
A Comparison of Genetic Programming and Neural Networks

in Medical Data Analysis

Markus Brameier Wolfgang Banzhaf

Fachbereich Informatik

Universit�at Dortmund

44221 Dortmund, GERMANY

email: brameier,banzhaf@ls11.informatik.uni-dortmund.de

Abstract

We apply an interpreting variant of linear genetic programming to several diag-

nosis problems in medicine. We compare our results to results obtained with neural

networks and argue that genetic programming is able to show similar performances in

classi�cation and generalization even when using a relatively small number of gener-

ations. Finally, an e�cient algorithm for the elimination of introns in linear genetic

programs is presented.

1

1 Introduction

Genetic programming (GP) has been formulated originally as an evolutionary method
for breeding programs using expressions from the functional programming language LISP
[5]. We employ a new variant of linear genetic programming (LGP) using sequences
of instructions of an imperative programming language. More speci�cally, the method
operates on genetic programs being represented as linear sequences of C instructions. One
of the strength of LGP is that introns, i.e. dispensible instructions that do not a�ect
program behavior, can be removed before a genetic program is executed during the �tness
calculation. This does not cause any changes to the individuals in the population but only
results in an enormous speedup. Introns are also found in biological genomes, where they
appear in DNA of eucaryotic cells. It is interesting to note that these natural introns are
removed, too, before proteins are synthesized.

In this paper genetic programming is applied to medical data analysis. In particular LGP
is tested on 6 diagnosis problems that have been taken from the Proben1 benchmark
set of real world problems originally established for neural networks [8]. The application
is a demonstration of the abilities of genetic programming in data mining, where general
mathematical descriptions of regularities in data are to be found without preprocessing.
For supervised learning tasks this normally means to �nd classi�ers that generalize from
a set of learned data to a set of unknown data.

The main objective of this paper is to show that for the problems discussed genetic pro-
gramming is able to achieve very similar classi�cation rates and generalization performance
than is possible with neural networks.

So far GP has not been used very extensively for medical applications [3]. This stands in
contrast to neural networks which are increasingly being seen as an alternative to classical
statistical methods in this area. Ripley and Ripley [10] review several neural network
techniques in medicine including methods for diagnosis and prognosis tasks, especially
survival analysis. Most applications of neural networks to medicine refer to classi�cation
tasks.

2 Genetic Programming

Evolutionary algorithms mimic aspects of natural evolution to optimize a solution towards
a de�ned goal. Following Darwin's principle of natural selection di�erential �tness advan-
tages are exploited in a population to lead to better solutions. Di�erent research sub�elds
of evolutionary algorithms have emerged, such as genetic algorithms [4], evolution strate-

gies [11], and evolutionary programming [2]. In recent years these methods have been
applied successfully to a wide spectrum of problem domains, especially in optimization.
A general evolutionary algorithm can be summarized as follows:

Algorithm (Evolutionary Algorithm):

1. The population of individual solutions is initiated to a random content.

2. Individuals are selected from the population randomly and are compared with re-
spect to their �tness. The �tness measure de�nes the problem the algorithm is

2

expected to solve.

3. Only �tter individuals are modi�ed by the following genetic operations:

� Identical reproduction

� Exchange of a single unit in an individual at a random position (mutation)

� Exchange of substructures between two individuals (recombination)

4. The currently best individual represents the best solution found so far.

A comparatively young and growing research area in this context is genetic programming
[5]. Genetic programming uses the mechanisms behind natural selection for the evolution
of computer programs. The approach has been formulated originally using tree structures
as individuals that were represented by variable length LISP S-expressions. The inner
nodes of these trees are functions while the leafs are terminals that mean input variables
or constants. The operators applied to generate variants, i.e. recombination and muta-
tion, must guarantee syntactic closure during evolution. In other words, no syntactically
incorrect programs are allowed to be generated. Figure 1 illustrates the recombination
operation in tree-based genetic programming.

*

x x

*

+

2 x 1

(+ 4 (* x x))

4Parents

(+ 4 (* (+ y 1) x))

+

*

x

1y

 +2

*

x 4Children

(* (- 2 x) x)

x

 +

(* (- 2 x) (+ y 1))

y

-

-

Figure 1: Crossover in tree-based GP

In recent years, the scope of genetic programming has expanded considerably and now
includes evolution of linear and graph-like representations of programs as well, in addition
to tree representations [1].

3

2.1 Linear Genetic Programming

In the experiments described below we use linear genetic programming, a genetic pro-
gramming approach with a linear representation of individuals. Its main characteristic
in comparison to tree-based genetic programming is that not expressions of a functional
programming language (like LISP) but programs of an imperative language (like C) are
evolved.

Linear genetic programming has been introduced by Nordin using machine code programs
[7, 1]. In AIMGP (Automatic Induction of Machine code by Genetic Programming) indi-
viduals are directly manipulated as binary machine code in memory and directly executed
without passing an interpreter during �tness calculation. This results in a signi�cant
speedup compared to interpreting systems. A drawback of AIMGP systems is their re-
stricted portability.

Our LGP system implements an interpreting variant of linear genetic programming. An
individual program is represented as a variable length string composed of simple C instruc-
tions. Each C instruction is encoded in 4 bytes holding the operation identi�er, indices of
the participating variables and constant values. This representation allows an e�cient re-
combination of the programs (see �gure 2) as well as an e�cient interpretation during the
�tness calculation. The maximum number of instructions per individual is restricted here
to 256. In most cases this has been experienced to be a su�cient size of programs. Thus,
one individual uses at most 1K of memory producing a system which is quite memory
e�cient.

An excerpt of a linear individual program looks like:

void ind(v)

double v[8];

{

...

v[0] = v[5] + 73;

v[7] = v[0] - 59; (I)

if (v[1] > 0)

if (v[5] > 21)

v[4] = v[2] * v[1];

v[2] = v[5] + v[4]; (I)

v[6] = v[0] * 25; (I)

v[6] = v[4] - 4;

v[1] = sin(v[6]);

if (v[0] > v[1]) (I)

v[3] = v[5] * v[5]; (I)

v[7] = v[6] * 2;

v[5] = v[7] + 115; (I)

if (v[1] <= v[6])

v[1] = sin(v[7]);

}

(I) stands for intron instruction (see section 2.2).

The instruction set of the system is composed of arithmetic operations, binary operations,
conditional branches and function calls. All these instructions operate on indexed variables

4

vi or integer constants c from the terminal set. Currently, the maximum number of input
variables is restricted to 256 and the constants range from 0 to 255. The general C notation
of each instruction class listed below shows that { except for the branches { all instructions
implicitly include an assignment to a variable. In tree-based genetic programming, these
side-e�ects have to be incorporated explicitly.

Arithmetic Operations: op 2 f + � � = g

vi = vj op vk;

vi = vj op c;

Binary Operations: op 2 f � � & j g

vi = vj op vk;

vi = vj op c;

Conditional Branches: op 2 f > � g

if (vj op vk)

if (vj op c)

Function Calls: f 2 f sin cos sqrt exp log g

vi = f(vj);

In order to guarantee syntactic closure partially de�ned operations and functions are
protected by returning a constant arti�cially de�ned value (here 1) for all unde�ned inputs.
Because binary operations are restricted to integer variables they are not used in the
experiments reported here. If a condition is false only the instruction directly following
the branch instruction is skipped. This treatment of conditionals has enough expressive
power because leaving out or executing an instruction can deactivate preceding e�ective
code or reactivate preceding introns respectively (see section 2.2).

The evolutionary algorithm of the system realizes a simple steady-state 2� 2-tournament
selection. Figure 2 illustrates the two-point string crossover used in LGP for recombining
the two winners of the tournament. A segment of random position and length is selected
in each of the two parents for the exchange. If one of the children would exceed the
maximum length crossover with equally sized segments is performed. Crossover points
only occur between instructions but not within. Inside the instructions the mutation
operation ensures that only instructions from the allowed instruction set are created with
valid ranges of operator identi�ers, variable indices and constants. Exchanging a variable
by a single mutation may have an enormous e�ect on the program
ow (see section 2.2).
There is a range in which the integer constants are allowed to change. It is controlled by
the mutation step size parameter. Only tournament winners are mutated.

2.2 Removing Introns at Runtime

In nature introns denote DNA segments in genes with information that is not expressed
in proteins. The existence of introns in eucaryotic genomes may be explained in di�erent
ways: (i) Since the information for one gene is often located on di�erent exons (gene parts

5

Parent 1

Parent 2

Instruction

Child 1

Child 2

v[0] = v[1] + 16;

Figure 2: Crossover in linear GP

that are expressed) introns may help to reduce the number of destructive recombinations
between chromosomes by simply reducing the probability that the recombination points
will fall within an exon region [12]. In this way complete protein segments encoded by
speci�c exons are more frequently mixed than interrupted during evolution. (ii) Perhaps
even more important for understanding the evolution of higher organisms is the realization
that introns allow a new protein to be tested while enabling the organism to retain the
original genetic information.

After the DNA is copied the introns are removed from the resulting messenger-RNA that
actually is participating in gene expression, i.e. protein biosythesis. A biological reason
for the removal of introns might be that the genes are more e�ciently translated during
protein biosynthesis in this way. Without being in con
ict with ancient information held
in introns, this might have an advantage, presumably through decoupling of DNA size
from direct evolutionary pressure.

In analogy, an intron in a genetic program may be de�ned as a program part without any
in
uence on the calculation of the output for all possible inputs. Other intron de�nitions
common in genetic programming would postulate this to be true only for the �tness cases.
Introns act as redundant code segments that protect advantageous building-blocks from
being destroyed by the crossover operator.

�
�
�

�
�
���

��

�
�
�
�

�
�
�
�

Individual

effective Program

Fitness
CalculationElimination

Intron
Population

Figure 3: Intron elimination in linear GP

The program structure in linear genetic programming allows introns to be detected and
eliminated much easier than in tree-based genetic programming. In our system all struc-

6

tural introns, i.e. instructions that emerge from manipulating variables which have no
in
uence on the output at that position, are removed from a genetic program before eval-
uating �tness cases. This is done by copying all e�ective instructions, i.e. non-introns, to
a temporary program bu�er. It does not a�ect the representation of the individuals in the
populations (see �gure 3).

The following algorithm detects all structural introns in a linear genetic program. In the
example program from section 2.1 all instructions marked with an I are structural introns
provided that the outputs are stored in variable v0 and v1.

Algorithm (Intron detection):

1. Let set V contain all variables that have an in
uence on the result at the current
program position.
Set V = f vi j vi is output variable g.
Start at the last program instruction and move backwards.

2. Mark the next assignment with destination variable vi 2 V .
If such an instruction is not found, ! 5.

3. If the assignment directly follows a branch mark the branch too
else remove vi from V .

4. Insert the operand variables vj of new marked instructions in V (if not already
contained). ! 2.

5. Stop. All non-marked instructions are introns.

All marked instructions are moved to form the e�ective program. The algorithm needs
linear runtime O(n) at worst where n is the maximum length of the genetic program.
Actually, detecting and removing introns from a program only requires about the same
time as calculating one �tness case. The more �tness cases are calculated the more this
computational overhead will pay o�.

By not executing the intron instructions during �tness evaluation a large amount of com-
putation time is saved. A good estimate of the overall speedup is the factor

1

1� pintron

where pintron denotes the average intron percentage of a genetic program. This percentage
�gure of all individuals in the population is computed by the algorithm as a side-e�ect
and can be used for further statistical analysis. In most of the runs documented below
an average intron rate of about 80% has been observed. As a result, a speedup factor of
about 5 can be achieved.

3 Benchmark Problems

Most GP papers today present performance results of a new method only for a very selected
number of problems. There is still a lack of a standard set of benchmark problems for

7

genetic programming. Such a set would give the researchers the opportunity for a better
comparability of their published methods and results. An appropriate benchmark set
should be composed of arti�cially generated data sets as well as real data sets taken from
real problem domains.

The drawback with synthetic benchmark problems is that a simple exact solution is already
known a-priori and that the data sets are arti�cially composed of su�cient information
to evolve this solution. A setting like this normally says nothing about the generalization
performance of a method and how the results would hold in similar, more realistic domains.
In order to make the results obtained with arti�cial models more realistic and also to
improve the generalization ability, noise has to be added in the data generation process.
One advantage, however, of arti�cial data sets compared to real world data is that the
characteristics of the data are in most cases exactly known, making it easier to rate
problems by di�culty in relation to the tested method.

A good reason, on the other hand, for testing on real data is that it guarantees results
that are relevant for at least the tested problem domains. Several data sets from di�erent
domains should be tried to increase the con�dence that the tested method is not depend-
ing on a speci�c problem or composition of data. In general new techniques in genetic
programming are not yet tested thoroughly enough on real world problems.

4 Medical Data Analysis

Genetic programming has not been applied very extensively for analyzing medical data
until now. Gray et al. [3] report from an early application of GP in cancer diagnosis where
the results had been found to be better than with a neural network. But the dimension
of the data sets was rather small compared to problem complexities dealt with here.

In this examination genetic programming is applied to 6 medical problem domains using 3
data sets from each domain. All data are taken from an existing collection of benchmark
problems, Proben1 [8], that originally has been established for neural networks and that
holds only data sets from real world problems. The results obtained with one of the fastest
learning algorithms for feed-forward neural networks (RPROP) accompany the Proben1
benchmark set to serve as a direct comparison with other methods. Comparability and
reproducibility of the results is guaranteed by careful documentation of the experiments.
Following the benchmarking idea and in order to increase the con�dence in our own results
with linear genetic programming we have adopted the results for neural networks from [8].

The main objective here in general is to realize the fairest comparison possible between
genetic programming and neural networks in medical data analysis and in medical diagno-
sis. We will show that for all problems discussed the performance of GP in generalization
comes very close to or is even better than the results documented for neural networks in
[8]. The relatively small number of runs per data set can only give an order of magnitude
comparison. In addition the results for both methods might not be the absolutely best
because all experiments were run directly on raw data, i.e. data that had not undergone
preprocessing.

Table 1 gives a brief description of the diagnosis problems and the diseases that are to
be predicted. Diagnosis problems always describe classi�cation tasks that are much more
common in medicine than regression problems.

8

Problem Diagnosis task

cancer benign or malignant breast tumor
diabetes diabetes positive or negative
gene intron-exon, exon-intron or no boundary in DNA sequence
heart diameter of a heart vessel is reduced by more than 50% or not
horse horse with a colic will die, survive or must be killed
thyroid thyroid hyperfunction, hypofunction or normal function

Table 1: Diagnosis problems

To improve the comparability of results, all Proben1 problems are equally represented.
Each data set is organized as a sequence of independent example vectors divided into input
and output values (supervised learning). All input values are restricted to the continuous
range [0,1] except for the gene data set where only -1 or 1 is used. Using a binary 1-of-m

output encoding each output represents one of the m classes distinguished in the de�nition
of a problem and exactly one output takes the value 1 while the others are set to 0.

It is characteristic for medical data that they almost always su�er from unknown at-
tributes. For that reason in most of the data sets missing inputs had to be arti�cially
completed, e.g. 30% in case of the horse data set. In contrast, heart (originally named
heartc in [8]) is clean from any missing data.

Table 2 gives an overview of the speci�c complexity of each problem, i.e. the number of
examples, inputs, output classes as well as the number of problem attributes the inputs
are subdivided into.

Problem Attributes Inputs Output classes Examples

cancer 9 9 2 699
diabetes 8 8 2 690
gene 60 120 3 3175
heart 13 35 2 303
horse 20 58 3 364
thyroid 21 21 3 7200

Table 2: Problem complexities

5 Experimental Setup

Genetic Programming

For each data set at least 30 runs have been performed with LGP, all starting with the same
con�guration but with a di�erent random seed. Table 3 lists the parameter settings used
for all problems and data sets. No special parameter adjustments have proven necessary
for the di�erent problems.

In all cases the population is subdivided into 10 demes each holding 500 individuals.
Migration between demes is organized in a ring topology in that every deme has a �xed
successor. After each generation the individuals of every deme are sorted by �tness and
a certain percentage of best individuals, determined by the migration rate, emigrates into

9

the successor deme where it replaces the worst individuals. Migration rates of 5 to 7
percent have been found to produce good results.

Population size 5000
Number of demes 10
Migration rate 5-7%
Classi�cation error weight 1.0
Maximum number of generations 200
Crossover probability 90%
Mutation probability 90%
Mutation step size for constants �5
Maximum program size 256 instructions
Initial maximum program size 25 instructions
Function set f + � � = sin exp if> if� g

Terminal set f0,..,255g [fv0,..,vn�1g
Random seed system time

Table 3: Parameter settings (LGP)

For benchmarking reason the partitioning of all Proben1 data sets is �xed. The training
set always includes the �rst half of the examples from a data set, the next quarter is de�ned
as the validation set and the last quarter is the test set. For some problems the composition
of the training, validation and test set can di�er signi�cantly in their representation of the
problem space.

The �tness of an individual program is always evaluated over the complete training set.
After each generation, the error of the best-so-far individual is calculated using the val-
idation set. From these individuals the one with minimum validation error is tested on
the test set once after the training is over. Note that this is not necessarily the individual
with minimum test error!

Throughout this paper, �tness F of an individual program p is calculated as the mean

square error (MSE) between the predicted output opred
ij

and the desired output odes
ij

for all
n training examples and m outputs. Additionally, a classi�cation error (CE) is computed
as the number of incorrectly classi�ed examples. To guarantee a fair comparison, the
winner-takes-all classi�cation method has been adopted from [8]. It simply designates the
class with the highest output as response class. The classi�cation error is added to the
�tness while its in
uence is controlled by a weight parameter w (see table 3).

F (p) =
1

n �m

nX

i=1

mX

j=1

(opred
ij

� odes
ij

)2 + w � CE =MSE + w � CE

Because only classi�cation problems are dealt with in this contribution the test classi�ca-
tion error characterizing the generalization performance and the generation in which the
individual with the minimum validation error appeared, i.e. the e�ective training time or
learning speed, are of main interests.

10

Neural Networks

The experimental results in [8] have been achieved using multi-layer perceptrons (MLPs)
without shortcut connections. Di�erent numbers of hidden units and hidden layers (one or
two) have been tried to �nd out the best net architecture for each data set. The method
applied for training was always RPROP learning [9], a backpropagation variant about as
fast as Quickprop but with less ajustments of the parameters necessary. For the RPROP
parameter settings and the special network architectures, see [8].

The generalization performance on the test set was computed for that state of the network
which had minimum validation error during training. The number of epochs trained until
this state denotes the learning speed of neural networks.

6 Results and Comparison

GP

Problem Validation CE Test CE e�ective Generations
best average stddev best average stddev average stddev

cancer1 1.71 2.45 0.34 0.57 2.18 0.59 26 24
cancer2 0.57 1.39 0.40 4.02 5.72 0.66 26 25
cancer3 1.71 2.62 0.45 3.45 4.93 0.65 17 11
diabetes1 20.31 22.19 1.09 21.35 23.96 1.42 23 14
diabetes2 21.35 23.21 1.33 25.00 27.85 1.49 28 25
diabetes3 25.52 26.69 0.65 19.27 23.09 1.27 21 15
gene1 7.81 11.16 2.30 9.21 12.97 2.24 77 21
gene2 9.07 12.93 2.30 8.45 11.95 2.15 90 20
gene3 7.18 10.77 2.11 10.09 13.84 2.09 86 14
heart1 7.89 10.53 2.38 18.67 21.12 2.02 17 14
heart2 14.47 18.58 2.39 1.33 7.31 3.31 20 14
heart3 15.79 18.81 1.47 10.67 13.98 2.03 21 18
horse1 28.57 32.40 2.22 23.08 30.55 2.24 18 16
horse2 29.67 34.30 2.65 31.87 36.12 1.95 19 16
horse3 27.47 32.65 1.94 31.87 35.44 1.77 15 14
thyroid1 0.83 1.31 0.34 1.28 1.91 0.42 55 18
thyroid2 1.11 1.62 0.31 1.44 2.31 0.39 64 15
thyroid3 0.89 1.47 0.23 0.89 1.88 0.36 51 14

Table 4: Classi�cation errors (in percent) and learning speed (rounded) of GP

Tables 4 and 5 show the results obtained with genetic programming (GP) and neural
networks (NN) respectively. The best and the average classi�cation error (CE) of all GP
runs are documented on the validation and test set for each medical data set, together
with the standard deviation. Most interesting is a comparison with the test classi�cation
error of neural networks, reprinted from [8]. Unfortunately, the classi�cation results on
the validation set and the results of the best runs are not speci�ed there.

Our results prove that in general genetic programming is able to reach a quite similar gen-
eralization performance as was possible for multi-layer perceptrons using RPROP learning.

11

NN

Problem Test CE e�ective Epochs
average stddev average stddev

cancer1 1.38 0.49 95 115
cancer2 4.77 0.94 44 28
cancer3 3.70 0.52 41 17
diabetes1 24.10 1.91 117 83
diabetes2 26.42 2.26 70 26
diabetes3 22.59 2.23 164 85
gene1 16.67 3.75 101 53
gene2 18.41 6.93 250 255
gene3 21.82 7.53 199 163
heart1 20.82 1.47 30 9
heart2 5.13 1.63 18 9
heart3 15.40 3.20 11 5
horse1 29.19 2.62 13 3
horse2 35.86 2.46 18 6
horse3 34.16 2.32 14 5
thyroid1 2.38 0.35 341 280
thyroid2 1.91 0.24 388 246
thyroid3 2.27 0.32 298 223

Table 5: Classi�cation errors (in percent) and learning speed (rounded) of NN

For the gene problem the test classi�cation errors (on average and standard deviation) have
been found to be even remarkably better with GP.

For both, the GP and the NN runs considered, one can see that the more di�cult a problem
proves to be the lower is the resulting learning speed (section 5). However, the number of
e�ective generations shows lower variation with respect to the di�erent problem domains
than the number of e�ective epochs. Average and standard deviation of the learning speed
have been found to be much less variable, i.e. independent from the problem domain, with
GP here.

In our experiments the learning speed could signi�cantly be reduced by using demes (as
described in section 5), without, however, leading to worser results in classi�cation. In the
case of the heart problem a comparable series of runs without demes took about 2.4 times
longer based on the average e�ective training time. The main reason for this behavior may
be the migration strategy. By migrating, i.e. reproducing, best individuals into di�erent
demes of the population, learning accelerates when these individuals are further developed
simultaneously in di�erent demes. Koza et al. have already shown [6] that demes do not
only reduce the absolute runtime if run in parallel but have a positive e�ect on the relative
training time (on generation basis) in general.

For some problems, especially diabetes, the best results have emerged without using the
conditional branches. Other problems like gene have worked signi�cantly better with
branches. This might be due to the fact that if branches are not really necessary for a
good solution they promote rather specialized, i.e. less generalizing, solutions.

An advantage of genetic programming is that it does not require any form of speci�c

12

architecture selection like multi-layer feed-forward neural networks. In contrast to neural
networks, GP is not only good at predicting outcomes in medicine but may also provide
explanations for the diagnosis by allowing an analysis of the resulting genetic programs.
In general, this property makes genetic programming less opaque than neural networks.

7 Future Research

A standard set of arti�cial and real benchmark problems for genetic programming should
be a main objective of future research in the genetic programming community. But a set of
benchmark problems is not enough to guarantee a better comparability and reproducibility
of results published by di�erent researchers. A single parameter that is not published or
an ambiguous description can make an experiment irreproducible and may let the results
obtained with a method di�er greatly. In many contributions either comparisons with
other methods are not given at all or experiments with the methods compared to had to be
reimplemented �rst. In order to make a direct comparison of published results easier a set
of benchmarking conventions has to be de�ned, along with the benchmark problems. These
conventions would describe standard ways of setting up and documenting an experiment,
as well as measuring and documenting the results. A step in this direction has been done
by Prechelt for neural networks [8].

By using demes in genetic programming we experienced that the best generalization on
the validation set is reached long before the �nal generation. Wasted training time can be
saved if runs are stopped earlier. Appropriate stopping rules that monitor the progress in
�tness and generalization over a period of generations are to be de�ned in this context.

Finally, better predictions on the medical data might be possible with genetic programming
and neural networks by combining the predictions of several good solutions or by applying
cross validation methods that allow the validation data being used for training, too.

8 Conclusion

We have reported on linear genetic programming, a genetic programming approach using
a linear individual representation. An e�cient algorithm for the elimination of introns has
been presented. We have argued that this method results in a signi�cant speedup of the
evolutionary process.

Linear genetic programming has been applied successfully to a number of classi�cation
problems in medicine. We have experimentally shown that genetic programming can
obtain performance similar to neural networks, even in a relatively small number of gen-
erations. We think that the di�erent benchmark data sets are of su�cient diversity to
encourage the use of genetic programming in other real problem domains.

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich 531, project B2.

13

References

[1] W. Banzhaf, P. Nordin, R. Keller and F. Francone (1998)Genetic Programming | An

Introduction. On the automatic Evolution of Computer Programs and its Application.

dpunkt/Morgan Kaufmann, Heidelberg/San Francisco.

[2] L.J. Fogel, A.J. Owens and M.J. Walsh (1966)Arti�cial Intelligence through Simulated
Evolution. Wiley, New York.

[3] H.F. Gray, R.J. Maxwell, I. Martinez-Perez, C. Arus and S. Cerdan (1996) Genetic
Programming for Classi�cation of Brain Tumours from Nuclear Magnetic Resonance

Biopsy Spectra. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Ri-
olo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
Stanford University, CA, MIT Press, Cambridge.

[4] J. Holland (1975) Adaption in Natural and Arti�cial Systems. University of Michigan
Press, Ann Arbor, MI.

[5] J. Koza (1992) Genetic Programming. MIT Press, Cambridge, MA.

[6] J. Koza, D. Andre (1995)Parallel Genetic Programming on a Network of Transputers.

Stanford University Computer Science Department, Technical Report STAN-TR-CS-
95-1542.

[7] P. Nordin (1994)A Compiling Genetic Programming System that Directly Manipulates

the Machine-Code. In K.E. Kinnear, editor, Advances in Genetic Programming, MIT
Press, Cambridge.

[8] L. Prechelt (1994) Proben1 | A Set of Neural Network Benchmark Problems and

Benchmarking Rules. Technical Report, University of Karlsruhe.

[9] M. Riedmiller and H. Braun (1993) A direct adaptive method for faster backprop-

agation learning: the RPROP algorithm. In Proceedings of the IEEE International

Conference on Neural Networks, San Francisco, CA.

[10] B.D. Ripley and R.M.Ripley (1997) Neural Networks as Statistical Methods in Sur-

vival Analysis. In Arti�cial Neural Networks: Prospects for Medicine, edited by R.
Dybowski and V. Grant, Landes Biosciences Publishers.

[11] H.P. Schwefel (1995) Evolution and Optimum Seeking. Wiley, New York.

[12] J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz and A.M.Weiner (1987)Molec-

ular Biology of the Gene. Benjamin/Cummings Publishing Company, Inc.

14

