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Abstract

Which are the fundamental principles of life?
This is the main question to be addressed if
one tries to create arti�cial life on computers.
Though it has been answered only partially,
evolutionary algorithms are substantially con-
tributing already to many kinds of human
problem solving by means of virtual organisms.
Besides looking back on that success story and
extrapolating it a bit into the future { both
endeavors obviously being subjective {, a new
result will be presented in the following show-
ing the importance of multicellularity, which
helps to self-adapt the error rates of the repli-
cation step to what is needed for e�cacious
and e�cient optimum seeking without individ-
ual learning.
Keywords: evolutionary computation, evo-

lutionary algorithms, imitating life, natural
computation, binary optimization, evolution
strategies, self-adaptive mutabilities, multicel-
lularity, ontogeny, somatic mutations, pheno-
typic plasticity.

1 Overview

E�orts to model, algorithmically, the ba-
sic evolutionary principles population, self-

replication, variation, and selection have been
traced back to the 1950s in the Handbook of

Evolutionary Computation[1]. They are part
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of what has been called biologically inspired or
natural computation (see Schwefel[2]).
Currently, three vital schools from the initial

phase of Evolutionary Computation (EC) can
be distinguished:

� Evolutionary Programming (EP), �rst
roots of which were laid by Lawrence
Fogel[3] and which was redesigned by
David Fogel[4] to its current form;

� Genetic Algorithms (GA), which
Holland[5] used to explain the adap-
tive behavior of basic life forms, but
later have become better known as
tool for solving (mostly combinatorial)
optimization tasks (see Goldberg[6]);

� Evolution Strategies (ES), developed by
Rechenberg[7] and Schwefel[8], �rst as a
rule set for experimental, later as algo-
rithms for numerical optimization.

Genetic Programming (GP)[9] and Learning

Classi�er Systems (LCS) have branched from
the GA philosophy. The former is a separate
school now, the latter seems to wait for new
ideas to develop further.
Though `religious' wars about the `proper'

modeling of evolutionary processes are melting
down { many hybrid Evolutionary Algorithms

(EA) are currently in use and under analytic in-
vestigation { the three schools mentioned above
have retained some of their initial speci�cs.
In Section II we brie
y look at the success

story of all EA and at the di�erences they
maintain in modeling organic evolution. There
are two aspects of that modeling process: On
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the one hand, there is the desire to make use
of life's tricks for solving di�cult technical or
managerial problems; on the other hand, doing
so successfully, one hopes to gain some insight
into why nature has gone the way it obviously
did. Section III tries to summarize our point of
view of what we have learned during the mod-
eling process. This part of the paper may be
a bit provocative. Then it serves its goal to
enhance the search for better models.

We are then going to employ one of na-
ture's tricks for maintaining life and striving
for higher and higher forms despite of the en-
tropy law and (often self-induced) degrading
environments including catastrophes in Section
IV. The case we handle is multicellularity and
somatic mutations. Mimicking the cell divi-
sions during ontogeny, we found a way to ad-
just single mutation rates for many genes even
in epistatic binary optimization. Section V is a
wanted for speculation into the next decade,
which, of course, may be completely wrong.
We would like to call it wishful thinking, hoping
that it contains some self-ful�lling prophecy.

2 Introduction

After more than twenty years of sporadic pub-
lications { Alander[10] counted 99 publications
before 1980 { the GA community invited to
the �rst International Conference on Genetic

Algorithms (ICGA) in 1985. Since that time
the group has maintained its conferences in the
U.S.A. every second year. Five years later, a
couple of European researchers in the �eld of
ES, GA, and other approaches gleaned from
natural processes started another biennial con-
ference series Parallel Problem Solving from

Nature (PPSN) with a broader scope of topics
from `imitating life'. The Evolutionary Pro-
gramming Society at San Diego started An-

nual Meetings of the EP Society in 1992, the
IEEE Neural Network Council annual Interna-
tional Conferences on Evolutionary Computa-

tion (ICEC) in 1994.

At the time being we count more than twenty
international events per year in closely related
�elds[2], at least half a dozen corresponding
journals, and more than 1000 papers published
per year[10]. There are countless successful ap-
plications in many di�erent �elds, where EA
have proven capable of solving hard design,
management and planning, as well as control
problems.
Why did it take the basic ideas so long to be-

come broadly accepted? The following remarks
are limited to certain perspectives. Let us try
to paraphrase them brie
y:

� The basic ideas were ingenious, though
aiming at answering di�erent questions
and/or solving di�erent kinds of problems
in di�erent environments. But the three
schools mentioned above, being unaware
of each other in the beginning, acted sep-
arately until about 1990.

� The numeric power of computers has been
increased by several powers of ten within
those thirty plus years, thus enabling the
simulation of many generations and large
populations, now, but not much earlier.

� All achievements in the world of crisp com-
puting (see Zadeh's work[11] on fuzzy sets
for the dichotomy crisp versus soft com-
puting), have not yet lived up to the as-
pirations provided at the beginning. Sub-
symbolic information processing seems to
have merits as well as symbolic knowledge
processing.

� Even ad-hoc adaptations of evolutionary
algorithms to speci�c di�cult decision
making problems have proven to yield re-
sults not achievable with classical problem
solving approaches.

� A thorough theory of EC is still missing,
despite hundreds of articles on theoretical
investigations with very limited scope.

� Too many researchers in the �eld are cling-
ing too closely to their origins (either EP,
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GA, or ES) and have lost connection to the
dual view that `imitating life' is a means
of creating e�ective and e�cient problem
solving procedures as well as a means of
better understanding natural life.

Many people looking for the �rst time onto
detailed descriptions of di�erent incarnations
of EA, e.g. GA and ES, wonder why the op-
erators for GA are usually presented in the
sequence SRM (selection, recombination, mu-
tation), whereas for ES the sequence RMS is
mostly used. It has been tried to remove that
discrepancy by saying that this is a question of
the entry into the iterative loop, but that the
loop itself is the same. This is not fully con-
vincing, however. That is why a di�erent type
of loop, valid for all types of EA, is presented
in Fig. 1.

evaluate

initialize population

select mating partners

recombine

mutate

evaluate

select

(terminate)

loop

Figure 1: The basic loop of all EA.

All special incarnations now omit one or the
other step within the generational loop. The
following statements refer to `canonical' ver-
sions of the algorithms and to not take account
of the full variety existing or proposed.
EP obviously omits recombination since its

philosophy relies on species as evolving enti-
ties, and per de�nition, species do not inter-
change genetic information (at least no `higher'
species). Thus, there is no mating selection and
no crossover as to be found in the GA realm.
Within GA, crossover is the basic variation
mechanism, whereas mutation is subsidiary or

even omitted. They let all descendants reach
adulthood, where they enter the mating selec-
tion with �tness-dependent probability. The
number of descendants created is never larger
than the number of parents was.

ES, on the contrary, generate a birth surplus.
Environmental selection after birth and before
reproduction cuts the population down to a
constant size of parents entering the next it-
eration. Mating is uniformly random, thus not
selective, in ES. Whereas in non-elitist ES and
GA no descendant struggles against his par-
ents for survival, this is the normal case within
canonical EP. Repeated tournaments halve the
whole population of old species and equally
many new species.

Isn't it astonishing that no rigorous examina-
tion of the bene�ts and shortcomings of these
selection types modeled so di�erently exists?
Blickle's[12] investigation of di�erent selection
operators alone fades out the other operators
for variation, but only their interplay may yield
a thorough understanding of evolutionary pro-
cesses as a whole.

It has often wrongly been stated that ES are
only good for real valued variables, GA for bi-
nary or integer ones. But currently, there are
real-valued GA[13], and at the very beginning
of the ES history the variables within experi-
mental settings were discrete, not continuous.
In this paper, we even show a case of binary
variables solved by means of an otherwise stan-
dard ES.

3 Some Lessons Learned from

Modeling Evolution

The exploration and exploitation schemes used
in contemporary EA are still quite simple mod-
els of real life, taking into account just some ba-
sic features of very simple organisms[14]. Nev-
ertheless, their use and analysis has told us
some lessons already. We admit that the fol-
lowing remarks are essentially subjective.
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3.1 Birth and Death; No Individual

Immortality

Perhaps the most important distinction be-
tween living and non-living entities is that the
latter just decay over time, due to the law of
entropy, whereas the former { as a whole {
buy endurance, adaptivity to changing environ-
ments (even if self-induced), and emergence of
ever higher complexity by short-living of single
individuals. Not only individuals and popula-
tions, even species and higher taxa, are mor-
tal. Even within individual living beings, the
number of cell divisions seems to be limited by
genetically controlled mechanisms. In case of
drastic environmental changes one has found
that species with a shorter generational cycle
of birth, reproduction, and death, are capable
of adapting faster. Of course, there are other
`natural' tricks to deal with such situations {
additionally, e.g. polyploidy and epigenesis.
Individual mortality seems to be a neces-

sary ingredient of e�ective self-adaptation of
internal strategy parameters[15]. The principle
of forgetting good intermediate solutions with
positive probability is essential for simulated

annealing, as well. Moreover, it helps in hunt-
ing dynamic minimizers in control problems,
a situation in which an elitist EA, eagerly con-
serving already achieved improvements (e.g. so-
called plus-versions of ES) loses adaptivity[16],
though theoretically, its global convergence can
be proven under more general conditions than
that of a non-elitist EA[17]. The latter are in
danger of divergence if they are parameterized
improperly.

3.2 Knowledge Propagation; No

Prediction

Nature's trick to preserve acquired knowledge
to some extent may be seen in storing indi-
viduals' blue prints within the genome and
proliferating just this bootstrap program for
a highly nonlinear self-organizing process. No
long-term memory, no analysis of the history,
and no prediction of the future are involved.
The information processing from one genera-

tion to the next works like a simple Markov
chain. The knowledge processed is just a recipe
that has been successful to survive the time
from inception to reproduction.

In eukaryotes the nucleus is just one part
of the reproduction machinery. Other or-
ganelles are responsible for the interpretation
of the program and for carrying on the build-
ing blocks to construct proteins and enzymes.
The genome contains both functions for the
proteins building up the phenotype and func-
tions for the enzymes controlling the processes
involved.

The genetic code, now equal for nearly all
forms of life, plays an important role during
the creation of each individual cell. It must
have been developed in the early stages of
life. Altering it now within highly sophisti-
cated, well adapted situations, is nearly always
lethal. Thus, it can be explained why the ge-
netic code may not have reached an `optimal'
state with respect to the e�ciency of the search
for improvements[7]. But, there are more steps
beyond the �rst translation from RNA/DNA
to amino acids until a living being is born.
Though they are not yet completely under-
stood, it seems that altogether strong causality
is achieved in most cases, i.e. small changes in
the genome normally yield small changes in the
phenotype. This helps to circumvent Hamming
cli�s and makes the �tness landscape smooth
enough for e�cient adaptation/amelioration.

3.3 Error Reduction; No Precision

Reproduction by copying useful information
from individuals that have managed to survive
in their environment, at least for a while, to
descendants is the basic trick of life. As Fisher
and Eigen[18] have shown by means of a simple
mathematical model, the main problem of re-
production is the correctness of the replication.
The longer the chain of information to code an
individual becomes, the more it is necessary to
reduce errors caused by the environment. De-
spite of the necessity to repair copying errors {
this has been achieved by proper enzymes, also
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encoded in the genome of all living beings { the
error rate has never dropped to zero. On the
contrary, there seem to exist error enhancing
enzymes, as well, speci�cally working at cer-
tain loci of the chain of informations delivered
from one generation to the next. Recently, the
journal Nature reported that one has identi�ed
co-activators and co-repressors, a fact under-
pinning that the idea of correlated mutations
as used in ES is not at all an artifact.

Without variation there is no improvement,
thus no adaptation nor any invention of new
forms of life would be possible without the risk
of imperfection. The redundancy of the ge-
netic code and all other transformation steps
between genotype and phenotype �nally seem
to result in an error distribution at the pheno-
typic level that can most easily be described
by a normal or a geometrical density function:
Smaller errors are more frequent than larger
ones. The mutation steps are neither purely
random or volume-oriented, nor are they in-
�nitesimally small or path-oriented. Organic
evolution is more of a pogo-sticking trial-and-
error process, a compromise between e�cient
local and e�ective global search.

Moreover, it is essential to remember that
we are usually beginning from scratch when
we use EA for solving optimization tasks. The
low mutation rates currently observed in na-
ture may be adequate for situations near the
optimum or equilibrium, but not for starting
from scratch. In each case, self-adaptation of
the mutation strength is the best way to han-
dle the search for an appropriate mutability.
`Intelligent' variation, genetically programmed,
seems to be a hidden or at least di�cult to de-
tect on-line adaptation process.

3.4 Ontogeny and Multicellularity;

Fuzzi�cation

Early life forms have been unicellular, �rst
prokaryotic only, later mostly eukaryotic,
i.e. with distinct organelles in a containment
being responsible for the control of di�erent
subtasks of the reproduction cycle. A very

early invention of real life after merely aggre-
gating undi�erentiated cells into case-based ag-
glomerates, was the programming of di�erenti-
ated cells of multicellular systems within one
genome. In this way, the ontogeny of an indi-
vidual from one �rst cell by consecutive cell di-
visions could lead to an assembly of specialized
tissues that are dividing the labour of solving
the di�erent tasks to be performed in order to
survive { for a while { as a whole. This early
invention of real life has not been taken into ac-
count in evolutionary computation so far. We
shall make use of that feature in section IV to
tackle the problem of self-adapting, loci speci�c
mutation rates.

3.5 Sexual Propagation and

Polygeny

Mixing of genetic information to be transmit-
ted to a descendant from more than one an-
cestor seems to be an old achievement of the
prokaryotic regime. It has been reduced to a
now dominant bisexual hereditary scheme in
multicellular eukaryotic living beings. Beyer
has shown[19] that recombination can yield lin-
ear speedup with the size of the population.
This needs parallel processing of the reproduc-
tion step. He argues that recombination can
be regarded as genetic repair, i.e., two unfavor-
able deviations from a nearby better position
compensate each other. This seems to be con-
tradictory to the building block hypothesis, but
both e�ects may contribute to the `bene�t of
sex', depending on the speci�c situation. In
epistatic convex landscapes the former e�ect
should be more important than the latter.

Sexual propagation seems to go hand in hand
with polyploidy, or at least diploidy. This fea-
ture has not yet been fully explored in connec-
tion with EA. One application has been in cre-
ating an ES to solve multiple criteria decision
making (MCDM) problems[20]. The di�erent
criteria are stochastically involved in the selec-
tion step, thus driving the population toward
the Pareto-optimal subset of solutions. Indeed,
polyploidy is often observed in environments
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where drastic changes occur frequently. Main-
taining a longer-term memory of past successes
seems to be the main bene�t of polyploidy. One
may presume therefore that the e�cacy of or-
ganic evolution as well as its e�ciency would be
substantially lower if sexuality and polyploidy
had not been `invented' in nature. Both fea-
tures are no fancy.

3.6 External Checkup; No Pity

No individual organism is guaranteed to re-
produce, due to an un�t mutated genome, a
change of the environment, or due to preda-
tors. Obviously, practically all species pro-
duce more than one descendant per ancestor.
Otherwise, the population at hand would die
out �nally. Perhaps Charles Darwin would
not have insisted upon his view of natural
selection if Thomas Malthus had not pre-
dicted misery to mankind due to inherent over-
reproduction and limited resources a century
earlier. Malthus assumed the former to be a ge-
ometrically, the latter to be a linearly increas-
ing process. Over-reproduction can, and some-
times must, be substantial to maintain the pop-
ulation size against predators, accidents, and
lethal variations. Generally, limited food sup-
ply as well as the check for survivability ac-
cording to all kinds of tests like compatibility
with `eternal laws' of nature and escapability
from predators, keeps down the abundance of
a species to what `the rest of the world' al-
lows. Altogether, this might be called environ-

mental selection, reducing the higher number
of newborns to a lower number of individuals
�t enough to transmit their tested information
content to the next generation. Each individ-
ual or species dying prematurely gives room to
others that are more �t.

The term `struggle for life' often leads peo-
ple to believe in some other form of selection,
i.e. tournaments between individuals existing
simultaneously. If this were the dominant form
of selection, how could it work in the realm of
plants? Since EA otherwise model very prim-
itive life, environmental selection may be the

more adequate operator. Mating selection may
play an additional role sometimes. But guinea-
pig researchers report that parents with an av-
erage �tness often have most progeny[21].

3.7 Parallelism; No Central Control

Parallelism is an intrinsic feature of evolution
in nature. There are always many individuals
at the same time involved in the `life game'.
Whether one should model arti�cial evolution
in a synchronous or an asynchronous manner
largely depends on the type of hardware used
and on the CPU time necessary for the evalua-
tion of the �tnesses. In nature, one has season-
ality playing a role, but no strong synchroniza-
tion, since there is no central controller known.

Larger populations tend to split up into sub-
groups, more or less isolated from each other,
depending on the intensity of migration be-
tween the subgroups. Modeling that kind of
geographical dispersion can be done in a �ne-
or a course-grained manner with strictly lo-
cal interactions only or many kinds of inter-
mediary forms. The incest taboo, much ear-
lier in place than human beings, seems to be
useful in searching mates that are di�erent
enough from each other to gain the full ben-
e�t from recombination (see above). It has
been demonstrated that global convergence can
be enhanced by distributed searchers and local
operators[22, 23].

4 An Old Idea Revisited: So-

matic Fuzzi�cation

To show the bene�t of somatic mutations dur-
ing the ontogeny of a multicellular organism,
let us start o� with a well studied situation,
called the Counting Ones Problem (COP). The
virtual individuals (we call them BW) do have
n = 256 phenotypic characters, e.g. color
patches on their surface that can be either
black or white. Correspondingly, their genome
contains n = 256 gene loci xi; 8i = 1; 2; : : : ; n
with just 2 alleles A and C, xi = À' encoding
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a white patch, xi = `C' a black one. The en-
vironment evaluates a phenotype according to
a merit function F (x). For the COP it can be
formulated as

F1(x) =
nX
i=1

f(xi) with f(xi) =

(
0 if xi 6= x

�

i

1 if xi = x
�

i

(1)
where the string fx�g characterizes the opti-
mal genotype. F1 just counts the number of
matching loci.

If we start with a pure random setting fx(0)g

we can expect F
(0)
1 � n

2
= 128 as the value of

the merit function from which any kind of step-
wise improvement process could begin. The
simplest way would be to successively switch all
xi from their current state to their counterstate
and �xing them if an improvement occurred,
otherwise setting them back to their old state.
This would cost exactly n = 256 trials since it
is unknown which loci must be 
ipped. On av-
erage, every second trial is successful, and we

end up with F
(256)
1 = 256.

B�ack [24] has investigated the same selection
scheme, the so-called (1+ 1) ES, but with ran-
domized variation. Each of the loci undergoes

ipping with the same mutation rate p. This
probability determines the expected number of
steps until the optimum is reached. If one does
not choose an elitist selection like above, but
e.g. the standard roulette wheel proportional
selection used within GA, then the search pro-
cess �nally 
uctuates at some distance from the
optimum, the average distance itself increasing
with the mutation rate chosen (see Rudolph
[17]).

The last step in the elitist case would be best
done with a mutation rate p = 1

n
, and it would

take about n trials to hit the last incorrect
gene. When half of the genes are correct, the
optimal mutation rate is p = 1

2
. In general, the

optimal mutation rate depends on the number
of already correct positions in the genome, but
this kind of knowledge is normally not avail-
able. M�uhlenbein[25] derived an expression for
the expected number N of steps under (1 + 1)
ES selection conditions and with p = 1

n
during

the whole search process and 50% correct genes
at the beginning: N = e n ln(n

2
), which leaves

us with N � 3376 for n = 256. For a more
rigorous treatment see Droste et al.[26].

Multimembered (�; �) ES have been very
successful in self-adapting mutation strengths
on-line, even di�erent ones for each gene. For
the basic algorithm used in the following we re-
fer to [27]. Local mutation rates pi for already
correct genes should decrease, those of others
�rst increase until the mutation takes place,
and thereafter decrease again in order not to
lose the merit won. However, any kind of self-
adapting strategy parameters relies upon im-
provements gained with more appropriate val-
ues for them. This condition is violated with
an only stepwise changing merit function like
F1, especially in the �nal stage of the search.

Very early in the course of natural life, mul-
ticellular organisms appeared. Their ontogeny
starts with one cell, of course. This cell di-
vides, forming two cells with all compartments
for each, including the nucleus containing the
complete genetic information. The process is
repeated M times so that at the end the adult
individual consists of 2M cells, in case of hu-
man beings about 250 � 1015. Di�erent cell
types (about 256 according to Kau�man[28])
do have di�erent tasks and are individually
programmed by the genome; the others are `du-
plicates', not necessarily completely equal to
their prototype, however.

According to �ndings of guinea-pig re-
searchers (e.g. G�artner[29]), cloned, i.e. geneti-
cally equal, individuals di�er considerably with
respect to their phenotypes. One must assume
that errors occur during the cell doublings. No
other source of the `intangible variance' could
be identi�ed. Errors are controlled by repair
enzymes and it is thus rather straightforward
to assume that the somatic mutation rate dur-
ing ontogeny is similar if not equal to the ge-
netic mutation rate.

Let us exemplify this on the basis of the
COP. There are now n = 256 cell types, coded
in the genome. They should appear after the
�rst 8 cell divisions. Within the genome we
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also have n mutation rates pi associated to the
n cell types. During the latter 42 out of 50 cell
divisions copying errors occur at that rate just
like genetic mutations appear from one gener-
ation to the next. Thus, 256 patches of 242

genetically equal but somatically di�erent cells
form each whole BW.

Instead of black and white patches we now
�nd all kinds of grey ones, depending on their
genetically determined color xi and on the so-
matic mutation rate. The latter is taken to be
equal to the (genetically encoded) genetic mu-
tation rate pi. One could speak of some kind of
fuzzi�cation of the phenotypic characteristics.
Knowing the genetic value and the mutation
rate p one can calculate the distribution of the
grey tones. It is a binomial distribution with
probability w(k;M; p) that just k out of 2M

cells are mutated (see Schwefel[30])

w(k;M; p) =

 
2M

k

!
q
k(1� q)2

M
�k with

q =
1

2
[1� (1� 2p)M ]: (2)

Though the distribution is symmetric only
for p = 1

2
, it can be approximated largely by

a normal distribution N (�; �) if M is large
enough { which is the case here. After nor-
malization to the interval [0; 1] indicating the
extremes `all white' and `all black' the mean
� of the deviation is � = q and the standard

deviation � =
q

q(1�q)

2M
. By adding a bonus

term N (�i; �i) for those loci which do not yet
match and subtracting a penalty (malus term)
of equal size for the already matching ones, se-
lection now can work toward adjusting local
mutation rates. Note that here is no learning
during the life span of the individuals, since
no feedback to �tness is assumed during the
cell divisions. The smoothing e�ect of the
this kind of phenotypic plasticity to the �tness
landscape may be similar to that of ontogenetic
learning according to the model of Hinton and
Nowlan[31], but the mechanism is completely
di�erent.

Now, we can simulate the process using a
modi�ed merit function

F
0

1(x) =
nX
i=1

f
0(xi; pi) with

f
0(xi; pi) =

(
0 +N (�i; �i) if xi 6= x

�

i

1� N (�i; �i) if xi = x
�

i

(3)

Fig. 2 illustrates the principle of a genetic
`bonus' for di�erent numbersN of cell divisions
considered.
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Figure 2: Intermediary grey tone values de-
rived from the mutation rates (bonus only) for
di�erent numbers N of cell divisions.

It may happen that f 0(xi; pi) leaves the in-
terval [0; 1]. In that case we simply cut o�
at zero or one, respectively. With that trick
we can easily solve the COP. Figures 3 to 5
show results from several simulations with a
(15; 100) ES using global discrete recombina-
tion for both object and strategy parameters.
Fig. 3 presents a plot of both F1 as well as F 0

1

for the best individual over the number of gen-
erations (3 runs). Fig. 4 zooms into a section
of one simulation to see the di�erences between
the genetic merit function F1 and the pheno-
typic one (F 0

1). Dealing with 256 bits at the
same time, the principle of a genetic bonus or
malus (penalty) cannot be seen as well as in
Fig. 2.

Fig. 5 shows 3 out of the 128 mutation rates
pi belonging to gene loci that are not correct at
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Figure 3: 3 runs of a (15; 100) ES solving the
COP.
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Figure 4: Zoom into a single run of a (15; 100)
ES solving the COP.

the start. It also contains one single and the av-
erage of those mutation rates that belong to al-
ready correct gene loci. All mutation rates are
initialized with pi = 10�4. These plots demon-
strate the rise and fall of mutation rates, just
as needed for reaching and then conserving the
genetic mutations.

The COP is a separable objective, thus an
easy to handle problem. If we switch to the
following one

F2(x) =
n�1X
i=1

f(xi)f(xi+1) + f(xn)f(x1) (4)
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Figure 5: Self-adaptation of three mutation
rates responsible for bits with a starting value
of `0' (mr�f

�
), of the average mutation rate of

those bits initialized correctly (mr� ravg) and
one mutation rate responsible for a bit with a
correct starting value (mr � r130).

and the corresponding F
0

2, the situation be-
comes more di�cult insofar as now always two
neighboring genes have to match with their op-
timal settings at the same time. Salomon[32]
has shown that the e�ort to solve such prob-
lems with m-fold interdependencies increases
with n

m in case of one common mutation rate
p = 1

n
. With the concept of somatic muta-

tions as above, the case m = 2 in F2 is not so
much more time consuming as to be expected
according to[32]. The mutation rates belong-
ing to such pairs behave correspondingly. No
diagram is shown for this case. Instead, we
directly turn to the most awful scenario with
m = n, as is true for the following product sum:

F3(x) =
nY
i=1

f(xi) (5)

under otherwise same conditions. Now, all nec-
essary genetic mutations must happen at the
same time. If half of the genes are already
matching, the probability of such a `big jump'
would be ( 1

n
)
n

2 (1 � 1
n
)
n

2 under a common mu-
tation rate of p = 1

n
. At �rst sight, it seems

nearly impossible to solve such a problem ef-
�ciently. Multicellular individuals with geneti-
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cally encoded single mutation rates can do it by
means of somatic mutations as shown in Fig-
ures 6 to 8.

1e-200

1e-100

1

0 200 400 600 800 1000

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
es

generations

discrete, F_3
somatic, F’_3

Figure 6: 3 runs of a (15; 100) ES solving F3.

Again, Fig. 6 presents a plot of both F3

as well as F 0

3 for the best individual over the
number of generations (3 runs). Since there
is just one genetic improvement from zero to
one, no zoom is presented in this case. Instead,
the number of already correct bits is shown as
Fig. 7.

128

144

160

176

192

208

224

240

256

0 200 400 600 800 1000

nu
m

be
r 

of
 c

or
re

ct
 b

its

generations

Figure 7: Number of correct bits corresponding
to Fig. 6.

Fig. 8 shows selected mutation rates over
time, similar to Fig. 5. Instead of three ar-
bitrary mutation rates, those of the last three

genes that still have to 
ip are shown, however.
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Figure 8: Self-adaptation of three mutation
rates responsible for bits with a starting value
of `0' (mr�f

�
), of the average mutation rate of

those bits initialized correctly (mr� ravg) and
one mutation rate responsible for a bit with a
correct starting value (mr � r192).

A �nal remark after all the recommendations
for EA above seems to be appropriate here: EA
are not rivaling with traditional optimization
methods. They cannot be more e�cient than
problem-speci�c solution procedures. Their ra-
tionale lies in the fact that it is often not eco-
nomic to devise a special algorithm for just one
new type of application. Then one may be bet-
ter o� with an optimum seeking procedure that
uses no special knowledge and takes the situa-
tion at hand as a `black-box' one { as all non-
specialized EA do. Of course, domain-speci�c
knowledge may be introduced in devising situ-
ated operators[33].

5 A Future for Evolutionary

Computation?

Will the exponential growth of EC go on? No,
at least not ultimately, since no exponential
growth can last forever in a �nite world. Thus,
there are three possible futures: saturation, de-
cline, or (mostly ir-)regular oscillations.

10



Applications of EA are likely to still grow
during the next decade or so, since they do
not yet have penetrated all reachable domains.
Stagnation or decline will follow thereafter, de-
pending on whether the thrust of the basic idea
of imitating life will lead to even more e�ca-
cious algorithmic models of organic evolution
or not. Currently, it seems as if the hunt for
e�ciency in particular problem solving situa-
tions drowns the search for better understand-
ing and properly modeling real life. Only spo-
radically, new models emerge opening broader
�elds of applications. Most likely, this situation
will yield further ups and downs of the �eld of
EC as a whole.

On the other hand, there is a larger scope
and potential for the parallel problem solving

from nature paradigm. Besides phylogeny and
ontogeny, there is the vast and not yet well un-
derstood realm of epigenesis, which may hold
treasures of procedures worthwhile to be mim-
icked. The cooperative interplay between dif-
ferent cell types in the immune system, the
social behavior of individuals in groups, and
many more phenomena of real life still wait to
be mimicked. They may be of use for evolv-
able hardware, for assemblies of autonomous
hard- and software agents, for emergent com-
putation, etc.

We should not dream, however, of machines
that govern the world. Humans must remain
the chief inspectors { even if they are not per-
fect. A machinery declared to be perfect (if it
were as intelligent as a human only, it would
not be perfect) could deprive us of some more
evils, but also of our future, a necessary in-
gredient of which is uncertainty. Current ex-
perience with software technology lets us fear
(hope?) that the software of an intelligent ma-
chine will never be perfect. Evolvability needs
imperfection.

6 Summary

The test functions used in this study are so
simple mathematically that one easily can de-

vise more e�cient solution methods than evo-
lutionary algorithms. But this is not the point.
Natural systems do not and cannot rely upon
manipulations inspired analytically. They are
groping in the dark. Nevertheless, they have
found clever ways to �nd their way to top solu-
tions. What we have shown above is the abil-
ity of a simple evolutionary algorithm to self-
adapt internal strategy parameters like loci-
speci�c mutation rates under harsh conditions
like binary optimization, even with full inter-
dependence of all variables (epistasis). Though
none of the individuals knows about the land-
scape's model, the population searching col-
lectively learns to adapt some kind of internal
model, represented by mutabilities scaled prop-
erly. This is achieved by mimicking the trick of
multicellularity. Whether this approach can be
applied successfully to technical or other prob-
lems remains to be seen. That it has been suc-
cessful in nature, e.g. in case of butter
ies that
mimic color patterns on their wings of non-
savory examples to escape from predation, is
without doubt.
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