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1 Introduction

Applying data-based fuzzy modelling methods to industrial applications, the following
points have to be considered:

� There are often many possible input quantities resulting in enormous search spaces
and rule bases.

� The learning data are often contradictory.

� On the part of the industrial operators, interpretable results are desired that allow
insight.

A relevance test, that decides whether an IF/THEN statement represents a relevant aspect

of the dependencies between the input and output variables, can help in these points

[17,20]:

� It allows to break down the problem of �nding an appropriate rule base to the

problem of �nding single relevant rules. The rule base is then generated by the
incremental collection of the relevant rules [16, 21]. Additionally, the relevance test

allows to decide if several input situations can be combined in one premise so that
the �nal rule base is preferably small [15,19].

� It can handle contradictions in the data by using statistical calculations [18,22].

� It supports the interpretability of the individual rules. If only the input/output
behaviour was optimized, the inference of the rules would model the output values

but the individual rules could be senseless.
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Such a relevance test has been introduced by Kiendl and Krabs [12�14] for crisp rule-

based modelling. Its idea is presented in Section 2. For fuzzy modelling the algorithm

can be extended to the use of fuzzy values between 0 and 1 (Section 3) [13]. By this, the

statistical veri�cation gets lost. Therefore, a fuzzy relevance test is developped in Section

4. In Section 5, comparative results are shown.

Beside the here proposed relevance test, other methods of separating between desired and

not desired rules may be appropriate depending on the application, for example separating

by the hit rate of a rule [9]. The here proposed relevance test aims at handling situations

where we are basically interested in detecting causal relations.

2 Crisp Relevance Test

A statement of the following form should be examined:

IF S THEN C

S represents an input situation, C an output event. The input situation, resp. the output
event is true or not true. The corresponding characteristic functions IS and IC take the
value 1 if the input situation, resp. the output event is true and the value 0 if the input
situation, resp. the output event is not true:

IS(X(k)) =

�
1 : S is true for the data sample dk
0 : S is not true for the data sample dk

IC(Y (k)) =

�
1 : C is true for the data sample dk
0 : C is not true for the data sample dk

X = (X1;X2; :::) is the vector with the input variables. Y is the output variable. The
premise and the conclusion refer to the same data sample dk = (x1(k); x2(k); :::; y(k)) =

(x(k); y(k)). It includes the realizations of X(k), Y (k) belonging together, for example

the observations at the date k.

Example:

X1 is the heating temperature, X2 is the outdoor temperature, Y is the room tem-
perature. There are �ve data samples (n = 5) with d1 = (50oC;�10oC; 14oC), d2 =

(35oC;�5oC; 12oC), d3 = (25oC;�2oC; 8oC), d4 = (20oC;�5oC; 5oC), d5 = (25oC;�10oC;

3oC). A possible IF/THEN statement is: IF ((heating temperature is lower than 30oC)

^ (outdoor temperature is lower than 0oC)) THEN (room temperature is under 10oC).
This corresponds to: IF (X1 < 30oC ^ X2 < 0oC) THEN (Y < 10oC). The characteristic
functions are de�ned by

IS(X(k)) =

�
1 : X1(k) < 30oC ^X2(k) < 0oC

0 : else
IC(Y (k)) =

�
1 : Y (k) < 10oC

0 : else
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For the �ve data samples the following values result: IS(x(1)) = 0, IS(x(2)) = 0,

IS(x(3)) = 1, IS(x(4)) = 1, IS(x(5)) = 1, IC(y(1)) = 0, IC(y(2)) = 0, IC(y(3)) = 1,

IC(y(4)) = 1, IC(y(5)) = 1.

The probability that the output event is true (IC(Y (k)) = 1) is p = P (C). The conditional

probability that the output event C is true under the condition that the input situation

S is true (IC(Y (k)) = 1jIS(X(k)) = 1) is p� = P (CjS) . The more these two probabilities

di�er the more the IF/THEN statement can be seen as relevant.

As these probabilities are not known, they are estimated on the basis of the data samples

dk by the relative frequencies:

p̂ =
m

n
and p̂� =

m�

n�

with

n := number of data samples dk,

m :=
P

n

k=1 IC(Y (k)),
n� :=

P
n

k=1 IS(X(k)),
m� :=

P
n

k=1 (IS(X(k)) ^ IC(Y (k))).

For X(1); :::;X(n) independent identically distributed (i.i.d.) and Y (1); :::; Y (n) i.i.d. it
can be proven that p̂ and p̂� are consistent and uniformly minimal-variance unbiased
estimators [13,28].

IS(X) resp. IC(Y ) are Bernoulli distributed with the parameter p� resp. p. On this basis,
con�dence intervals can be calculated for p and p� with the Pearson�Clopper�values [7].

They cover the probabilities p and p� each with a given probability 1 � � (con�dence
coe�cient).

As only one side of the con�dence intervals is interesting in each relevance test, either the
one-sided con�dence intervals Io := [0; po] and Iu

�
:= [pu

�
; 1] or Io

�
:= [0; po

�
] and Iu := [pu; 1]

are calculated.

In the case

p̂ < p̂� ^ po < pu
�

the statement 'IF S THEN C' is a positive relevant rule. In the case

p̂ > p̂� ^ pu > po
�

the negative statement 'IF S THEN :C' is a negative relevant rule [10]. In all other

cases is

[pu; po] \ [pu
�
; po

�
] 6= ;

and thus no relevant rule can be extracted.
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After the relevance test the relevant rules can be assigned a rating index [21,23].

Example:

There are 100 data samples (n = 100). The output event C is true in 50 of the 100 data

samples (m = 50), so that p̂ = 0:5. The input situation S is true in 20 of the 100 data

samples (n� = 20). In 18 of the 20 data samples the output event C is true (m� = 18),

so that p̂� = 0:9. As p̂ < p̂�, the interval borders p
o and pu

�
have to be calculated. With a

con�dence coe�cient of 0.95 one gets po = 0:586 and pu
�
= 0:717. The result is visualized

in Figure 1. The statement 'IF S THEN C' is a positive relevant rule as the con�dence

intervals do not intersect. The results for all possible values of m� (0; 1; 2; :::; 20) are

visualized in Figure 2.

Figure 1: Con�dence interval borders for n = 100, m = 50, n� = 20 and m� = 18

Figure 2: Con�dence interval borders for n = 100, m = 50, n� = 20 and m� = 0; 1; 2; :::; 20
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3 Algorithmic Extension of the Crisp Relevance Test

If the input situation and the output event are described by fuzzy sets [11, 29], they can

not only be true or not true, but true to a certain degree, normally between 0 and 1. Thus,

the characteristic functions IS(X(k)) and IC(Y (k)) are substituted by the membership

functions:

�S(X(k)) 2 [0; 1] and �C(Y (k)) 2 [0; 1]:

Example:

A crisp de�nition of the output event C ='room temperature is low' can be

IC(Y (k)) =

�
1 : Y (k) 2 [16oC; 19oC]

0 : Y (k) =2 [16oC; 19oC]

A fuzzy de�nition of the same output event can be

�C(Y (k)) =

8>>>><
>>>>:

0 : Y (k) < 15oC
0:5Y (k)� 7:5 : Y (k) 2 [15oC; 17oC[

1 : Y (k) 2 [17oC; 18oC[
�0:5Y (k) + 10 : Y (k) 2 [18oC; 20oC[

0 : Y (k) � 20oC

Figure 3 illustrates the crisp and fuzzy de�nition. For example, for y(1) = 13oC, y(2) =
15:5oC, y(3) = 16oC, y(4) = 17:5oC, y(5) = 21oC the degrees of membership are
�C(y(1)) = 0, �C(y(2)) = 0:25, �C(y(3)) = 0:5, �C(y(4)) = 1, �C(y(5)) = 0.

Figure 3: Crisp (a) and fuzzy (b) de�nition of the event 'room temperature is low'

In the case of fuzzy input situations and fuzzy output events, the formulas of the crisp re-

levanve test can be extended algorithmicly from integer to real values [13]. This extension
is statistically not justi�ed as the �S(X) resp. �C(Y ) are no longer Bernoulli distribu-

ted. Nevertheless, one gets a kind of interpolating solution that calculates the correct
statistical values in the special case of crisp fuzzy sets (characteristic functions).
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Then, the estimators are given by

p̂ =
m

n
and p̂� =

m�

n�

with

n := number of data samples dk,

m :=
P

n

k=1 �C(Y (k)),

n� :=
P

n

k=1 �S(X(k)),

m� :=
P

n

k=1 (�S(X(k)) ^ �C(Y (k))).

The '^' operator could be realized by one of the numerous fuzzy AND operators [24]. Re-

asonably, it should be that one that is also used to calculate �S(x(k)) from the individual

degrees of activation of the di�erent input values xi(k). For concrete decision see Section

4.1.

The real values m, n� and m� are inserted in the formulas for the calculation of the
con�dence intervals though the formulas are only de�ned for integer values of m, n� and
m�. In Figure 4 the interpolation between the crisp values is examplarily shown for the

interval border pu
�
.

Figure 4: Interpolating values (represented by small circles '�') and crisp values (repre-

sented by big circles '�'), examplarily shown for the interval border pu
�
: � � � � � n� = 20

(m� = 0; 0:25; 0:5; 0:75; 1; 1:25; :::; 20), � � � n� = 32:5 (m� = 0; 32:5
80
; 2�32:5

80
; 3�32:5

80
; :::; 32:5),

� � � n� = 40 (m� = 0; 0:5; 1; 1:5; 2; :::; 40), � � � n� = 80 (m� = 0; 1; 2; 3; :::; 80)
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4 Fuzzy Relevance Test

Alternatively to the algorithmic extension of the crisp relevance test, in this Section, a

relevance test for fuzzy rules is developped from the statistical point of view. It examines

rules of the form

IF S THEN C

where S represents a fuzzy input situation described by the membership function �S(X)

and C a fuzzy output event described by the membership function �C(Y ).

Following the idea of the crisp relevance test, �rst, adaquate probabilities and estimators

[23] have to be de�ned (Section 4.1). Afterwards a method for calculating the con�dence

intervals has to be developed. As, in contrast to the crisp case, the distribution of �S(X)

resp. �C(Y ) are not known, an exact parametric calculation of the con�dence intervals is

not possible. Two di�erent approaches can still be made:

� a non-parametric calculation,

� an asymptotic calculation.

In Section 4.2 the �rst approach is pursued by using a Bootstrap method for the calculation
of the con�dence intervals [27]. In Section 4.3 the second approach is examined [27].

4.1 Probabilities and Estimators for Fuzzy Events

Zadeh [30] de�nes the probability of a fuzzy event A by

P (A) =

Z
A

f(z)dz =

Z
R

�A(z)f(z)dz = E[�A(Z)]

with

Z: random variable,
f(z): density of Z,

�A(Z): membership function for the fuzzy event A,

E[�]: the expected value.

Other authors have seized that suggestion [2,26]. In [26] it is proven that the Kolmogoro�
axioms of a probability are ful�lled for �nite event spaces.

On this basis, the probability of the fuzzy output event C is:

P (C) = E[�C(Y )]:

The conditional probability of the fuzzy output event C under the fuzzy situation S is:

P (CjS) = P (C \ S)

P (S)
=
E[�C\S(Y;X)]

E[�S(X)]
=
E[�C(Y ) ^ �S(X)]

E[�S(X)]
with P (S) 6= 0:
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Only the algebraic product as '^' operator

�C(Y ) ^ �S(X) = �C(Y )�S(X)

makes sense in the �eld of probabilities as it is the only operator that can ful�ll the two

following statistical equations [1]:

1. P (C \ S) + P ( �C \ S) = P (S)

2. P (C \ S) = P (C)P (S) if C and S are independent fuzzy events

The compliment is de�ned by � �C(Y ) = 1� �C(Y ).

An estimator for the probability P (C) is [1,2]:

p̂ =
1

n

nX
k=1

�C(Y (k)) =
m

n
:

An estimator for the probability P (CjS) is:

p̂� =

P
n

k=1(�C(Y (k))�S(X(k)))P
n

k=1 �S(X(k))
=
m�

n�
:

For �C(Y (1)); :::; �C(Y (n)) i.i.d. and �S(X(1)); :::; �S(X(n)) i.i.d. it can be proven that
p̂, m� and n� are consistent and unbiased estimators [27]. They can be interpreted as
average degrees of membership.

Comparing these estimators with those of the algorithmic generalization of the crisp
relevance test for fuzzy values, it can be seen that the formulas of the estimators are

identical if the algebraic product is chosen as '^' operator.

4.2 Bootstrap Method

The Bootstrap methods are resampling methods suggested by Efron [3�5]. Among other
applications, they can serve to calculate con�dence intervals. The name Bootstrap comes

from the English version of the 'Baron von Muenchhausen', about whom is told that he

has pulled himself out of a swamp at his bootstraps. For the relevance test the non-
parametric Bootstrap method BCa (bias-corrected and accelerated) [4,8] is used [27].
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From the n data samples dk = (x1(k); x2(k); :::; y(k)) represented by (d1; d2; :::; dk; :::; dn)

w random samples of the size n (called Bootstrap samples) are drawn with replacement:

(d
�(1)
1 ; d

�(1)
2 ; :::; d�(1)

n
)

(d
�(2)
1 ; d

�(2)
2 ; :::; d�(2)

n
)

...

(d
�(w)
1 ; d

�(w)
2 ; :::; d�(w)

n
)

For each Bootstrap sample the estimators for P (C) and P (CjS) are calculated:
p̂�(1); p̂

�(1)
�

p̂�(2); p̂
�(2)
�

...

p̂�(w); p̂
�(w)
�

The Bootstrap replications p̂�(1); :::; p̂�(w) and p̂
�(1)

�
; :::; p̂

�(w)

�
are sorted in ascending order.

Then, the borders of the one-sided con�dence intervals are the following:

pu = p̂�(gu) (= the guth smallest value of p̂�(1); :::; p̂�(w))

po = p̂�(go) (= the goth smallest value of p̂�(1); :::; p̂�(w))

pu
�

= p̂
�(g�u)

�
(= the g�uth smallest value of p̂

�(1)

�
; :::; p̂

�(w)

�
)

po
�

= p̂
�(g�o)

�
(= the g�oth smallest value of p̂

�(1)

�
; :::; p̂

�(w)

�
)

with

gu := trunc(�u(w + 1)),
go := trunc(�o(w + 1)),
g�u := trunc(��u(w + 1)),

g�o := trunc(��o(w + 1)),

trunc(v) := whole-numbered part of v.

The � values are calculated by the distribution function � of the standard normal distri-

bution:

�u = �(ẑ0 +
ẑ0 + z(�)

1 � â(ẑ0 + z(�))
)

�o = �(ẑ0 +
ẑ0 + z(1��)

1 � â(ẑ0 + z(1��))
)

��u = �(ẑ�0 +
ẑ�0 + z(�)

1 � â�(ẑ�0 + z(�))
)

��o = �(ẑ�0 +
ẑ�0 + z(1��)

1� â�(ẑ�0 + z(1��))
)
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with

z(�), z(1��) := �-, (1� �)-quantile of the standard normal distribution,

1� � := con�dence coe�cient,

ẑ0, ẑ�0 := bias parameters,

â, â� := acceleration parameters.

The bias parameters are calculated by the following quantiles of the standard normal

distribution

ẑ0 = z

� r
w

�

ẑ�0 = z

�r�
w

�

with

r := number of Bootstrap replications p̂�(�) that are lower than p̂,
r� := number of Bootstrap replications p̂

�(�)
�

that are lower than p̂�.

The acceleration parameters are calculated by

â =

P
n

l=1

�
p̂(�) � p̂(l)

�3
6
hP

n

l=1 (p̂
(�) � p̂(l))

2
i3=2

â� =

P
n

l=1

�
p̂
(�)
�

� p̂
(l)
�

�3
6

�P
n

l=1

�
p̂
(�)

�
� p̂

(l)

�

�2�3=2

with

p̂(l), p̂
(l)

�
:= estimators on the basis of the lth Jacknife sample (d1; :::; dl�1; dl+1; :::; dn),

p̂(�) := 1
n

P
n

l=1 p̂
(l),

p̂
(�)
�

:= 1
n

P
n

l=1 p̂
(l)
�
.

The BCa con�dence intervals are second-order accurate [25].

In this context, an essential drawback of the Bootstrap method is the necessary calculating

time, as a minimum number of Bootstrap samples for the calculation of con�dence inter-

vals is w = 1000 [5]. Consequently, for high values of n and a high number of IF/THEN
statements the method is not practicable.

Diagrams like in Figure 2 are not possible for the Bootstrap method as the results are
depending on the concrete data samples. Results are examplarily calculated in Section 5.
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4.3 Asymptotic Calculation of the Con�dence Intervals

The conventional distribution functions are not adequate for �S(X) and �C(Y ). The

beta distribution comes nearest, as it has values between 0 and 1. But it ignores that

�S(X) and �C(Y ) are partly descretely (0, 1) and partly continuously (]0; 1[) distributed.

Nevertheless, one could calculate con�dence intervals for E[�C(Y )] that is distributed

according to the sum of beta distributed variables. However, the resulting distribution of

the quotient E[�C(Y )�S(X)]

E[�S(X)]
can not be derived easily, so that con�dence intervals for the

conditional probability can not be calculated.

Another possibility is to assume forthwith a distribution for E[�C(Y ) instead for �C(Y ).

According to the central limit theorem [7], the distribution of the sum of any distributed

variables converges to a normal distribution for n converging to in�nity (under easily

ful�llable assumptions), so it can be shown that the following is valid:

1
n

P
n

k=1 (�C(Y (k))� E[�C(Y (k))])p
V AR[�C(Y (k))]

p
n

n!1� N(0; 1):

with

n := number of data samples dk,
V AR[�] := variance,
N(0; 1) := standard normal distribution.

An approximation to a normal distribution can already be obtained for smaller values of
n.

Example: In Figure 5 approximations for n = 20 and n = 40 are exemplarily shown.
First, 250 samples with n = 20 are taken out of 35000 measured data values. For each
sample

P
n

k=1 �C(y(k)) is calculated. Here, the output event C is described by a trian-
gular membership function. Afterwards, the same is done with n = 40. For both cases
histograms are calculated and normal distributions are adjusted. The approximation for

n = 40 is better than for n = 20 as expected.

As a conclusion, pu and po can be calculated asymptotically for E[�C(Y )] for Y (1); :::; Y (n)

i.i.d. by

pu = max

�
0;
m

n
� tn�1;1��p

n
SC

�

po = min

�
m

n
+
tn�1;1��p

n
SC; 1

�

with

n := number of data samples dk,

tn�1;1�� := (1� �) quantile of the t distribution with (n� 1) degrees of freedom,

1� � := con�dence coe�cient,

SC :=

q
1

n�1

P
n

k=1

�
�C(Y (k)� m

n

�2
(estimator for standard deviation),

m :=
P

n

k=1 �C(Y (k)).
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(a) 20 data samples (b) 40 data samples

Figure 5: Adaption of normal distributions to histograms

For the conditional probability the calculation is more di�cult because of the quotient.
According to the central limit theorem,m� and n� are asymptotically normal distributed.
Then, the Fieller method [6] can be applied for X(1); :::;X(n) i.i.d. and Y (1); :::; Y (n)
i.i.d. [27].

The following asymptotic con�dence interval borders result from this approach:

pu
�
= max

8><
>:0;

m�n�

n
� t2

n�1;1��SCS;S

n2
�

n
� t2

n�1;1��S
2
S

�

�

(
m�n�

n2
�

t2
n�1;1��

n
SCS;S)2 � ((

m�

n
)2 �

t2
n�1;1��

n
S2
CS

)((
n�

n
)2 �

t2
n�1;1��

n
S2
S
)

(
n�

n
)2 �

t2
n�1;1��

n
S2
S

po
�
:= min

8><
>:
m�n�

n
� t2

n�1;1��SCS;S

n2
�

n
� t2

n�1;1��S
2
S

+

+

(
m�n�

n2
�

t2
n�1;1��

n
SCS;S)2 � ((

m�

n
)2 �

t2
n�1;1��

n
S2
CS

)((
n�

n
)2 �

t2
n�1;1��

n
S2
S
)

(
n�

n
)2 �

t2
n�1;1��

n
S2
S

; 1
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with

n := number of data samples dk,

m� :=
P

n

k=1 �C(Y (k))�S(X(k)),

n� :=
P

n

k=1 �S(X(k)),

S2
CS

:= 1
n�1

P
n

k=1(�C(Y (k))�S(X(k)) � m�

n
)2,

S2
S
:= 1

n�1

P
n

k=1(�S(X(k))� n�

n
)2,

SCS;S := 1
n�1

P
n

k=1(�C(Y (k))�S(X(k))� m�

n
)(�S(Y (k))� n�

n
),

tn�1;1�� := (1� �) quantile of the t-distribution with (n� 1) degrees of freedom,

1� � :=con�dence coe�cient.

It can be shown that the result for the unconditional probability is a special case of the

result for the conditional probability with S = 
 and �
 = 1 [27].

A main di�erence to the crisp relevance test is that the quantities m, n, m�, n� are not

su�cient to calculate the con�dence intervals. Additionally, the estimated variances S2
C
,

S2
S
, S2

CS
, SCS;S are necessary. Thus, for one combination of m, n, m�, n� an in�nity

number of values for the con�dence interval borders is possible.

For the unconditional probability, the smallest con�dence intervals are achieved for S2
C
=

0. Then, the con�dence interval borders are pu = po = p̂. The largest con�dence intervals
are achieved if �C(Y (k)) 2 f0; 1g and �S(X(k)) 2 f0; 1g is valid for all values of k. Then,
the variance S2

C
becomes maximum. So, the range of values for the con�dence interval

borders of p is given by:

max

(
0;
m

n
� tn�1;1��p

n(n� 1)

r
m� m2

n

)
� pu � m

n

m

n
� po � min

(
m

n
+

tn�1;1��p
n(n� 1)

r
m� m2

n
; 1

)

For the conditional probability, the smallest con�dence intervals are achieved for S2
S
= 0,

S2
CS

= 0, SCS;S = 0. Then, the con�dence interval borders are pu
�
= po

�
= p̂�. Ana-

lyses show that the largest con�dence intervals are achieved if �C(Y (k)) 2 f0; 1g and

�S(X(k)) 2 f0; 1g is valid for all values of k. Then, the variances S2
S
, S2

CS
, SCS;S be-

come maximum. A proof could not be supplied yet. Assuming the correctness of that

relationship, the range of values for the con�dence interval borders of p� is given by:

max

8>>>><
>>>>:
0;
m�

n�
�

vuuuuuut
m2

�

n2
�

�
m2

�

��
1 � t2

n�1;1��

m�

�
n� 1 + t2

n�1;1��

�

n2
�

��
1� t2

n�1;1��

n�

�
n� 1 + t2

n�1;1��

�
9>>>>=
>>>>;
� pu

�
� m�

n�
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m�
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�
� min
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>>>>:
m�

n�
+
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m2

�

n2
�

�
m2

�

��
1 � t2

n�1;1��

m�

�
n� 1 + t2

n�1;1��

�

n2
�

��
1 � t2

n�1;1��

n�

�
n � 1 + t2

n�1;1��

� ; 1
9>>>>=
>>>>;

The range of possible values for the conditional probability is almost identical to the range

of possible values for the unconditional probability if m� = m and n� = n. The di�erence

is getting smaller with n� increasing and n decreasing.

Example:

In Figure 6 the possible results for pu and po are shown exemplarily for n = 60 and

0 < m < 60. The possible values for pu lie in the lower marked area and the possible

values for po lie in the upper marked area. (The same diagram is achieved for pu
�
and

po
�
for n� = 60 and 0 < m� < 60.) The circles represent the results for �C(Y (k)) 2

f0; 1g ^ �S(X(k)) 2 f0; 1g.

Figure 6: Possible values for the con�dence interval borders for n = 60 and 0 < m < 60

For a more detailed view a cutting of the upper area is presented in Figure 7. The range
of values of m is 38 < m < 41. The big circles are adopted from Figure 6. The dotted

line is the upper limit of po. The stars represent the results for the following values of
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Figure 7: Exemplary values of po for n = 60 and 38 < m < 41

�C(y(k)):

�C(y(1)) = 0

�C(y(2)) = 0
...

�C(y(20)) = 0

�C(y(21)) = 1

�C(y(22)) = 1
...

�C(y(59)) = 1

�C(y(60)) = 1 � q=5

with q = 1; 2; 3; 4. The data samples are constructed in that way that the value of p̂ is

decreased iteratively from 40=60 to 39=60 by changing only one data sample.

The small circles represent the results for the following values of �C(y(k)):

�C(y(1)) = 0 + r=12

�C(y(2)) = 0 + r=12
...

�C(y(20)) = 0 + r=12

�C(y(21)) = 1� r=24

�C(y(22)) = 1� r=24
...

�C(y(60)) = 1� r=24
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with r = 1; 2; :::; 8. The data samples are constructed in that way that p̂ remains constant

40=60 while all data samples of zero (one) are simultaneously increased (decreased) until

all data samples have the same value of 2=3. For the conditional probability an equivalent

diagram to Figure 7 can be constructed.

Usually, the range of values leading to degrees of membership greater than zero is only a

part of the whole range of values covered by data samples. Then, the con�dence interval

borders lie mainly near the maximum values. This is illustrated in Figure 8. For each

diagram, 60 data samples are drawn randomly (identically distributed) 10000 times. Then,

for each of the 10000 sets of data samples, the upper border po of the con�dence interval

is calculated for the fuzzy event 'room temperature is low' (Figure 3). The whole upper

area of possible values of po (Figure 6) is devided in �ve sections. They are de�ned by

building �ve equidistant intervals for each given value of p̂. The �rst section includes the

lowest possible values (p̂), the �fth section the greatest possible values (upper border of

the upper area). The 10000 results of po are assigned to the di�erent sections.

(a) random data samples between
10

oC and 30
oC

(b) random data samples between
14

oC and 22
oC

(c) random data samples between
18

oC and 20
oC

(d) random data samples between
18:5

oC and 19:5
oC

Figure 8: Number of values of po that lie in the equidistant interval 1; 2; :::; 5 between

the lower and upper limit of po for 10000 sets of random (identically distributed) data
samples of the size n = 60

In Figure 8(a) the random temperature values lie between 10oC and 30oC, so that the

designed fuzzy set covers only a part of the range of values. Consequently, the most results
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for po lie in the �fth section.

In the case that the random values lie between 14oC and 22oC, almost the whole range of

values is covered by the designed fuzzy set. Then, the values of po lie about hal�y in the

fourth and hal�y in the �fth section (Figure 8(b)).

In the case that the random values lie between 18oC and 20oC, all values lie on the

descending edge of the fuzzy set, so that the degrees of membership of 0 and 1 have each

a probability of zero. In this exceptional case the values of po lie mainly in the third

section (Figure 8(c)).

In the case that the random values lie between 18:5oC and 19:5oC, all values lie on the

middle of the descending edge of the fuzzy set, so that the degrees of membership are

between 0:75 and 0:25. In this extremely exceptional case the values of po lie all in the

second section (Figure 8(d)).

The same e�ect can be observed for the con�dence interval borders of the conditional

probability.

As the calculations are asymptotically, problems arise for smaller numbers of data samples
and here, especially, for the calculation of pu

�
if p̂� � 1 (positive rule) and for the calculation

of po
�
if p̂� � 0 (negative rule). This results from the fact that for p̂� = 0 there is po

�
= 0 and

for p̂� = 1 there is pu
�
= 1 � independent of the number of data samples. Consequently,

rules that are correct for almost all data samples will be seen as relevant even if the
number of data samples is small.

5 Comparison

In this Section, �rst, the results of the algorithmic extension of the crisp relevance test

are compared with the results of the asymptotic fuzzy relevance test. Afterwards, a

concrete set of data samples of a chemical reactor is taken to compare all three approaches
exemplarily by means of three IF/THEN statements.

In Figure 9 the interpolating values of po and pu of the extension of the crisp relevance
test are represented together with the possible values of po and pu of the asymptotic fuzzy

relevance test of Figure 6 (n = 60 and 0 � m � 60). The interpolating values of the crisp

relevance test lie near the lower and upper border of possible values of the asymptotic
fuzzy relevance test. A further comparison is interesting with respect to two viewpoints:

� How good is the result of the asymptotic fuzzy relevance test in the special case of

crisp sets (�C(Y (k)) 2 f0; 1g ^ �S(X(k)) 2 f0; 1g)?
The crisp relevance test supplies the exact results. The results of the asymptotic

fuzzy relevance test are given by the circles of Figure 9. The di�erence between the
results is the error of the asymptotic fuzzy relevance test in the case of crisp sets.

The error is decreasing monotonously to zero for an increasing n.
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� How good is the interpolation by the extension of the crisp relevance test in the case

of fuzzy sets (�C(Y (k)) 2 [0; 1] ^ �S(X(k)) 2 [0; 1])?

Considering Figure 8, the error is small if only a part of the data samples realizes

in the range of the fuzzy set of the input situation and in the range of the fuzzy

set of the output event. Then, the variances are high and the con�dence interval

borders are near the lower and upper border of the possible values. If the data

samples realize mainly at the increasing or decreasing edge of the fuzzy set of the

input situation and the fuzzy set of the output event, the variances are low and the

error is greater. Principally, triangular fuzzy sets will lead to smaller errors than

trapezium fuzzy sets and fuzzy sets with low density to greater errors than fuzzy

sets with high density.

Figure 9: Comparison of the con�dence interval borders pu and po of the asymptotic fuzzy

relevance test and the crisp relevance test for fuzzy values for n = 60 and 0 < m < 60

Using the extension of the crisp relevance test, the con�dence intervals are mostly greater

than necessary. This can be interpreted as a conservative relevance test that aspires a

minimum con�dence coe�cient of 1��. Consequently, it can happen that statements are

not accepted as rules that would be accepted if an exact con�dence coe�cient of 1�� is
demanded.

In accordance with the more complex formula, the computing time of the asymptotic
fuzzy relevance test is a little bit longer than the computing time of the crisp relevance

test. Whereas, the computing time of the Bootstrap fuzzy relevance test is not practical

for testing a higher number of statements. Nevertheless, the Bootsprap fuzzy relevance
test can be used to judge the results of the other two relevance tests, as it supplies very
good results [5,25].

In Figure 10 the results of the three relevance tests of three di�erent statements are shown.

The con�dence intervals are calculated with a con�dence coe�cient of 0:95. Measured
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by the results of the Bootstrap fuzzy relevance test, the results of the asymptotic fuzzy

relevance test are very good. The con�dence intervals of the extension of the crisp rele-

vance test are larger. The �rst two statements are seen as relevant by all three tests as

the con�dence intervals do not overlap. The �rst statement represents a negative relevant

rule, the second statement a positive relevant rule. The third statement is seen as a po-

sitive relevant rule by the fuzzy relevance tests, but not by the algorithmic extension of

the crisp relevance test. Here, the larger con�dence intervals cause an overlapping.

(a) IF (oil temperature is in set 1) THEN (reactor temperature is in set 4) (n = 206,m = 93:86,
n� = 15:51, m� = 0:13)

(b) IF (oil temperature is in set 4) THEN (reactor temperature is in set 4) (n = 206,m = 93:86,
n� = 25:69, m� = 17:91)

(c) IF (oil temperature is in set 2) THEN (reactor temperature is in set 5) (n = 206,m = 92:85,
n� = 98:95, m� = 57:76)

Figure 10: Comparison of con�dence interval borders for process data of 206 data samples

for three selected IF/THEN statements: ']','[' results of the extension of the crisp relevance
test, '"' results of the Bootstrap fuzzy relevance test, '#' results of the asymptotic fuzzy
relevance test

6 Conclusions

In the �eld of data-based fuzzy modelling, the incremental collecting of single relevant
rules allows to handle complex problems. To decide if an IF/THEN statement is a relevant

rule a relevance test is necessary. A statistical approach is given by the demand that the
con�dence intervals of the probabilities p and p� do not overlap � with p the probability
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that the output event of the conclusion is true and p� the probability that the output

event is true under the condition that the input situation of the premise is true.

For crisp rule-based modelling the con�dence intervals can be calculated by conventional

statistical formulas. For fuzzy modelling problems arise. Three di�erent methods are

proposed in this paper: an algorithmic extension of the crisp relevance test, a Bootstrap

fuzzy relevance test and an asymptotic fuzzy relevance test.

The results of the Bootstrap fuzzy relevance test are very good, but the high computing

time makes its application only practicable for a small number of data samples. The

asymptotic fuzzy relevance test supplies good results for a higher number of data samples.

The algorithmic extension of the crisp relevance test tends to calculate too large con�dence

intervals, but has the smallest computing time.

The employment of the three relevance tests will depend on the respective application.

For high dimensional search spaces with a multitude of relevant rules, the algorithmic

extension is acceptable, especially, if for each input and output variable several trapezium
fuzzy sets are reasonable. In the other cases, the higher e�ort of the fuzzy relevance tests
can remunerate.

The calculation of estimators and con�dence intervals on fuzzy data is also meaningful

for other test and rating strategies, e.g. the results can be directly used for the method
'Con�dent Normalized Hit Rate' of Jessen and Slawinski [9].
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