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Abstract

Robustness is an important requirement for almost all kinds of products. In this article we show

how evolutionary algorithms can be applied for robust design based on the approach of Taguchi. As

an example we consider the design of multilayer optical coatings most frequently used for optical

�lters.

1 Introduction

Robustness is an important requirement for almost all kinds of products, i.e. they should keep a good

performance under varying conditions (temperature or humidity). Furthermore, the impact of wear, as

well as manufacturing tolerances, should be limited as much as possible. Consequently, the production

process itself as well as the environmental in
uences after the product is put to use have to be regarded

during the product design.

In this paper we focus on multilayer optical coatings (MOCs) as an example of how to achieve

robust designs using evolutionary algorithms. MOCs are used to guarantee speci�c transmission and/or

re
ection characteristics of optical devices. The objective of MOC designs is to �nd sequences of layers

of particular materials with speci�c thicknesses showing the desired characteristics as closely as possible.

Since in general the MOC design problem is not analytically solvable, simpli�cations are introduced in

practice. In many cases however this leads to suboptimal designs.

Here we follow the approach of Greiner [Gre94, Gre96] who replaces the design parameters xi by

stochastic variables of the form xi + �i, where �i resembles the stochastic in
uence of the manufacturing

tolerances. Instead of the objective function f(~x) an expected loss L based on the expectation of a

function of f(~x+ ~�) is used. Greiners' approach which is largely motivated by Taguchis' work on quality

engineering [Tag89, Kac90] has two di�culties. First, as we will show in section 3, an optimal point of

L does not necessarily correspond to an optimal point of f . The consequences of this fact have to be

clari�ed. Secondly, given that in most cases L can only be approximated by the mean of a limited number

of evaluations the optimization algorithm has to deal with a stochastic objective function.

Various instances of evolutionary algorithms have proven to be robust in the case of stochastic ob-

jective functions [FG88, Bey93, BH94, HB94]. In section 4 we show that evolutionary algorithms can

be successfully applied to the robust design problem by investigating the example of multilayer optical

coatings.
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2 Robust Design

Let ~x = (x1; : : : ; xn) be a vector of parameters of a given design problem, e.g., the refraction indices

and thickness of the optical layers. Given a function f(~x) describing the merit of a design feature, e.g.

the color perception of the re
ected light, and � being a target value for f(~x), then if disturbances are

neglected the task is to �nd such an ~x� that the di�erence between f(~x�) and � is minimized.

On the other hand the usability of two products although manufactured under almost identical condi-

tions might di�er signi�cantly, due to external conditions such as temperature and humidity, or internal

factors such as wear as well as manufacturing tolerances. Some of these factors are not controllable at

all. Others can only be reduced with unjusti�able e�ort. Thus they are regarded as disturbances, and

it is desired to reduce their in
uence as much as possible. In this paper our focus is on manufacturing

tolerances, but the approach could easily be extended.

The disturbances are represented by a vector of random numbers ~� = (�1; : : : ; �n). If the probability

distribution of the �i are known as well as their in
uence on f we might rewrite f(~x) as ~f (~x; ~�). In

our example the disturbances are assumed to be normally distributed with zero mean and will have an

additive in
uence on the parameter values. Thus, we de�ne

~f (~x; ~�) = f(x1 + �1; : : : ; xn + �n): (1)

The task is now to minimize the deviations of ~f (~x; ~�) from � .

This leads to the question of how to assess these deviations. The traditional approach regards all

products with j ~f(~x; ~�)� � j � � as equally good for some prede�ned � and all others as o�-cuts. But this

approach is somewhat unrealistic, since if such products are assembled to larger units such as devices on

electronic boards malfunctions might occur due to aggregations of deviations of single elements.

The method of parameter design after Taguchi [Tag89, Kac90, Ros88] takes these e�ects into account

by considering every deviation from the objective � as a loss. In practical applications quadratic loss

functions of the form

( ~f (~x; ~�)� � ))2 (2)

have proven to be well suited if no better alternative is known. The expected loss then becomes

L = k �E(( ~f (~x; ~�) � � )2) (3)

where k is some constant and E denotes the expectation value of the quadratic deviation.

A naive approach to �nd minimal values for the expected loss would be to determine a set of (local)

optima of the original problem f(~x) with the help of a suitable optimization method and to choose the

one with a minimal loss function value. This approach has several drawbacks. First, optimal points of

L do not necessarily correspond to optimal points of jf(~x) � � j (see section 3). Furthermore, it would

be much more e�cient to avoid the exploration of sensitive regions of the search space during the search

process.

In our work we follow the approach of Greiner [Gre94, Gre96] who de�nes the objective function as

E(�� ~f)2(~x) = k �
Z
(� � ~f (~x; ~�))2 � P (~�)d~� ; (4)

where P (~�) denotes the the joint probability distribution of the distrubances. Since in most applications

the expectation value E cannot be calculated analytically it must be approximated. Here we use

1

t
�

tX
i=1

(� � ~f (~x; ~�i))
2 (5)

as an estimate, where ~�i; i = 1; : : : ; t, are vectors of normally distributed random numbers with mean zero

and standard deviation �. The estimation error scales proportional to
p
t, and since in most applications

the possible number of evaluations is very limited this approach yields a stochastic optimization problem.

As evolutionary algorithms have proven their robustness in case of noisy objective functions [FG88, Bey93,

BH94, HB94] they are promising candidates here. But before turning to a concrete case study of optimal

MOC designs we try to get deeper insights into the consequences of this approach by some analytical

considerations.
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3 Analysis of a Simple Example

In order to clarify the relationship between the original merit function f and the expected loss L we

investigate the simple rectangular function fc;b;h : IR! IR with height h 2 IR+, width b 2 IR+ and center

c 2 IR:

fc;b;h(x) =

�
h if c� 1

2
b � x � c + 1

2
b

0 else.
(6)

The analysis follows the previous work of Tsutsui, Ghosh and Fujimoto [TGF96] for the expectation

E ~f (~x) =

Z
~f(~x; ~�) � P (~�)d~�: (7)

and a similar rectangular function. If the disturbances are assumed to be normal distributed with zero

mean and standard deviation � then the expected quadratic loss can be calculated as

F (x) = E(��fc;b;h)2(x)

=
1

�
�
Z +1

�1

(� � fc;b;h(x+ �))2'(
�

�
)d� (8)

= �2 � 2�hb

�
�
Z

c+ 1

2
b

c�
1

2
b

'(
z � x

�
)dz

+
(hb)2

�
�
Z

c+ 1

2
b

c�
1

2
b

'(
z � x

�
)dz (9)

= �2 � (2�hb� (hb)2)

�
�
�

�
(c+ 1

2
b)� x

�

�
� �

�
(c � 1

2
b)� x

�

��

where z = x + �. � and ' denote the Gaussian distribution and the corresponding density function,

respectively. F (x) has its global minimum at x = c and therefore

min
x2M

F (x) = F (c) = �2 � (2�hb� (hb)2)

�
�
2 ��

�
(c+ 1

2
b)� c

�

�
� 1

�
: (10)

Figure 1 exempli�es the relationship of fc;b;h and E(��fc;b;h)2 for the case of f0;1;1 and � = 1.

For disturbances with � � 0:2 the loss function takes values greater than zero for all values of x.

As expected, the loss becomes minimal for x = 0. Thus, in this situation x = 0 is the optimal choice,

independently of the magnitude of the disturbances.

Now consider the function

r1(x) = f�1;0:5;1(x) + f1;1;1(x) (11)

which has two peaks centered at x = 1 and x = �1. Since the peak at x = 1 is wider than the one at

x = �1 the setting x = 1 should be a safe choice. From �gure 2 which shows functions r1(x) and E(1�r1)2

we conclude that this is true for small values of �. But for increasing � the minimum of the loss function

moves to smaller values of x.

From this observation we can easily construct examples where the minimal loss does not fall within a

peak of the merit function at all. This situation is shown in �gure 3 for the function

r2(x) = f�1;1;1(x) + f1;1;1(x) (12)

.

Tsutsui, Ghosh and Fujimoto [TGF96] consider this case as not desirable. They suggest that the

optimal points of equation 7 should always correspond to optimal points of the original merit function
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Figure 1: Function f0;1;1(x) = r0(x) and the corresponding expected quadratic loss F (x) = E(1�f0;1;1)2(x)

for disturbances s = � 2 f0:1; 0:2; 0:4;0:8; 1:6g and � = 1.
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Figure 2: Function r1(x) and the corresponding quadratic loss function R1(x) = E(1�r1)2(x) for distur-

bances s = � = 0:2 and s = � = 1:6, � = 1

f . We claim that this requirement is not useful in every situation. E.g., in the extreme case of function

r2(x) and � = 1, provided that the model (quadratic loss function, normally distributed disturbances,

etc.) re
ects the real situation close enough, then the average loss is minimal for x = 0, i.e., the gain for

x = 0 is larger than for x = 1 or x = �1 even if those products for which r2(x) = 0 are considered as

o�-cuts.

4 Multilayer Optical Coatings

Multilayer optical coatings (MOCs) consist of a sequence of single thin layers (1nm � 1�m) of di�erent

optical materials which in most cases are evaporated on a carrier substrate like glass. Most often MOCs

are used as optical �lters. If a beam of non-polarized light hits such a �lter at each boundary surface it is

partially re
ected, transmitted or absorbed depending on the refraction indices of the layer material, the

thickness of the layer and the wavelength. For most applications a perfect �lter should cut o�, i.e. re
ect,
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Figure 3: Function r2(x) and the corresponding quadratic loss function R2(x) = E(1�r2)2(x) for a distur-

bance of s = � = 1:0, � = 1.

100% of the unwanted frequencies while passing the wanted frequencies without any reduction. But due

to physical restrictions in practice only approximations of this ideal �lter can be realized. The situation

is depicted in �gure 4. Commonly, up to �ve (up to three in our application) di�erent optical materials

Reflection [%]

50
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75

25

2.0 10.0 16.0

Design Reflection R(d, η,λ)

Wavelength λ  [µm]

Target Reflection R( λ)
∼

Figure 4: Pro�les of an ideal coating and a real construction.

are used. Thus, each layer has a refraction index out of �ve possible values. Since the thickness of each

layer is a real value and the number of layers may vary, the task can be described as a mixed-integer

optimization problem with variable dimension.

The mathematical model for MOCs, the so-called matrix method, is based on the Maxwell equations,

resulting in a formula for the re
ectance R for a given wavelength � that depends on a vector ~d of the

thickness of the layers and the refractive indices ~� of the materials of the corresponding layers:

R(~d; ~�; �) =
4�a�s

j�aB(~d; ~�; �) +C(~d; ~�; �)j2
(13)

where �a and �s describe the refractive index of the adjacent medium (e.g. air) and the substrate. B and

C are non-linear terms of ~d; ~� and � according to the matrix method.

The quality of a design with respect to re
ectance can be formulated as the average re
ectance

measured over the interesting interval of wavelengths

f(~d; ~�) = 100 �

vuut 1

m

mX
i=1

R(~d; ~�; �i)2 (14)
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For practical purposes it is su�cient to average over m = 81 equidistant wavelengths. See [FT92] for

details.

B�ack and Sch�utz [BS95] already reported above average results for MOC design problems using an

extended evolution strategy (ES). Sprave and Sch�utz even outperformed these results by applying a

massively parallel hybrid algorithm of GA and ES [SS96].

In this paper we focus on an extended MOC design problem where in addition to the re
ectance the

spectral composition of the re
ected light is important, too. As a simple example consider the design

of sun glasses where a speci�c color perception of the re
ection is desired. Since the perception of color

depends largely on individual sensitivities a suitable measure cannot be based solely on physical features

like the spectral composition. De�nitions of color perception are therefore based on extensive empirical

investigations. The so called chromaticity diagram sketched in �gure 5 is commonly used to express

the relations of physical and empirical measures. X and Y are aggregations of some basic measures.

The colors of the spectrum are located on a curve from 380 nm to 780 nm. All other positions denote

secondary colors. E is the point of non-colors, i.e., black, white and any shade of gray. Since a complete

description of the measures X and Y are beyond the scope of this article we have to refer to the literature,

e.g., [NE93].
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Figure 5: Chromaticity diagram. The location of some spectral colors are labeld by their corresponding

wavelength.

In our application a color located at (0.281,0.351) is desired. The merit function is based on the

Euclidean distance in the chromaticity diagram [Gre96]:

G(~d; ~�) = l �
h
(x(~d; ~�) � 0:281)2 + (y(~d; ~�)� 0:351)2

i1
2

(15)

where (x(~d; ~�); y(~d; ~�)) denote the coordinates in the chromaticity diagram of a k-layer �lter with layer

thicknesses ~d = (d1; : : : ; dk) and refractive indices ~� = (�1; � � � ; �k). For reasons of comparability we use

l = 100.

During the production process the layer thickness can not be controlled with arbitrary precision.

Additionally, the refraction indices vary slightly due to pollution of the optical materials. Thus, we

might observe signi�cant variances in the quality of single �lters. A MOC-design which has to meet both

objectives described in formulas (14) and (15) naturally leads to a multicriteria optimization problem.

As a �rst approach, which already lead to above average designs we de�ne the overall loss function F as:

F (~d; ~�) = f2(~d+ ~�d; ~� + ~��) +G(~d+ ~�d; ~� + ~��): (16)
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where ~�d = (�d1 : : : �dk ) and
~�� = (��1 : : : ��k ) are vectors of normally distributed random numbers

with zero mean denoting the disturbances of thickness and refraction indices, respectively. For both

kinds of disturbances the standard deviations are set to 1% of the absolute values, which is reasonable

for modern manufacturing processes [Gre96]. The expected loss is then approximated as

1

t

tX
i=1

�
f2(~d+ ~�d; ~� + ~��) +G(~d+ ~�d; ~� + ~��)

�
(17)

The columns of table 1 show the outcomes of the four most signi�cant experiments of a series of

approximately 50. Due to space limitations we restrict the presentation to this subset. The �rst column

shows a reference design which was taken from [KHS90]. The reference design was generated in two steps.

First a promising start design was derived by analytical means using a simpli�ed model. The �ne-tuning

of the layer thicknesses are achieved by using a local hill-climbing algorithm. The re
ectance for this

design is shown in �gures 6 where the solid line shows the re
ected fraction for the interesting interval

of wavelengths of the ideal �lter manufactured without disturbances. The other curves are outcomes of

experiments where disturbances are added according to R(~d+~�d; ~�+~�� ; �). The chromaticity distribution
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Figure 7: Chromaticity distribution of reference design 1

of this �lter design is shown in �gure 7 for 1000 simulations according to (x(~d+~�d; ~�+~��); y(~d+~�d; ~�+~��)).

The �rst row of table 1 denotes the Algorithm used. Basically, we applied two modi�ed evolution

strategies (ES). Algorithm 1 is a (25 + 50)-ES extended for mixed-integer optimization after [BS95].

Because of the stochastic nature of the objective function the plus-selection scheme requires a reevaluation

7



Design 1 2 3 4 5

Alg. - 1 1 2 2

Eval. - 8 � 105 8 � 105 E E

t - 40 40 10 10

kmax - 5 8 12 10

rmsi 0.54 0.98 0.81 0.64 0.84

rmsr 0.57 0.99 0.84 0.66 0.85

coli 0.0005 0.0137 0.0012 0.0043 0.0020

colr 0.0381 0.0191 0.0166 0.0184 0.0166

�air 1.0 1.0 1.0 1.0 1.0

d1 107.3 95.50 102.42 95.70 120.04

�1 1.38 1.38 1.38 1.38 1.38

d2 24.6 151.8 10.90 15.04 14.57

�2 2.12 1.63 2.12 2.12 2.12

d3 45.9 - 64.93 8.24 15.44

�3 1.63 - 1.63 1.38 1.63

d4 22.7 - 6.87 5.36 42.04

�4 2.12 - 2.12 1.63 1.38

d5 83.5 - 63.11 109.47 14.58

�5 1.63 - 1.63 2.12 2.12

d6 - - - 30.38 -

�6 - - - 1.38 -

d7 - - - 14.54 -

�7 - - - 2.12 -

�sub 1.52 1.52 1.52 1.52 1.52

Table 1: Comparison of the reference design (1) and designs generated by di�erent ES-variants (2-5) .

(E = 2:25 � 108)

of the parent population during each iteration. Mutation is applied with n self-adapting step sizes and

recombination is performed discrete on object variables and intermediate for step sizes. For details see

[BS95]. Algorithm 2 is a parallel di�usion model after [SS96], where the individuals are located on a

regular grid. We used 15 subpopulations with a size of 20x25, a neighborhood size of 7x7 and an isolation

time of 30 generations.

In the second row the total number of evaluations of function (16) is given. The third row contains

the sample size t. kmax is the maximum number of layers allowed for that simulation run. The last

16 rows show the sequence of layers (thickness d and refraction index �) for the best �lter found in

each experiment. For this �lter rmsi = f(~d; ~�) and coli = G(~d; ~�) (where l is set to 1) denote the

re
ectance and the chromaticity for the undisturbed case. rmsr and colr denote the average re
ectance

and chromaticity of a sample of 500 simulations if disturbances are added.

The re
ectance and the chromaticity distribution for the best MOC design 5, (table 1) found by the

ES are shown in �gure 8 and 9, which demonstrates that �lters manufactured acording to design 5 will in

the average case show chromaticity characteristics much closer to the optimum (0.281,0.351) compared

to the reference design 1 (�gure 7).

To summarize, with respect to chromaticity the MOC designs found by the evolution strategy are

substantially more robust to parameter variations than the reference design 1, (table 1) and therefore

perform much better in the average case, although for the undisturbed case the reference design is

signi�cantly better. This observation was expected, since sensitivity analysis shows that many local

optima are not robust under parameter variations. In most cases this advantage has to be paid by a

reduction in the average re
ectance. Only in the case of experiment 4 the ES was able to locate a design

which could compete with the reference design 1 in this respect. Additional experiments suggest that

this is due to a biased design of function 16 where the in
uence of G(~d + ~�d; ~� + ~��) seems to dominate

f2(~d + ~�d; ~� + ~��). Furthermore it seems promising to integrate other characteristics of the resulting

distribution of function (16), e.g., the skewness.
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5 Summary and Outlook

It was shown that evolutionary algorithms can compete with or even outperform traditional methods of

robust MOC-design. It has to be emphasized that no domain speci�c knowledge was incorporated into

the search strategy and that all start designs were chosen with equal probability from the feasible region,

i.e., there is no need to develop high quality start designs manually. In contrast, traditional MOC-design

is a laborious task. The robust design approach outlined in this paper should easily be adopted to other

application domains.

Future work will focus on improving the objective function as already mentioned in the previous

section. Furthermore, the potential of EAs for multicriteria optimization will be evaluated for this

application domain, i.e., the exploration of the Pareto set. Since the experiments are very time consuming

due to the fact that a sample of t experiments have to be performed for each single individual we are

much interested to reduce this overhead. A promising approach is to let t vary through the course of

evolution either by an external schedule or by some self-adaptation mechanism. Finally, there seems to

be some potential to improve the algorithm itself, especially the interplay between modi�cations of the

integer and real values as well as the handling of variable dimensions.
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