm of genetic
programming (GP) (see [K0z92, Koz94] for a detailed introduction to GP) was used,
as most existing GP-systems use crossover and mutation operators, whose results
in the phenotype space are very unclear most of the times.

Look, for instance, at the GP-system presented in [Koz92], which has become
a standard for many other GP-systems afterwards: the elements of the phenotype-
space are programs, which are represented by S-expressions, i.e., tree-structures
with functions at the inner nodes and terminals at the leaves. Both, function and
terminal set (which has to include the set of input variables), are predefined and
an S-expression is evaluated by bottom-up evaluation of the tree structure. In
most GP-systems the recombination of two S-expressions chooses one node in every
parent and exchanges the subtrees starting at these nodes. Hence, the functional
behaviour of the resulting S-expression is dependent on the function and terminal
set, the chosen nodes, and the form of the S-expressions, which are above the chosen
nodes in the parental S-expressions.

Even if the two parental S-expressions have a rather similar functional behaviour,
the functional behaviour of the child can vary drastically from that of the parents
and there is no general method known for predicting it. Therefore, looking at our
requirements, most GP-systems do not fulfill properties R 1 and H 1, as a child
can differ more from the parents than the parents differ from each other in the
phenotype-space. If we assume that the fitness-landscape on the phenotype-set
is rather smooth, it probably would be advantageous if the GP-system searches
“between” two good parents, as one can assume that other good elements of the
phenotype space will exist there. This holds, because a smooth fitness landscape
implies that in the neighborhood of points with similar fitness other points with
approximately the same fitness lie.

In our MBGP-system no S-expressions are used. Instead a data structure is
used which is better appropriated for the problem being attacked and which al-
lows us to implement mutation and recombination operators that conform with the
requirements defining an MBEA.

The task of our MBGP-system is to solve the following often used benchmark-
problem: find a representation of an unknown function, which is given by its com-
plete training set, i.e., for every input the correct output is given. Although this task
has no practical applications, if a representation of a completely specified function
can be easily build, it is often used to compare the quality of search methods in the
space of computer programs (see for instance [Koz92, Koz94, GR97, Che97]). In our
case, the unknown function g is a Boolean function with n inputs and one output, i.e.
g :{0,1}" — {0,1}. The training set 7" simply is the set {(z,g(x)) |z € {0,1}"}.

Every element f : {0,1}" — {0,1} of the phenotype set will get the fitness
F(f) = {= € {0,1}"] f(z) = g(x)}], i.e., the number of inputs, where f has the
same output as the unknown function g. Hence, the unknown function g is the only
maximum of the fitness function F'. The task of our MBGP-system is to find a
representation of this maximum.

As we have stated above, the data stucture used for representation plays a major
role for the success and efficiency of every search method. In our MBGP-system
we will not use S-expressions for representation, but a special data structure for
Boolean functions, called Ordered Binary Decision Diagrams (OBDD) (see [Bry86]).
OBDDs allow polynomially-sized representation in n of many practically important
Boolean functions (because there are 22" Boolean functions on n input variables
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no data structure can represent every Boolean function in polynomially bounded
space) and many operations on OBDDs can be done in polynomially bounded time
with regard to the size of the involved OBDDs. Some of these efficient operations
are used in the implementation of our mutation and recombination operators.
Before our MBGP-system is described in detail, the next subsections will give a
short introduction to OBDDs and an overview of existing GP-systems using OBDDs.

6.1 Ordered Binary Decision Diagrams

Ordered Binary Decision Diagrams (OBDDs) are a data structure for the efficient
representation of Boolean functions f : {0,1}" — {0,1} (see [Bry86]). Given a
permutation 7w of the input variables z1,... 2z, an OBDD is a directed acyclic
graph with one source and two sinks, fulfilling the following properties:

e every inner node is labeled by one of the input variables xq,...,z, and has
two outgoing edges, leading to the 0- and 1-successor, resp.,

o there are exactly two nodes without outgoing edges, the so-called 0- and 1-
sink, resp.,

e every edge between two inner nodes must obey the permutation 7, i.e., if there
is an edge from a node v to a node u, the label of v has to be smaller than
the label of u with regard to «.

How does a given OBDD correspond to a Boolean function, i.e., how can we
evaluate the function f represented by an OBDD when an input a € {0,1}" is
given? To do this, just repeat the following recursive procedure starting at the
source until a sink is reached: if the label of the actual node is z; go to the a;-
successor. The value f(a) is 0, if the O-sink is reached, and 1, if the 1-sink is
reached. As the label of the nodes must increase (with regard to m) when going
to a successor-node, this procedure is finished after at most n steps. This is one
advantage of OBDDs in comparison to S-expressions: they can be evaluated in time
O(n), while an S-expression S needs time Q(|S]), which is worse for all non-trivial
S-expressions containing at least all input-variables as terminal symbols. Figure 3
shows an OBDD, where the inner nodes are represented by circles and the sinks by
squares (to get a better overview three sinks are shown, although only two sinks
are stored in memory).

Figure 3: OBDD representing the function f(#1,#2,23) = #1%3 V T122F3, where
m = (%1, 22, T3).

The variable ordering m has an essential influence on the size of an OBDD.
There are functions that have OBDDs of linear or exponential size depending on
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the variable ordering m. As even the existence of a polynomial time approximation
scheme for finding the optimal variable ordering implies P = N P (see [Sie98]), it is
very unlikely that any efficient scheme for finding a variable ordering being nearly
optimal exists.

But why are OBDDs nevertheless the state-of-the-art data structure for Boolean
functions, if they have this disadvantage? First of all, many practically important
functions can be represented with OBDDs of polynomial size. The second point
is the existence of efficient algorithms for many important operations. Of special
interest for our MBGP-system are algorithms for counting the number of one-inputs
and for the synthesis of two OBDDs (see [Bry86]).

The first problem consists of determining |{z € {0,1}"| f(x) = 1}|, when an
OBDD D representing f is given. This problem can be solved in linear time in the
size of D (see [Bry86]). The synthesis of two OBDDs Dy and D (representing fi
and f2) is the construction of an OBDD for the function f1® fa, where (f1® f2) () :=
Ji(z) ® fa(z) and @ : {0,1}? — {0,1} is the synthesis-function. An algorithm for
the synthesis is known, which needs time O(|D1||Dz|log(|D1]|D2|)) (see [SW93]).
Hence, if both OBDDs have polynomial size, both algorithms work in polynomial
time.

Another big advantage of OBDDs is the existence of reduced OBDDs. For a given
function f and variable ordering w the reduced OBDD representing f is the unique
OBDD from the set of all OBDDs representing f, having the minimal number of
nodes (see [Bry86]). A given OBDD D; can be reduced in time O(]D;|) and using
a hash-table and bottom-up construction one can implicitly build only reduced
OBDDs, which is very space-efficient and used in our MBGP-system.

6.2 Existing GP-Systems using OBDDs

This subsection is intended to give a short overview of the different GP-systems that
use OBDDs for the representation of programs. As we are especially interested in
the effects of crossover and mutation, we will emphasize this point in the discussion
of the GP-systems.

The advantages of OBDDs for GP were used by Yanagiya for the first time (see
[Yan95]). In his work OBDDs are the form of representation and the task of his
GP-system is to find a representation of a Boolean function given by a complete
training set. To determine the fitness of an OBDD D, he uses the follwing method:
in the beginning of the run the OBDD D* of the unknown function is build, which
is possible, as the training set includes all inputs. For fitness evaluation an EXOR-
synthesis of D and D* is performed. The number of inputs leading to the output
1 is counted afterwards. This number is exactly the number of inputs, where D
and D* disagree. Using the algorithms mentioned in section 6.1, the evaluation
therefore needs only time O(|D||D*|log(]D||D*])) in comparison to time (27 -|5]),
when using an S-expression S.

This time decrease made his GP-system the first, that found the 20-multiplexer.
But one has to be aware that this method cannot be used in practical applications,
where the output of the unknown function is not known for all inputs. Although this
method of evaluation is used in our MBGP-system for time efficiency, too, we do
not compare our runtime to that of other algorithms. Furthermore, it is important,
that this method of evaluation has no influence on the search process itself.

The recombination described in [Yan95] is used in our MBGP-system, too, but
without the implicitly used mutation. Because of this implicit mutation, a child can
disagree with its parents even on inputs where both parents agree. Although this
is done with low probability, it can change the functional behaviour of the child to
a rather high degree.
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Furthermore, the OBDDs in [Yan95] can only have a maximum breadth, i.e.,
when the maximum number of nodes with the same label is reached, new nodes
with this label, which are to be constructed, are not build anymore. Instead the
edges leading to this unbuild node are redirected to existing nodes with another
label. Naturally, this makes the effect of recombination very hard to predict. Mu-
tation is not used in this system, if we do not look at the implicit mutation during
recombination.

The GP-system described in [SHIK96] uses OBDD-like structures for represen-
tation to find a representation of an unknown function given by a complete training
set. The recombination and mutation operators work similar to the operators de-
scribed in [Koz92, Koz94] for S-expressions, i.e., they swap substructures of the
parental OBDDs or create new substructures. As there are no measures taken to
guarantee that the resulting structures are still valid OBDDs, selection pressure is
used to make the results OBDD-like by giving OBDD-like structures a higher fit-
ness. Using this method the parity-function can be found in [SHIK96] for up to six
variables. No investigations about the behaviour of mutation and recombination
are made and are likely to be difficult, because the genetic operators are not made
especially for OBDDs.

Another GP-system using OBDDs, whose genetic operators work similar to the
standard operators described in [Koz92, Koz94], is presented in [Dro97]. Here all
individulals, i.e., Boolean functions, are represented by reduced OBDDs. But the
task of this GP-system is to approximate an unknown Boolean function, which is
given only by an incomplete set of training examples. Recombination and mutation
in [Dro97] swap substructures of the parental OBDDs and create random substruc-
tures in an OBDD, resp. Although special measures are taken to guarantee that the
resulting structures are still valid OBDDs; the effect of recombination and mutation
on the functional behaviour is unclear.

The main advantage of OBDDs in the system described in [Dro97] is the possibil-
ity to build OBDDs, being consistent with the training set. In the initial generation
this is done explicitly. As in all further generations OBDDs, which are not consis-
tent with the training examples, are replaced by one of their parents, only consistent
OBDDs are used. This allows it to concentrate only on the size of the OBDDs to
determine their fitness, i.e., the GP-system tries to find a consistent OBDD with
minimal size. This strategy results in rather good generalizing Boolean functions
(i.e., they are similar to the unknown function on many of the inputs not in the
training set). In [Dro98] the effect of minimzing the size of a program on its gener-
alization properties is investigated under a more theoretical viewpoint.

All in all, the GP-systems with OBDDs, which are used so far, use genetic
operators without investigating their effects on the search process. No requirements
on the behaviour of the genetic operators are made: in most cases the authors
are satisfied, if crossover and mutation exchange information and create random
information, respectively.

6.3 A concrete MBEA

We have already seen that the requirements for a MBEA are not fulfilled by most
existing GP-systems working with S-expressions or OBDDs. In the following we
will present a GP-system in detail that fulfills these requirements, thereby showing
that they can be fulfilled. We start with a metric on the phenotype space, so that
the fitness landscape over the phenotype space is rather smooth, if one uses this
metric to define neighborhoods. So the metric reflects our knowledge of the problem
we try to solve.

Then a rough outline of the GP-system is given, which resembles a (y, A)-ES.
This outline 1s filled by giving detailed descriptions of the recombination and mu-
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tation operators. In order to show that this system 1s a MBEA, we prove that our
requirements on the mutation and recombination operators are fulfilled.

6.3.1 Metric

Our GP-system shall try to find an unknown Boolean function ¢ : {0,1}"* — {0, 1}
and we measure the fitness of an individual f : {0,1}” — {0,1} by counting the
number of inputs, where f and the unknown function g agree. Hence, an appropriate
metric dp is the function, that counts the number of inputs, where the two measured
functions disagree:

dp(f,h) = [{z € {0, 1}" | f(2) # h(z)}].

This is a metric, which can be easily seen, when realizing that it is equivalent to the
Hamming distance on the space of all bitstrings of length 2”. Because two functions
f and h can differ in their fitnesses F(f) und F(h) by dp(f, h) at most, the fitness
landscape is smooth, i1.e. neighbouring functions have similar fitness.

On the genotype space, i.e. the space of concrete representations, we use the
analogous function dg defined by

dg(u,v) .= dp(h(u), h(v)),

where h : G — P 1s the mapping between the genotype and phenotype space. As
we use reduced OBDDs to represent our individuals, the mapping A& is bijective: a
reduced OBDD represents exactly one Boolean function and every Boolean function
is represented by exactly one reduced OBDD (assuming, that the variable ordering
is fixed). Hence, dg is a metric, too. In the next subsection a rough outline of the
used GP-system is given.

6.3.2 A rough outline of the GP-system

In the following, we assume that M AXGEN € IN (the maximum number of genera-
tions), p € IN (the size of a parental generation) and A € IN (the number of children)
are predefined by the user. Then, the used MBGP-system looks as follows:

Algorithm A 1 The MBGP-system.
1. Sett:=0.

2. Initialize Py by choosing p Boolean functions with equal probability from {f | f :
{0,1}* — {0,1}} and including the reduced OBDDs representing these func-
tions.

3. Whilet < MAXGEN:

(a) Forie {l,...,A} do:
1. Choose two reduced OBDDs Dy and Ds with equal probability from
P

11. Recombine D1 and D5 and call the resulting reduced OBDD D'.

iti. Mutate D' and call the resulting reduced OBDD D*.

w. Include D* in P[,,.
(b) Choose the ;n OBDDs in Pyy1 with the highest fitness to form Piiq.
(¢) Sett:=t+ 1.

4. Output the OBDD with the highest fitness that was found.
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The MBGP-system resembles a (p, A)-ES with respect to the following points:
e The size of a parent population is p.

e The number of children per generation is A.

e The p best children form the next parent generation.

e The children are generated by choosing two parents with equal probability,
recombining them and mutating the result.

In the next two subsections, we will fill this rough outline with content by describing
recombination and mutation in detail.

6.3.3 Mutation

To be an MBEA the mutation operator must fulfill the requirements (M 1), (M 2)
and (M 3). In the following we will present a concrete implementation fulfilling all
three requirements.

The basic idea of the mutation of an OBDD D consists of the following steps:

1. Choose a number M € {0,...,2"}.
2. Choose M inputs, i.e. elements of {0, 1}™.
3. Change the output of D for the M chosen inputs.

The number M is chosen randomly using the following probability distribution,
where o € {0, 1} is a predefined constant (non-costant or even adapting mutation
rates will hopefully further improve the system and are left for future research):

. _[a+q(1 <:>a)2n+1 ,falls k=0
P(M_k)_{ a- (1 sa)k Jalls ke {1,...,27}

This is a slight modification of the geometrical distribution with parameter @ (where
P(M = k) = a- (1 &a)) in order to guarantee that M is at most 2”. Using an
equally distributed random variable X € [0, 1], the modified geometrical distribution
is created by the following algorithm in expected time O(1/«) (another algorithm
to do this can be found in [Rud94]):

Algorithm A 2 Choose the number M of inputs, that are to be modified.

1. Set M :=0.

2. Choose an equally distributed random variable X € [0, 1].
3 If X >a and M <27, set M := M + 1 and go lo step 2.
4. If M =2"+1, set M :=0.

4. Output M.

After choosing M with algorithm (A 2), we have to choose the M inputs (i.e.
elements of {0,1}"), where the output of the OBDD has to be changed. For this
reason, we identify the input space {0, 1}" with {0,...,2" <1} by interpreting a bit
string as binary code. In order to fulfill the requirements, we have to guarantee that
we choose M different inputs with equal probability from all subsets of {0,...,2" <
1} of size M. This is done by using algorithm (A 3):

Algorithm A 3 Choose one of the subsets of {0,...,2" <1} with M elements.
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1. Forallje{l,...,M}:
(a) Choose i; € {0,...,2" <} with equal probability.
(b) Setl:=1.
(c) While iy <i; and 1 < j:
1. Set ij = ij + 1.

1w, Setl:=1+1.
(d) While l < j:
1. Sett :=1.
. Set 4 1= 1.
ut. Set t; =1,

w. Setl :=1+1.
2. Quiput {iy,...,inm}.

The loop in step 1.(c) maps the element i; to the 7;-th element of {1,...,27}\
{i1,...,4;_1}, if we assume that all previous elements (i.e. i1,...,¢;_1) are sorted
in increasing order. But this can easily be shown by induction, as in step 1.(c) the
correct position [ of ¢; is found and all following elements are shifted by one position
in step 1.(d). Hence, algorithm (A 3) chooses a subset with M elements with equal
probability from all subsets of {0,... 2" <1} with M elements. The runtime of
(A 3) is O(M?), i.e., its expected runtime is O(1/a?).

Now the OBDD D has to be mutated by changing its outputs for the inputs
1,---,2p. This can be done by the following algorithm:

Algorithm A 4 Change output of D for inputs iy, ... iy
1. Choose M by applying algorithm (A 2).
2. Choose {i1,...,in} by applying algorithm (A 3).

3. Build a reduced OBDD D*, that outputs 1, if and only if the input s an
element of {i1,...,ipm}.

4. Output the result of the EXOR-synthesis of D and D*.

The recuced OBDD D* in step 3 can be build in time O(n-M?) and has O(n- M)
nodes. Hence, the EXOR-synthesis in step 4 can be done in time O(|D|-n - M -
log(|D| - n - M)), i.e. its expected runtime is O(|D| - n - log(|D] - n/a)/a). So the
expected runtime of the mutation of a reduced OBDD D is polynomial in the size
of D, if « is constant.

Theorem 1 The mutation operator described in algorithm (A 4) fulfills the require-
ments (M 1), (M 2) and (M 3).

Proof: Requirement (M 1) states, that mutating an arbitrary reduced OBDD
D can result in any other reduced OBDD D’. This follows from the fact, that
in Algorithm (A 2) any number M € {0,...,2"} has positive probability of being
chosen and that in Algorithm (A 3) any subset of size M can be chosen with positive
probability. Hence, every other function can result from mutation, i.e., every other
reduced OBDD.

Requirement (M 2) is fulfilled, as Algorithm (A 2) chooses for M with higher
probability & € Ny than k& + 1 and (A 3) chooses every subset with M elements
with the same probability. Hence, small changes (with respect to dg) are more
likely than greater ones.
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The last requirement (M 3) states, that two OBDDs D; and Ds have the same
probability of resulting from a reduced OBDD D by mutation, if dg(D, D;) =
dg(D, D3). This again follows from the fact that (A 3) chooses the subset with
M elements with equal probability from all subsets with M elements. Hence, the
mutation operator fulfills all three requirements. a

6.3.4 Recombination

The recombination operator r’ : G’ x G’ x Q.. — G creates a new reduced OBDD
out of two parental OBDDs under random influence (represented by €,). To fulfill
requirement (R 1) the new OBDD is not allowed to have a greater distance to one of
its parents than the distance between the parents. Requirement (R 2) is some kind
of symmetry requirement: with the same probability the result of the recombination
has distance d from the first parent and the second parent, respectively.

The source of the resulting OBDD, when recombining two reduced OBDDs D,
and D results from calling the following recursive algorithm, that gets the sources
vy and vy of Dy and Ds, resp., as arguments (where v — 0 and v — 1 is the zero-
and one-successor of a node v, resp., and sinks are assumed to have label z,; and
the variable ordering is w.l.o.g. z1,...,2p,):

Algorithm A 5 Rec(vy,v2):
1. If vy = vs, return vy.
2. If v1 and vo are both sinks, return one of them with equal probability.
3. Let z; be the label of vi and x; the label of va:

(a) If i < j, return node v' with label x;, v — 0 := Rec(vy — 0,v2), and
v/ = 1:= Rec(vy — 1,va).

(b) If i > j, return node v' with label x;, v' — 0 := Rec(vi,va — 0), and
v/ = 1:= Rec(vy,v2 —> 1).

(¢) If i = j, return node v' with label z;, v — 0 := Rec(vy = 0,v3 — 0),
and v/ = 1 := Rec(vy — 1,v2 = 1).

So the recombination operator works as follows: starting from the sources, the
OBDDs are run through in a parallel manner. If one node has a smaller label
than the other node, the zero- and one-successor of this node are visited before the
successors of the other node. If both nodes have the same label, the successors of
both nodes are visited. If sinks are reached in both OBDDs, one of the sinks is
returned with equal probability.

The result of a call of Rec(vy,vq) for a pair (v1,vs) of nodes is not stored to
guarantee that the random decisions are independent of each other. Because of this
strategy, the running time of the recombination cannot be upper bounded polyno-
mially in the OBDD sizes. Indeed, one can easily think of worst case examples,
where the recombination needs exponential running time in n even though the OB-
DDs have polynomial size in n (for instance, when the reduced OBDD for the parity
function is recombined with its complement). But all experiments indicate that the
average running time is rather small, which is caused by the increasing similarity
of the OBDDs in the population.

Although the recombination operator is similar to the synthesis-algorithm with
the Boolean operator ®, where ®(x1,22) returns one of its arguments with equal
probability, the result can be very different from the ®-synthesis of two OBDDs.
For instance, the ®-synthesis of the one-sink and the zero-sink can result in every
function, while the recombination results in one of the sinks with equal probability.
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To prove that the requirements (R 1) and (R 2) are fulfilled we need more
knowledge about the behaviour of the recombination operator: how does the prob-
ability distribution on the space of all reduced OBDDs look like, that represents
the possible results of the recombination of two given OBDDs?

To answer this question we present the function represented by an OBDD in a
different way. For a given OBDD an input defines the set of nodes, that are visited
while evaluating the OBDD for this input. The nodes in this set form a path from
the source to one of the sinks. As every variable is tested on this path at most once,
we can identify a path with a vector a € {0, 1, x} with the following interpretation:

e If a; = *, then the variable z; is not tested on the path.
e If a; = 0, then the variable z; is tested and the zero-successor was chosen.
e If ¢y = 1, then the variable x; is tested and the one-successor was chosen.

It can be easily seen, that for a given OBDD there is one-to-one equivalence between
a path and such a vector. Hence, we will call such a vector a path, too.

Let B(a) (which is called a block) the set of inputs, so that the evaluation
procedure for these inputs visits the nodes on the path a. It can be written as

B(a)={x € {0,1}|Vie{l,....n} 1a; # x = &, = a;}.

It is clear that all inputs belonging to one block have the same output according to
the given OBDD. So if sp(a) € {0, 1} is the label of the sink, that is reached when
following the path a in the OBDD D, all elements of B(a) are mapped by D on
sp(a). So D can be represented as the set of all blocks with the according sink:

M (D) :={(B(a),sp(a))]|ais a path in D leading to the sp(a)-sink}.

Using this representation of an OBDD, we can explain the effect of the recombi-
nation of two OBDDs D; and Dy more easily: remember, that Rek(v1, v2) returns
a sink, if and only if v; and vs are sinks. Let a' and a? be the paths on which v;
and vs were reached in D; and Ds, resp. Then a' and a? have to be compatible,
le.

Vie{l,....n}:(aj #*Val#*) = af =d’.

The sink that is returned by the recombination operator lies at the end of the union

a € {0,1,%}" of a' and a2, defined by:

The block B(a) is the intersection of B(a') and B(a?). The sink is chosen with
equal probability, so the child-OBDD D’ has the following representation:

M(D')={(B'nB* (s, s)) | (B',s") € M(D"), (B?,5%) € M(D?)}.

This form of representation makes it clear that if both parents D and D, have the
same output for one input, the child-OBDD D has this output for the input, too.
If the parents disagree, the output of the child is 0 or 1 with probability 1/2 each.
But it is important that these random decisions are not independent for every bit,
but dependent on the OBDD-structure. Using this characterisation, we can prove
that the requirements (R 1) and (R 2) are fulfilled:

Theorem 2 The recombination operator described in algorithm (A 5) fulfills the
requirements (R 1) and (R 2).
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Proof: For (R 1) we have to show that the distance between D’ and D; and between
D’ and D5 is not greater than the distance between Dy and Ds. If d is dg (D1, Da),
then the OBDDs disagree in their output for exactly d inputs. As the child-OBDD
can disagree with one of the parents only, if the parents disagree, 1t follows, that
both dg(D’, Dy) and dg(D’, D3) can be at most d.

Furthermore, as D’ disagrees with D; on those d inputs, where D’ agrees with
Dy, 1t follows:

dg(Dl, D/) + dg(D/, Dz) = dg (Dl, Dz).

Requirement (R 2) states, that D’ has distance d with the same probability from
Dy as from Ds. Look at the series of random decisions (each with probability 1/2),
that leads to the child D’ with distance d from Dy (on these d inputs D’ agrees with
D5). The complementary series of random decisions during recombination leads to
the OBDD that is complementary to the old child-OBDD D’ on all inputs where D
and D5 disagree. It has distance d from D5, as it disagrees with Ds exactly on those
inputs, where the old child-OBDD D’ agrees with D, and D and D disagree. As
both series have the same probability, and this argumentation is valid for all series,
requirement (R 2) is fulfilled. a

Hence, it follows:

Corollary 1 The GP-system described by the algorithms (A 1), (A 2), (A 3),
(A 4), and (A 5) is a MBEA.

7 Experimental results

In the following we will present some experiments to show the usefulness of our
requirements. We will see, that our MBGP-system needs much less individuals
than other comparable GP-systems while solving the benchmark-problems being
attacked. Hence, this shows that our requirements make sense at least for the
problem class being attacked.

As our MBGP-system tries to find an OBDD-representation for an unknown
Boolean function given by a complete training set, we compare our system to other
systems trying to find representations of an unknown Boolean function, when the
complete training set is given. We use the computational effort (see [Koz92] for a
definition) to compare our results to those presented in [Koz92, Koz94, Che97]. In
the next subsections we shortly summarize the results of [K0z92, Koz94] and [Che97]
and present our results. Then we compare them with respect to the computational
effort.

7.1 The GP-system introduced by Koza

In [K0z92] a detailed introduction to GP is given and his choice of representation
(S-expressions) and genetic operators (mainly recombination by exchange of sub-S-
expressions) has become the standard choice for many GP-systems. In [Koz94] the
usefulness of automatically defined functions (ADFs), an extension of the represen-
tation with S-expressions, 1s shown by many experiments and comparisons of the
results with and without ADFs. Because of these advantages, ADFs have become
standard in many GP-systems, too.

One of the problems being attacked both in [Ko0z92] and [Koz94] was that of
finding a representation of an unknown Boolean function given by its complete
training set. Both systems (with and without ADFs) do not make any formal
requirements on the genetic operators, so in general it is difficult to predict the
functional behaviour of the child when that of the parents is known.
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GP without ADFs
Function Runs | Successful runs | Pop. size | Max. generation
6-Multiplexer 15 15 4000 50
3-Parity 34 34 16000 50
4-Parity 18 18 16000 50
5-Parity 25 11 16000 50
6-Parity 19 0 16000 50
GP with ADFs
Function | Runs | Successful runs | Pop. size | Max. generation
3-Parity 33 33 16000 50
4-Parity 18 18 16000 50
5-Parity 19 19 16000 50
6-Parity 21 19 4000 50
7-Parity 29 10 4000 50
8-Parity 4 >1 4000 50
9-Parity 4 >1 4000 50
10-Parity 4 >1 4000 50
11-Parity 4 >1 4000 50

Table 2: Results of the experiments found in [Koz92, Koz94]

In Table 2 the number of runs is compared to the number of successful runs
for the GP-systems described in [Koz92, Koz94]. A run is successful, when a S-
expression was found that had the correct output for all inputs, before the maximal
number of generations was reached. While the maximum number of generations
was b0 for all runs, the population size varied, so it is shown in the table, too.

For GP with ADFs the n-Parity experiments for n > 8 were only repeated
four times because their running times were too long. Koza states that for every
function at least one of the runs was successful, so the exact number of successful
runs is not known to us. But four different runs are not enough to allow any reliable
guess of the computational effort. Hence, 1t was omitted for these functions in our
comparison.

7.2 An EP-system

The system described in [Che97] uses no recombination but only different mutation
operators having effects of different strength on the individual. Hence, this system
is an evolutionary programming (EP) system (see [Fog95]) instead of a GP-system.
It was applied to (besides a number of other problems) the problem of finding a
representation of an unknown Boolean function, given by its complete training set.
The Boolean functions used were:

e the 6-multiplexer,
e the 3-, 4-, 5-, and 6-even-parity functions.

The maximal number of generations was 250 for all 50 runs per function, while
the population size was 500. Using these parameters, the experiments presented in

[Che97] look as shown in Table 3:
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An EP-system
Function Runs | Successful runs | Pop. size | Max. generation
6-Multiplexer 50 50 500 250
3-Parity 50 50 500 250
4-Parity 50 42 500 250
5-Parity 50 11 500 250
6-Parity 50 0 500 250

Table 3: Results of the experiments found in [Che97]

7.3 The results of our MBGP-system
We tested our MBGP-system on these different functions:

e the 6- and 11-multiplexer,
e the 3- to 12-parity functions, and
e a randomly chosen Boolean function with 8 inputs.

The randomly chosen Boolean function was chosen independently with equal
probability for each of the 50 runs from the set of all Boolean functions with 8
inputs. By using this approach, we tested how well the MBGP-system can find
representations of functions which have completely no structure. The maximal
number of generations for each run was dependent on the number of inputs in order
to give the MBGP-system more time to find a solution.

The parameters g and A, which determine the size of the parental and successor
generation, were chosen as 15 and 100, i.e. from 15 parental OBDDs 100 child
OBDDs were generated. Because the initial generation consists of only 15 OBDDs;,
the number of individuals up to generation 7 is 15 4 100 - ¢.

The parameter « for the mutation strength was chosen for all experiments as 0.2,
so that the expected number of mutating bits is approximately four. The results of
the MBGP-system are presented in Table 4.

The MBGP-system
Function Runs | Successful runs | Pop. size | Max. generation
6-Multiplexer 50 50 (15,100) 30
11-Multiplexer | 50 50 (15,100) 1000
3-Parity 50 50 (15,100) 5
4-Parity 50 50 (15,100) 10
5-Parity 50 50 (15,100) 15
6-Parity 50 50 (15,100) 30
7-Parity 50 50 (15,100) 60
8-Parity 50 50 (15,100) 125
9-Parity 50 50 (15,100) 250
10-Parity 50 50 (15,100) 500
11-Parity 50 50 (15,100) 1000
12-Parity 50 50 (15,100) 2000
8-Random 50 50 (15,100) 125

Table 4: Results of the MBGP-experiments
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All runs for all functions were successful. But this fact naturally depends on the
maximum number of generations the system is allowed to run, so the percentage
of successful runs is no fair measure for comparison. A comparison based on the
computational effort, a much fairer measure, is given in the next subsection.

Furthermore, we see that even the 8-Random “function” (as the unknown func-
tion was chosen randomly for each of the 50 runs, it is no single function, but rather
the function class of all Boolean functions with 8 inputs) was found in every of the
50 runs after at most 125 generations. This indicates, that the MBGP-system works
well on all Boolean functions, even on those without any “structure”.

To get a better overview about the good performance of the MBGP-system we
show in Table 5 the average Gyyy and the maximum G4, of the generation, at
which the optimum was found for the first time, over 50 runs.

| Function || Gavg |Gmax|

6-Multiplexer 12.98 22
11-Multiplxer || 607.09 776

3-Parity 2.06 3

4-Parity 4.20 7

5-Parity 9.24 11
6-Parity 16.55 19
7-Parity 29.28 51
8-Parity 61.34 79
9-Parity 134.50 201

10-Parity 301.70 486
11-Parity 617.83 792
12-Parity 1391.40 | 1958
8-Random 56.64 102

Table 5: The average and maximal generation, when the optimum was found, of
the MBGP-experiments.

7.4 Comparison of the results

In general one has to be careful when comparing systems that search for repre-
sentations in different spaces (in our case, in the space of all reduced OBDDs or
in the space of all S-expressions over a special terminal and function set), as the
search process can have different complexities in different search spaces. But we
can compare our MBGP-system to systems using S-expressions, as an OBDD D
can be transformed in time O(]D]) to an S-expression over the function set F' =
{AND,OR, NOT}, which is common for most systems.

As the unknown Boolean functions for our comparisons we used two function

types:

e The n-parity function par, : {0, 1}"* — {0, 1}, whose result is one, if and only
if the number of 1-bits in its input is odd.

e The n-multiplexer function muz, : {0,1}* — {0,1}, where n is 2¥ + k for
k € IN, that is defined by

k-1

— L i

muxy(ag, ..., a5-1,do,...,dox_1) ;= d; , where ¢ = E a; - 2".
i=0
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While the n-multiplexer problem is not very difficult for most GP-systems (the
20-multiplexer was found by [Yan95] for the first time), the n-parity function is
widely assumed to be very difficult for GP-systems working with S-expressions.
The 5-parity function is the biggest parity-function that was found by using stan-
dard GP-systems with S-expressions but without ADFs (see [GR97]). Using ADFs,
representations of the 3-parity up to the 11-parity function were found (see [Ko0z94]).
In this section, we make no difference between the even-parity function, which 1is
one, if and only if the number of 1-bits in its input is even, and the parity function,
because one can easily transform a representation of one function to that of the
other function for both OBDDs and S-expressions.

In the following we compare our results with respect to computational effort
E(M,z) := min; I(M, 4, z), a guess for the number of individuals that have to be
evaluated to reach the optimum with 2% probability, when the population size is M.
Here I(M,i,z) is a guess for the number of individuals that have to be evaluated
to get the optimum with z% probability after at most ¢ generations, when the
population size is M. To compute I(M, 1, z) the following formulas are used (see
[Koz92] for a more detailed description):

Hits(¢) := Number of runs that found the optimum until generation ¢
Hits(¢)
Total number of runs

R(M,i,z) = K%ﬂ

I(M,i,z) = (i+1)-M-R(M,i,z)

P(M, )

R(M,i,z) is the number of runs, that are necessary to get the optimum until
generation 7 with z% probability, when the population size is M. So, the number
of individuals to be evaluated is the number of generations i + 1 (here it is assumed
that the initial generation has the same size as all following generations) times the
population size M times the number of runs. For the experiments described in
[Koz92, Koz94], the probability z was 0.99.

We use the computational effort for comparison, as it reflects the efficiency of
the search process in terms of the number of individuals evaluated. Hence, it 1s
independent from implementation details or the hardware being used, but does not
allow any direct conclusions on the running time of the algorithm.

Table 6 shows the results. Because in [Koz94] only four runs were done for the
8-, 9-, 10-, and 11-parity function, the computational effort was not computed for
these functions. This is abbreviated in the table by the entry “n.e.d.” (not enough
data).

This comparison shows that the MBGP-system works very well on the functions
being tested, using only a very small fraction of the number of individuals the GP-
systems described in [Koz92, Koz94] or the EP-system of [Che97] needs. Because
these systems rely completely on recombination resp. mutation, we have made
further experiments to investigate the role of recombination and mutation in our
MBGP-system, which are described in the next subsection.

7.5 The interplay of recombination and mutation

A GP-system basing only on a recombination operator fulfilling the requirements
(R 1) and (R 2) is supposed to let the whole population converge to one single in-
dividual, as a child can only lie “between” the parents (requirement (R 1)). Hence,
over many generations the maximum distance between two individuals of the pop-
ulation will decrease. This makes sense, if we assume that the fitness landscape
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| Function || GP without ADFs | GP with ADFs | EP | MBGP |

6-Multiplexer 160.000 - 93.000 2.215

11-Multiplexer - - - 77.615
3-Parity 96.000 64.000 28.500 315
4-Parity 384.000 176.000 181.500 715
5-Parity 6.528.000 464.000 2.100.000 | 1.115
6-Parity - 1.344.000 - 1.915
7-Parity - 1.440.000 - 5.115
8-Parity - n.ed. - 7.915
9-Parity - n.ed. - 20.115
10-Parity - n.ed. - 48.615
11-Parity - n.ed. - 79.215
12-Parity - - - 195.815

Table 6: Comparison of the computational effort (with z = 0.99%)

i1s smooth, indicating that in the neighborhood of individuals with similar fitness
other individuals with this fitness lie.

But a GP-system using only a recombination operator fulfilling (R 1) without
any mutation can only lead to a best individual that lies “between” the individuals
of the initial generation. But in a search space large enough it is very unlikely that
the optimum lies “between” the initial population. So a recombination operator,
that fulfills our requirements (R 1) and (R 2), alone will lead to stagnation in
the search process. Hence, we can assume that mutation is necessary for reliable
convergence to the optimum.

To empirically investigate these theories we modified the MBGP-system to two
different versions:

¢ MBGP-system without mutation by eliminating step 3.(a).iii in Algorithm
(A 1) and including D’ in P/, in step 3.(a).iv.

e MBGP-system without recombination by eliminating step 3.(a).ii in Algo-
rithm (A 1) and mutating Dy to D* in step 3.(a).iii.

Both versions and the original MBGP-system were run 50-times for the 8-parity
function. The average number of hits of the best individual over the 125 generations
is shown in Figure 4.

The results confirm our theory, that recombination alone leads to stagnation, al-
though the initial convergence rate is high. While mutation alone is powerful enough
to ensure convergence, its convergence is much slower than the initial speed, when
using recombination alone or when using mutation and recombination: the average
number of generations, until the optimum was found, was 246.88 (its maximal value
was 365) when using mutation only. But using mutation and recombination the op-
timum was found after 61.34 generations on average (and at most 79 generations).
So the MBGP-system with mutation and recombination has high convergence speed
and also reliable convergence, when trying to find a representation of the 8-parity
function.
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Figure 4: Results for the 8-parity function over 50 runs with (1) mutation and
recombination, (2) without mutation, and (3) without recombination.

8 Conclusion

At the beginning of this paper we explained and formalized the problem of rep-
resentation in evolutionary algorithms. For a proper choice of representation and
genetic operators we need knowledge about the problem domain. We assume that
this knowledge is expressable by a metric on the genotype space, so similar (accord-
ing to the metric) elements of the search space have similar fitness. Under these
assumptions a number of formal requirements on mutation and recombination are
formulated, that define a metric based evolutionary algorithm (MBEA). These re-
quirements shall lead the evolutionary algorithm to a controlled behaviour, where
the effects of recombination and mutation are (in some limits) well defined. As-
suming that the fitness landscape is smooth, this behaviour should lead to better
performance.

To empirically test the performance of an MBEA, we made experiments with an
MBGP-system trying to find an unknown Boolean function, given by its complete
training set. Emphasizing the role of a proper representation, we used ordered bi-
nary decision diagrams (OBDDs) for representation. After introducing and defining
OBDDs, we compared existing GP-systems using OBDDs and gave a detailed in-
troduction to our MBGP-system. A number of experiments show that our system
needs much less individuals than other GP-systems to find a representation of an
unknown Boolean function.

So these experiments show that it can make sense to use formal requirements
on the genetic operators, that are in accordance with the knowledge about the
problem domain. Furthermore, the choice of a proper representation (with respect
to evaluation and genetic operators) is necessary in order to efficiently implement
the evolutionary algorithm. An algorithm is only as good as its underlying data
structure, 1.e. 1ts form of representation.

We are aware that our requirements are only a proposal: other methods of using
problem domain knowledge may be more practical and will probably lead to better
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results. But incorporating knowledge about the problem domain into the algorithm
is necessary to have a chance of solving the problem with above-average quality
despite the validity of the NFL theorem (see [WM97]). So the MBEA concept is a
possibility for formalization of the problem knowledge in evolutionary algorithms.
Of course this concept has to be tested on other problem domains, where it is
more difficult to find a representation that allows a metric smoothing the fitness
landscape and the construction of genetic operators fulfilling the requirements. Of
course, one has to be aware that finding such a metric costs time and does not guar-
antee successes, so one has to compare the effort to find a better algorithm with the
resulting performance gain. In order to circumvent this risk, a theoretical investi-
gation of the properties of a MBEA could lead to more well-based requirements,
probably guaranteeing some properties like convergence speed or reliability.
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