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Abstract

Starting with ZADEH’s fundamental paper “The Calculus of Fuzzy IF-THEN Rules’ we
mention five possible interpretations of a Fuzzy IF-THEN Rule Base. Theinterpretation of
agiven Fuzzy IF-THEN Rule Base strongly dependson theareawhereitisto be applied. In
the paper presented we restrict this areato fuzzy control and approximate reasoning. Con-
sequently, we interpret aFuzzy IF-THEN Rule Base as a system of functional equationsfor
determining a special functional operator. Then using the concepts of functional analysis
and metric spaces we introduce the principles FATI and FITA and study their correctness
and equivalence.
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Chapter 1

| ntroduction

In a“Special Lecture” held on the congress “Fuzzy Engineering toward Human Friendly
Systems’ (November 13-15, 1991, Yokohama, Japan) under the title

“The Calculus of Fuzzy IF-THEN Rules’
L. A. ZADEH developed a program for studying thisfield of problems[48, 49].
We put this program at the beginning of the report presented.
The principal questions addressed in the calculus of fuzzy IF-THEN rules are:

1. What isthe meaning of a fuzzy IF-THEN rule expressed asajoint or conditional pos-
sibility distribution?

What is the meaning of a collection of fuzzy IF-THEN rules?
How can blocks of fuzzy IF-THEN rules be combined?
How can a collection of fuzzy IF-THEN rules be interpolated?

How can algebraic operationson a collection of fuzzy IF-THEN rulesbe carried out?
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How can fuzzy IF-THEN rules be inferred from observations?
7. How can fuzzy IF-THEN rules be compressed?

With respect to the numerous applications of IF-THEN rules, for instance to fuzzy control,
to fuzzy approximate reasoning, to fuzzy expert systems, to fuzzy pattern recognition and
fuzzy clustering, to fuzzy decision making, etc., theimportance of such investigations can-
not be overestimated.

In the literature one can find numerous approaches and attempts to investigate this field of
problems. Many of these are carried out only heuristically for special cases, otherstry to de-
velop general and systematic conceptsto study the areaof IF-THEN rules (see References).

The starting point of our investigations is the concept of an IF-THEN rule base RB on a
universeU.

In order to define this concept, by IR and [0, 10we denote the set of all real numbers r and
the set of all real numbers r with 0 <r < 1, respectively. For an arbitrary subset SO [0, 101
by Sup Swe denote the supremum of Swith respect to [0, 1Cand the usual ordering < of real
numbers. Note that Sup [0, 1CF 1 and Sup 0 = 0 where O denotes the empty set.

A fuzzy set F onU isamapping F : U - [0, 1L]i. e. we do not distinguish between afuzzy
set and its membership function because there is no reason for making such a distinction.



In the following we use the height hgt(F ) of afuzzy set F on U usually defined by
hgt(F) =aet SUp{F(})|Ix U} .

Furthermore, if G is another fuzzy set on U we use the subset relation F O G defined by
FOG=g¢ Ox(xOU - F(X) < G(X)).

Werecall that 1 : [0, 1k [0,10- [0,100s said to be at-norm if and only if T is monotone,
commutative, associative, and fulfills the condition 7(r,1) =r for every r O [0, 1[]

For afixed natural number n>1, let Fy, ... ,F, and Gq, ... ,G, befuzzy setson U.

Definition 1.1
A scheme of the form

IFF, THENG,

RB: :
IFF, THENG,

is said to be afuzzy IF-THEN rule base on U, shortly, an IF-THEN rule base.

Remark Withrespect to other moregeneral definitionsof anIF-THEN rule base we could
say that RBisan IF-THEN rulebasein normal form. We underlinethat IF-THEN rule bases
in normal form are much more suitable for the following theoretical investigationswhilein
applicationsmoregenera formsare used, for instance, applying the and connectiveor other
connectivesin formulating the premises or the conclusionsof IF-THEN rules. But we point
out that the restriction to normal form does not mean aloss of generality because by suitable
operations on fuzzy sets and by the construction principle of cylindrical extension one can
transform an IF-THEN rule base used in applicationsinto an IF-THEN rule base in normal
form.

At first glance, an IF-THEN rule base in the sense defined above must be considered only
as a syntactical object, i. e. without interpretation and without semantics.

Wetaketheview that there are several possibilitiesto definean interpretation andto develop
asemanticsfor an IF-THEN rule base RB. And, furthermore, which interpretation and se-
mantics we introduce depends on the field where we want to apply the given IF-THEN rule
base.

We can immediately see the following five areaswhere |F-THEN rule bases can be applied:
1. Fuzzy Control
2. Fuzzy Approximate Reasoning
3. Fuzzy Cluster Analysis
4. Fuzzy Decision Making
5. Fuzzy Computing.

Because of restricted space we cannot discuss all these aspects of applying IF-THEN rule
bases and possible further aspects which we have not mentioned here.

Inthefollowing we shall discussthefield of Fuzzy Control and shall develop an interpreta-
tion and a semantics for IF-THEN rule bases with respect to their applicationsin this field.

We mention that this semantics can aso be used for applying IF-THEN rule bases in the
field of Fuzzy Approximate Reasoning.



In order to develop asemanticsof an IF-THEN rule basefor its applicationin Fuzzy Control
we start with a (rough) description of aclassical control circuit. It has the structure

Classical Controller
X cont y

Process

We assumethat thetimeisdescribed by theset IR of all real numbersand the starting point of
our control circuitisO. Thereforetheinput x and the output y of the controller are functions
defined on the set [0, ) of al non-negative real numbers. For simplification we assume
that for t O [0, ) the values x(t) and y(t) are real numbers. (In general, one has to admit
that x(t) and y(t) are elementsfrom suitable linear spaces or even metric spaces.) The output
function yis determined by adeterministic functional operator cont using the input function
X asargument, i. e. y = cont(x). The functional operator cont can be defined by methods of
classical analysis as the example of the PID-controller shows, i. e. the function y is defined
by x using the addition, multiplication, integration, and differentiation as follows

t

y(t) = arx() + b[l x(r)dr+c[f¥(t)

wheret [ [0, ) and a, b, c O IR. Obviously, this description of cont failsif the function xis
not integrable or not differentiable. Thesedifficultieswill be overcomeby fuzzy controllers
asfollows. For simplification we assume that the functional operator cont works “combi-
natorically”, i. e. that there exists areal function f : IR - IR such that for every t 0 [0, «)
the equation

y(t) = f(x(®)

holds. More general cases, for example, taking into consideration the “past”
{x(1)|0< 1<t} of x(t) or the speed % of the change of x, have hardly been consid-
ered and applied up to now in thefield of fuzzy control. See, for instance, [12, 13, 35, 45].

For the following, we fix atime point t [ [@, ). Then the computation of the output y(t)
starting with the input x(t) can be described by the following three steps.

Fuzzy Controller

IF-THEN Rule Base

Fuz- l Defuz-
x(t) zifier zifier y(t)

FO Inference Machine )

Process




Step 1. Wehavefixed acertain universe U and consider the set FP(U) of all fuzzy setson
U. Theblock “Fuzzifier” definesamapping ¢ which assignsto the real number x(t) O IR a
fuzzy set F(t) = ¢(x(t)) on U called the fuzzfication of x(t).

Step 2. The“Inference Machine” defines a mapping ® which transforms the input fuzzy
set F(t) into an output fuzzy set G(t) = ®(F(t)). The Inference Machine uses the given | F-
THEN rule base via a certain inference mechanism. To define the mapping ® which isa
functional operator @ : FP(U) - FP(U) will be the main problem of the report presented.

Step 3. The block “Defuzzifier” definesamapping d : FP(U) - IR. Using the concepts
of functional analysis one can say that ¢ isareal functional defined on the set FP(U).

Summarizing the three steps above one can state that the mapping f can befactorized in the
form

f(X(t)) = 0(P(P(X(1)))) = (G Pop)(X(t))  (X(t) U IR, t 1 [0,0)),
where ¢ :IR - FPU), ®:FPU) - FPU), &:FPU) - IR.

Now, for the following investigations we formulate our

Working Hypothesis

For studying classical control circuits, classical analysis, in particular the theory of diffe-
rential equationsincluding classical numerical mathematics, is awell-tried useful semantic
instrument.

But for studying fuzzy control circuits this instrument fails, in general. Starting with the
discussed factorization we think that modern functional analysisis a suitable mathematical
framework and useful apparatusin order to investigate fuzzy control circuits.

Because of space restrictionswe cannot investigate all of the mappings ¢, ® and 9, sointhe
following we shall study only the functional operator @. For investigations of the mappings
¢ and o see [5, 25, 29] and [4, 21, 24, 31-34, 43, 44], respectively, for instance. Further
references regarding defuzzification procedures can be found in e. g. [21,44].

In the spirit of the fuzzy control approach described we interpret agiven IF-THEN rule base

IFF, THENG;
RB: :
IFF, THENG,

asa"“partial definition” of afunctional operator @ : FP(U) - FP(U) fulfilling the functional
equations

®(F) =Gy

1) :
P(Fn) = Gn.

In other words one can interpret RB as a system of functional equations for the unknown
functional operator @.

To this approach we have to add two important remarks.



Remark 1. Up to now in publications one can find the following approach:

Let Sbeabinary fuzzy relationon U, i.e. S: U xU — [0, 10 Thenfor an arbitrary fuzzy set
F:U - [0,10on U aproduct F o Sis defined such that F o Sisafuzzy set on U.

Very often the so-called “ standard” product is used, defined by

(F 2 9(Y) =der Sup{min(F (x),S(x,y))[x U} .

Now, we know theinterpretation of an IF-THEN rule base RB asasystem of relational equa-
tions, i. e. as the problem of finding abinary fuzzy relation Ssuch that al the equations

F10S=Gy,... ,FneS=Gy

are satisfied.
Then using Sthe operator @ is defined by

CD(F) =def FoS

for every F O FP(U).

Asweshall seelater in section 3theprinciple”FATI” can be subordinatedto the“ relational”
approach described above whereas the principle “FITA” is more general and requires the
investigation of systems of functional equations.

Remark 2. The system (1) of functional equations has a lot of solutions @, in general.
Therefore restricting principles are necessary.

One of the most important restricting principlesisthefollowing: 1f we haveasolution @ of
(1) thenwe want to have: If F,F': U - [0,10and F issimilar to F' then ®(F) issimilar to
D(F").

This heuristic formulation leads to the continuity of functional operators. Hence, in order
to make this formulation more precise we need a topology in FP(U). Assume we gener-
ate the considered topology in FP(U) by afunction p: FP(U) xFP(U) - [0,10where pis
restricted as follows (see [3,41]):

Definition 1.2
1. pissaidto bea (fuzzy) co-tolerance relation on FP(U)
=gt 1.1. Forevery F :U - [0,10) p(F,F) = 0 (Co-Reflexivity).

1.2. Forevery F,G:U - [0,10p(F,G) = p(G,F) (Symmetry).

2. pissaidto beasemi metric on FP(U)
=def p satisfies 1.1 and 1.2 and

2.1. For every F,G,H : U - 0,10 p(F,H) < p(F,G) + p(G,H) (Triangle In-
equality).

3. pissaidtobeametric on FP(U)
def p satisfies 1.1, 1.2, 2.1 and

31 Forevery F,G:U - [0,10if p(F,G) =0 thenF =G.

For more information concerning metrics on FP(U) see [3], for instance.

Now, using a co-tolerance relation p on FP(U) we define for ¥ O FPU), F O F and
O:F 5 FPU):



Definition 1.3
1. ®issaidto becontinuousin F with respect to p and &
=qet FOr every real number € > O there exists areal number d > 0 such that for every
GOF, if p(F,G) < & then p(P(F),P(G)) < ¢.

2. ® jssaidto be continuousin F with respect to p
=4ef FOrevery F 0 F, ® iscontinuousin F with respect to p and &
Example1.1 For arbitrary F,G:U — [0,10we define
pc(F,G) =ger SUp{|F(x) ~G(X)[[x U} .
Hence, pc isametricon FP(U). Itiscalled CHEBYSHEV metric.

Example 1.2 Assume U is not empty but finite, p is a fixed real number with p > 0,
F,G:U - 0,10

Er%
Pp(F,G) =qef % IF(x) —G(X)ng :

Obviously, pp is a metric on FP(U). p; is called HAMMING-distance and p; is the
well-known EucLIDian distance. Finally, the CHEBYSHEV metric can be generated by

FI)irr(]o pp(F,G).



Chapter 2

The Special Case
of OnelF-THEN Rule

2.1 The Compositional Rule of Inference

Let F and G be fixed fuzzy setson U, i.e. F,G: U - [0,10 We consider the IF-THEN
rule R=4¢ IFF THENG. In section 1 we have stated that with respect to fuzzy control an
IF-THEN rule defines afunctional equation, i. e. we have to construct afunctional operator
®R: FP(U) - FP(U) such that the equation ®R(F) = G holds where the choice of ®R is
restricted by additional conditions, for instance by a certain version of continuity.

A fundamental approach to construct such an operator is the Compositional Rule of Infer-
enceintroduced by L. A. ZADEH in [47] which can be described as follows:

Definition 2.1.1 (Compositional Rule of Inference)
1. We define abinary fuzzy relation SonU by

SX.Y) =det MN(F(X),G(Y))  (xyOuU).
2. Foranarbitrary F' :U - [0,10we definethe inferred set G' : U - [0, 100by
G'(Y) =der Sup{min(F'(x),S(x,y))[xOU}  (yOU).
3 OR(F) =g G'.

Thecompositional rule of inference can be motivated and justified by thefoll owing mapping
concept of crisp set theory.
Assume AU and T OU xU.

Definition 2.1.2
TheT-imageA°T of theset Aisdefined as Ao T =q4e { Y| IX(x O AO[x,y] OT)}.
Letusrecal that for F:U - [0,10and S: U xU - [0,10hekernelsKer(F) and Ker(S) are
defined by

Ker(F) =g {X|xOU OF(x) =1}

Ker(S) =get {[xylIxy DU OS(x,y)=1}.

Thenthe compositional rule of inferenceisjustified by the following compatibility theorem:



Theorem 2.1.1
If 1. G'(y) =Sup{min(F'(x),S(x,y))|x O U} foreveryy U

2. Oy(yOU - OxxOU OG'(y) =min(F'(X), S(x,¥))))
then Ker(G') = Ker(F') e Ker(S).
Proof By definition of Ker we have to show
(D yOKer(G) « yO (Ker(F') o Ker(S)).
By definition of o we have
(2 y OKer(F) o Ker(S) o OxxOKer(F") O[x,y] O Ker(9),

hence by definition of Ker it is sufficient to show

(©) Gy) =1 OXF'®=109xy)=1)
l.(—)

Assume

(4) Gy)=1,

hence by definition of G’
(5) Sup{min(F'(x),S(x,y))|xOU} =1.

Because of assumption 2 there existsan x J U such that

(6) min(F'(x), S(x.y)) =1,
hence

@) F'(x)=1 and Sxy)=1.
. (+)

Assumethere exists an x [0 U such that

) FF=1 and Sxy)=1,

hence

(9) min(F'(x),S(x,y)) = 1,

hence

(10) Sup{min(F'(x),S(x,y))|x DU} =1,

ie G(y)=1 ]

Finaly, we interpret the compositional rule of inference as a procedurefor defining afunc-
tional operator ®R by

D(F')(y) =ger Sup{min(F'(x),min(F (x),G))IxOU}  (yOU)

for agiven (fixed) IF-THEN rule R: IFF THENG and for arbitrary F' : U — [0, 1]



2.2 Fuzzy Approximate Reasoning

Now, we discuss a second application of the Compositional Rule of Inference.

In the framework of Fuzzy Approximate Reasoning the so-called Generalized Modus Po-
nensisintroduced as a“fuzzy deduction scheme” of the following form

Rule: IFF THENG
Premise: F’
Conclusion: G

where F,F',G,G' arefuzzy setson U.

Obviously, the Generalized Modus Ponens coincides with the usual Modus Ponens if we
assumeF' =F andG' =G, i.e

IFFTHEN G
F .
G
But the use of the Generalized M odus Ponens differs from the (usual) Modus Ponens with
respect to some essential features.

The application of the Modus Ponensis very clear. Assumethat L isalogica system with
acertain concept of “theorem” where theorems are defined “ model-based” or “rule-based”,
for instance.

The use of the Modus Ponens is correct (and permitted) if the following justification (or
soundness) lemmaholdsin L: If“IFF THENG” and“ F" aretheoremsthen“G” isathe-
orem. The conclusion G can be obtained by thetrivial syntactic operation of detaching the
premise“F” of theimplication“IFF THENG".

The application of the Generalized Modus Ponens is much more complicated and is not
comparablewith the application of the (usual) Modus Ponens. Thereason isthat the Gener-
alized Modus Ponens cannot be used as arule of detachment in the sense of alogical system
with a certain concept of “theorem”.

A semantics for a sensible application of the Generalized M odus Ponens can be devel oped
by the following two steps.

Step 1l Assumethat thefuzzy sets F and G onU arefuzzy descriptions of states of agiven
system. Using the well-known “tomato example” we put

F =gt thetomatot isred
G =4 thetomatot isripe.

Then we interpret the expression
IFF THENG,

IF thetomatot isred THEN thetomatot isripe,
as adescription of the fact that G isalogical (or, possibly, a causal) consequence of F.

On the basis of thisinterpretation we call afunctiona operator ® : FP(U) - FP(U) which
fulfills the equation

O(F)=G
an interpretation of the expression IFF THENG.

10



Step 2  Following the” philosophy” of the Compositional Rule of Inferencefor an arbitrary
fuzzy set F' on U (interpreted as a*“ generalized” premise) we define the conclusion G' by

G =def (D(F').

So, we can say that using a (fixed) interpretation ® of the expression IFF THEN G we have
defined the (semantic) function of the Generalized Modus Ponens.

Remark The proposed concept of interpretation @ isvery general. Using our tomato ex-
ample we derive the monotony as a further condition which must be fulfilled by an inter-
pretation of IFF THENG.

Definition 2.2.1
@ is said to be monotone
=gt OHOH'(H,H' OFPU)OHOH' - & (H O P (H))

We put
F' =4« thetomatot isdark red

G’ =4 thetomatot isvery ripe.

Then interpreting the words “dark red” and “very ripe” wehave F' OF and G' O G.

This holds on the basis of the following statement:

If ®isaninterpretation of IFF THENG,
@ is monotone, and

F'OF
thenG' O G.
Proof From
FOF
by monotonicity of ® we get
(1) ®(F") O O(F).

Because ® is aninterpretation of IFF THENG, we get
) D(F)=G.

By definition we have

(©) G =gt P(F').
But (1), (2), and (3) imply

4) G OG.

11



2.3 Interpretation of Fuzzy IF-THEN Rules

We underline that the construction of a functional operator with the properties described
aboveisanew problem.

To illustrate this problem we consider the following “classical” construction (see defini-
tion 2.1.1)

OR(F")(y) =ger Sup{min(F’"(x), min(F (x), G ()))Ix 0 U}
where R=4¢ IFF THENG.

Obviously, ®R is a monotone functional operator because min and Sup are monotone.

The equation ®R(F) = G only holds if F and G fulfill certain suppositions (see corol-
lary 2.4.3).

We have to state that by the compositional rule of inference defined in definition 2.1.1 we
cannot construct enough solutions which are necessary in applicationsand for developing a
good and rich theory. Thereforewe generalizethe concept of interpretation and the concept
of the compositiona rule of inference as follows:

Definition 2.3.1
J=[mk,Q]issaidto bean interpretation (of asingle IF-THEN rule)
=g 1 mk:0,13 - 0,10)i.e mandk arebinary real functionsfrom [0, 1% into [0, 10]

2. Q:B0,10- M,10i. e Q isamapping from the power set 93 [0, 1[of the closed
unit interval [0, 10into this interval; Q is also called real quantifier.

Definition 2.3.2 (Generalized Compositional Rule of I nference)
1. Thefunction 1, called “implication function”, interpretstherule R=1FF THENG by
defining the binary fuzzy “implication relation” SonU as

Sx.Y) =gt MF(X),G(Y))  (xyDOU).

2. Foranarbitrary F' :U - [0,1theimageG' :U - [0,10sinferredusing S, k and Q
asfollows:

G'(Y) =aer QUK (F'(¥), Sxy)IxDU})  (yOU).

3. Analogous to the definition of the operator ®R (see definition 2.1.1) on the basis of
the given interpretation 3 = [11,K, Q] we define

ON(F)(Y) =aer QUA(F'(), F (), GM)IxOU})  (yOU)

forevery F' :U - [0,10in coincidence with point 2 above.

2.4 Concepts of Correctness for Interpreted Fuzzy |F-
THEN Rules. Criteriafor Local Correctness

For the formulation of the following theorems of this chapter we need the following defini-
tion, where p isaco-tolerancerelationon FP(U), F O FP(U)and F O F.

Definition 2.4.1
1. ®F issaid to belocally correct
=0 PR(F)=G

12



2. <D§ is said to be weakly globally correct with respect to p and ¥
=def CDSR islocally correct and CD§ is continuousin F with respect to p and .

3. <D§ issaid to be globally correct with respect to p and F
=def CD§ islocally correct and CD§ is continuousin all “points” F O F with respect to
pandd.

Theorem 2.4.1
IfR=IFF THENG and 3 =[m,k,Q] is an interpretation of R such that

1. K and T are t-norms
2. Q=Sup
thenforeveryy OU,  ®R(F)(y) < G(y).

Proof
Because rmand Kk aret-norms, we have

@ for every r,s 0 [0, 10] (r,s) < min(r,s) and k (r,s) < min(r,s),
hence
2 for every x,y O U, 1(F(X),G(y)) < min(F(x),G(y)),

From (1) and (2) for every x,y O U, we obtain

K (F(X), m(F(),G(¥))
< min(F(x), (F(x), G(¥)))

©)] <min(F(x),min(F(x),G(y))) because minismonotone
=min(F(x),G(y))
< G(y),

hence

(4) DI(F)(Y) =ger SUP{ & (F (9, 7T(F (), G(¥)))| x U} < G(y).

Remark For thevalidity of theorem 2.4.1 we do not need the complete assumption 1, i. e.
that mand k aret-norms. As the above proof shows the condition (1) is sufficient.

Theorem 2.4.2
IfR=IFF THENG andJ =[m, k,Q] is an interpretation of R such that

1. k and T aret-norms
2. Q=Sup
3. At least one of the following three conditionsis satisfied
3.1. hgt(F) =hgt(G) and m=k =min  or
3.2. hgt(F) =1 and i1,k arecontinuous or
3.3. thereisanxJU suchthat F(x) =1
then for every y O U, G(y) < PR(F)(y).

13



Pr oof
Case31
By assumption we have

hgt(F) = hgt(G) and 1= kK =min.
The operator ®R is defined by
D DF(F)(Y) =aes Sup{min(F (), min(F (x),G(y)))[xO U},
hence by

OrOs(r,s 0 0,10 min(r,min(r,s)) = min(r,s)),

2 ®F(F)(y) = Sup{min(F(,G () x TU}.
Because min is continuous, we get
(©) Sup{min(F(x),G(y)Ix DU} =2min(Sup{F(x)[xJU},G(y)).

From the assumption hgt(F) = hgt(G) we get

(4) Oy(yOU - Sup{F(x)|[xOU} =G(y)),
hence
®) Oy(yOU - min(Sup{F(x)[xOU},G(y)) =G(Y)),

henceby (2), (3), and (5) we get
O5(F)(y) 2 G(Y)-

Case 3.2
By assumption we have that

hgt(F) =1 and 71,k are continuous.
Because rmand k are continuous
(6) thefunction ¢ defined by ¢(r,s) =ge K (1, 11(r,s)) (r,s0 0,10 is also continuous.
From (6) we obtain

Sup{k (F (x), T(F(x),G(y)))I x T U}
2 K (Sup{F()IxDO U}, m(Sup{F(x)IxOU},G(y))) -

(M
Because of the definition
hgt(F) =qer SUp{F(X)[xOU}
and the assumption
hgt(F)=1

and

K and rTaret-norms,

14



we obtain

K (Sup{F(¥)[x DU}, m(Sup{F(x)[xOU},G()))
=k (hgt(F), rt(hgt(F), G(y)))
) =k (L, (1,G(y))
=k (LG(y)
=G(y),

hence by (7) and definition of d)?(F)(y)

©) OF(F)(y) 2 G(Y)-

Case 3.3

By assumption there exists an xg 0 U such that
F(xg)=1.

By definition of ®} we have to show

(10) Sup{k (F(x), T(F(x), G(y))I x DU} = G(y),
henceit is sufficient to prove

(11) X(x O U Ok (F(X), (F(X), G(y))) 2 G(Y)) -

We choose X =gef Xo-
Because mand Kk aret-normswe obtain

K (F (%0), Ti(F (%0), G()))
=k (1, 11(1,G(y)))

=k (LG(y)

=G(y).

(12)

Corollary 2.4.3
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

1. k and T aret-norms
2 Q=Sup
3. At least one of the following three conditions is satisfied
3.1. hgt(F) = hgt(G) and m=k =min  or
3.2. hgt(F) =1 and i1,k are continuous or
3.3. thereexistsanxOU suchthat F(X) =1
then ®}(F) =G, i. e. @R islocally correct.

Proof By applyingtheorem 2.4.1 and 2.4.2. |

By analyzing the proofs of theorem 2.4.1 and 2.4.2 we realize that both theorems are valid
under essentially weaker assumptions.

In particular, we shall seethat the concept of normisirrel evant because the above mentioned
theorems hold without using t-norms.

15



Theorem 2.4.4
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

1. OrOs(r,s0 0,10 7(r,) < min(r,s) 0K (r,s)  min(r,s))
2. Q=Sup
then forevery y O U,
E(F)(y) < G(Y).

Proof Seethe proof of theorem 2.4.1. It is not necessary that kK and rTaret-norms.

Another generalization of theorem 2.4.1 is the following

Theorem 2.4.5
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

1. mand«k satisfy the “boundary condition”

Os(s0 0,10~ n(1,9) < s0k(1,9<5)

2. mmand K are monotone with respect to their first arguments, i. e.
OrOr'Ot (r,r',t 0,10 <1’ - 7(r,t) < 7(r',t) OK (rt) < k(' t))

3. Q=Sup

then foreveryy O U,
®5(F)(Y) < G(Y).

Proof By definition of ®F we have to show
D DF(F)(Y) =der SUP{ & (F(¥), TT(F (), G(1)))| x DU} < G(y),
henceit is sufficient to prove
2 Ox(xOU - k (F(X), (F(X), G(y) < G(Y)).-

Now by assumption 1 and the monotonicity of k initsfirst argument, we obtain

(©) K (F(X), T(F(x),G(¥))) < k (L, 1(F(X), G(¥))) = T(F (X), G (),
furthermore, by assumption 1 and the monotonicity of rrinitsfirst argument, we obtain
(4) m(F(X), G(y) = (1, G(y) < G(Y),

hence (3) and (4) imply (2).

Now, we generalize theorem 2.4.2.

Theorem 2.4.6
IfR=IFF THENG and 3 =[m,k,Q] is an interpretation of R such that

1. Q=Sup
2. At least one of the following three conditionsis satisfied

16



2.1. hgt(F) = hgt(G) and
OrOs(r,s0 0, 10- min(r,s) < 7(r,s) Omin(r,s) < (r,s))

22 hgt(F) = 1, m is continuous in its first argument, Kk is continuous, and
Os(s00,10- n(1,9) = k(1,9 =)

2.3. X(x DU OF(x) =1) and Os(s 0 0,10~ 1(1,9) = k(1,9 =)
then for every y O U,
G(y) < ®E(F)(Y).

Proof Seethe proof of theorem 2.4.2. [ |

With respect to assumption 2.1 of theorem 2.4.6 we can modify this theorem as follows.

Theorem 2.4.7
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

hgt(F) = hgt(G)
OrOs(r,s0 ,10- 7(r,s) = sOK(r,9) 2 5)
K ismonotonein its first argument
the function ¢ defined by
¢(r,s) =qef K (r,71(r,8))  (r,sO (O, 10)
is continuousin its first argument

A W DN R

5 Q=Sup
then foreveryy O U,
G(y) < P5(F)(Y)-
Proof From the assumption
hgt(F) = hgt(G)
we get for every yO U,
1 hat(F) = G(y),
hence by assumption 2 for
2 i(hgt(F),G(y)) = G(y),
hence by assumption 3
©) K (hat(F), t(hgt(F), G (v))) = k (hgt(F), G (),
hence by assumption 2 for k
(4) K (hat(F), t(hgt(F), G (y))) = G(Y).-

By assumption 4 we obtain
Sup{k (F(), T(F(x), G(y) x DU}

® > K (SUp{F (91X 0 U} , m(Sup{ F(9 [ DU} ,G(X)),

consequently by (4) and the definition of <D§ we obtain
(6) G(y) < P5(F)(Y)-

17



Corollary 2.4.8
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

1. OrOs(r,s0 0,10 m(r,) < min(r,s) Ok (r,s) < min(r,s))
2 Q=8Sup
3. At least one of the following three conditionsis satisfied

3.1. hgt(F) = hgt(G) and
OrOs(r,s 0 ©,10- min(r,s) < 7(r,s) Omin(r,s) < k(r,s))

3.2 hgt(F) = 1, m is continuous in its first argument, k is continuous, and
Os(s0 m,10- n(1,9) = k(1,9 =5)

3.3. x(x DU OF () = 1) and Os(s 0 ,10- 7(1,9) =k (1,5) =5)
then ®R(F) =G, i. e ®F islocally correct.

Proof Seetheorem2.4.4and 2.4.6. [ |

Corollary 2.4.9
IfR=IFF THENG andJ =[m, k,Q] is an interpretation of R such that

1. Os(s0 0,10~ m(1,9) =k(1,9) =5)

2. mmand K are monotonein their first arguments

3 Q=Sup

4. at least one of the following conditionsis satisfied

4.1. hgt(F) = hgt(G) and
OrOs(r,s0 0, 10- min(r,s) < 7(r,s) Omin(r,s) < k(r,s))

4.2. hgt(F) =1, miscontinuousin its first argument, and K is continuous
4.3 x(xOUOF(X) =1)
then ®R(F)=G, i.e ®F islocally correct.

Proof Applying theorem 2.4.5 and 2.4.6 |

Remark By combining
1. theorem2.4.4and 2.4.7 and
2. theorem 2.4.5with 2.4.7

we obtaintwo further corollariesexpressing thelocal correctnessof <D§ under sufficient con-
ditions.

Formulating these corollariesis | eft to the reader.

Theorem 2.4.10
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

1. misdefined by

(1, s) =ger Sup{ t|t 0 0, 10and k (r,t) < s} for everyr,s0 (0,10

2. K iscontinuousin its second argument
3. Q=Sup
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thenforevery yOU,  ®R(F)(y) < G(y).
Proof By definition of mwe have
(1) T(F (), G () =aer Sup{tt 0 [0, 10and k (F(x),1) < GY)} ,

hence

K (FO9, (F (%), G(¥)))

) =k (F(x),Sup{t|t 0 0, 10and k (F(x),t) < G()} ).

Because K is continuous with respect to its second argument we get

. k (F(x),sup{t|t O @,10and k (F(X),t) < G(y)})
) < Sup{ K (F(x),t)|t O [0, 10and k (F(X),t) < G(y)} .
Furthermore, we have

(4) Sup{ k (F(¥),t)|t O 0, 10and K (F(x),t) < G(y)} < G(y),

hence by (2), (3) and (4)

®) K (F(X), T(F(x), G(¥))) < G(y),
hence
(6) Sup{k (F(x), (F(x),G()) x DU} < G(y),

hence by definition of ®f

(7 PR(F)(y) < G(y)
holds.

Theorem 2.4.11
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

1. hgt(F) > hgt(G) or (hgt(F) = hgt(G) and [x(x O U OF(X) = hgt( F)))
2. Or(r 0,10 &(r,00=00k(r,1) =r)
3. thefunction k is monotone and continuousin its second argument

4. thefunction 1t is defined by
(1, s) =ger Sup{ t|t O [0, 10K (r,t) < s}
foreveryr,sO 0,10
5 Q=Sup
then for every y O U, G(y) < PR(F)(y).

Proof
By definition of ®f we haveto show
@ G(y) < Sup{k (F(x), (F(x),G () x DU},

hence by definition of rTit is sufficient to prove

2 G(y) < Sup{ k (F(x), Sup{ t|t O 0, 1k (F(X),t) <G(y)} )[x DU} .
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Because k is monotonein its second argument it is sufficient to show

3 G(y) < Sup{ sup{  (F(x),t)|t O 0,10k (F(x),t) < G(y)} [x DU},
henceit is sufficient to show

(4) [kt (x DU Ot O 0,100k (F(X),t) < G(y) OG(Y) < k (F(X),1)) -
i.e

(5) [kt (x DU Ot O W, 100k (F(X),t) = G(y)) -

Assumption 1implies
(6) Oy(yOU - Ix(xOU OF(X) = G(y))).

Let Xg be an element from U such that

() G(y) = F(%o)-
Then by assumption 2 we obtain
€) 0=k (F(%0),0) = G(y) = K (F(X0), 1) = F (o).

By assumption 3, the function k is continuous in its second argument, hence by the inter-
mediate val ue theorem there exists a tg [ [0, 100such that

9) F(Xo.to) = G(y).
Put X =gt Xg @and t =ger tg, then (5) holds. |

Remark If weweaken the assumption
hgt(F) > hgt(G) or  (hgt(F) = hgt(G) and [x(x O U OF(x) = hgt( P))
to
hgt(F) = hgt(G)
then the proof above will not work. The reason is that the assumption
hgt(F) = hgt(G)
does not imply the conclusion (6).

Therefore, we haveto strengthen other assumptionsand to modify the proof asthefollowing
theorem shows.

Theorem 2.4.12
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

1. hgt(F) = hgt(G)
2. Or(r 0,10 &(r,00=00k(r,1) =r)

3. thefunction K is monotone and continuous in the first as well as in the second argu-
ment

4. the function Tt is defined by
(1, ) =ger Sup{ t|t O [0, 10K (r,t) < s}
for every r,s0 0,10
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5. Q=Sup

then forevery y O U,
G(y) < PF(F)(Y)-
Pr oof
By assumption 1 we have
1 hgt(F) = hgt(G),
hence
) Oy(yOU — hgt(F) 2 G(y)).
Now, let y be afixed element from U. Then by assumption 2 we obtain
(3 0=k (hgt(F),0) < G(y) < k (hgt(F), 1) = hgt(F).

Assumption 3 impliesthe continuity of k inits second argument, hence by the intermediate
value theorem there exists areal number tg O [0, 10such that

4) K (hgt(F),to) = G(y).
Assumption 3 implies the monotonicity of k initsfirst argument, hence
(5) Ox(xOU - K (F(X),tg) < G(y)).

Futhermore, assumption 3 implies the continuity of k in itsfirst argument, hence from (4)
we get

(6) Sup{k (F(x),to)| x DU} 2 G(y).
Because of (5) we have
Sup{k (F(x),to)| x DU}

¥ = Sup{ K (F(9,t0) X 0 U DK (F(4),t) < G(Y),)

hence by (6)

(8) G(y) = Sup{k (F(x),to)| x DU Ok (F(x),to) < G(y)} ,

hence

9) G(y) < Sup{ Sup{k (F(x),t)|x U Ok (F(X),t) < G(y)} |t O 0,10} .

Because of the “commutativity” of Sup we have

Sup{ Sup{k (F(x),t)|x DU Ok (F(x),t) < G(y)} |t O 0,15}

= Sup{ Sup{  (F(x),t)|t O 0,10k (F(X),t) < Gy)} |[x DU} .
Because of assumption 3, the function k is monotonein its second argument, we get
Sup{ k (F(¥),t)|t O M, 10k (F(X),t) < G(y)}

<k (F(x), Sup{t|t O 0,10k (F(),t) <GWy)} ).

hence because of monotonicity of Sup and definition of

Sup{ sup{ k (F(x),t)[t O 0,100k (F(x),t) < G(y)} | x DU}

< Sup{k (F(X), (F(x), G(y) x DU},

From (9), (10), (12), and the definition of <D§(F)(y) we obtain

G(y) < PF(F)(Y)

(10)

(11)

(12)
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Corollary 2.4.13
IfR=IFF THENG andJ =[m,k,Q] is an interpretation of R such that

hgt(F) > hgt(G) or  (hgt(F) = hat(G) and [k (x 0 U DIG(X) = hgt( G)))
Or (r 0 0,10- k(r,0)=00k(r,1) =)

the function Kk is monotone and continuous in its second argument

AW DN R

the function 1t is defined by
(1, s) =ger Sup{ t|t O [0, 10K (r,t) < s}

foreveryr,sO 0,10
5 Q=Sup

then ®R(F)=G, i.e ®R islocally correct.
Proof By applying theorem 2.4.10 and 2.4.11. |

Corollary 2.4.14
IfR=IFF THENG and J =[m, k,Q] is an interpretation such that

1. hgt(F) = hgt(G)
2. Or(r 0,10 k(r,00=00k(r,1) =r)

3. the function K is monotone and continuous as well as in its first and in its second
argument

4. thefunction 1t is defined by
T(r, ) =ger Sup{ t|t O [0, 10K (r,t) < s}
foreveryr,sO 0,10
5 Q=Sup
then OR(F) =G, i. e ®R islocaly correct.

Proof By applying theorem 2.4.10 and 2.4.12. |

2.5 Criteriafor Global Correctness. Conceptsof Continu-
ity for Functional Operators

Now, we turn over to investigate the weakly global correctness and the global correctness
of ®R,
J

We state that the global correctness of CD§ impliesits weakly global correctness. Therefore
in the following we shall study only the global correctness. The problem whether there ex-
ists aCD§ such that CD§ isweakly global correct but not global correct remains open.

Because of the above theoremsit is sufficient to study the continuity of <D§ with respect to
aco-tolerancerelation p and aset F 0 FP(U).

In order to have simple assumptions we start our considerations with the well-known
CHEBY SHEV metric pc (see example 1.1).

Obviously, the metric pc satisfies the following
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Lemma25.1
For every xOU, every F,G O FP(U) and every real number ¢ =0,

pc(F,G) <cif andonly if forevery xOU, |F(X)—G(X)|< c.

We underlinethat the rel ation between the metric pc and the absol ute value of real numbers
expressed by thislemmawill play animportant rolein proving theorem 2.5.3 further down.

In the proof of the following theorem we still need

Lemma25.2
For every F,G O FP(U),

ISup{F (x)[x 0 U} = Sup{ G(x) [x D U}| < Sup{|F () ~G(X)|Ix DU} .
Proof Without loss of generality we can assume that
D Sup{F(x)[x0U} > Sup{G(y)ly DU} .
First, we show
(2) Ox(xOUOF(X) = Sup{G(y)lyOU} -

F () —Sup{G(y)ly DU} < Sup{|F(y) -G(y)lly D U}).

Assume
(©) F(x) 2 Sup{G(y)lyOU}.
Then we obtain

F(x) —-Sup{G(y)lyC U}

<SF(X)—G(y) becauseof Sup{G(y)lydU} =G(y) for every y U
4 SF(X)-G(x) fory=geg X

=[F() -G

< Sup{|F(X)-G(X)|IxOU}.

Furthermore, we state

Sup{F(¥) - Sup{ G(y)ly I U} x T U}

5
© =Sup{F(x) ~Sup{G(y)lyd U} |x DU OF(x) = Sup{G(y)[y I U} } .

Theinequation = of (5) istrivial. In order to prove the inequation < of (5) it is sufficient to
show

(6) Ox(xOU - X (X DU OF(X) = Sup{G(y)lyOU} OF(X) = F(x))).
Casel Sup{G(y)|lydU} =F(x).

Because of (1)

(7 there existsan X' 0 U such that F (x') = Sup{G(y)|lyO U},

hence (6) holds.
Case2 F(X)=Sup{G(y)|lydU}.
Put X' =q4¢ X, hence (6) holds trivialy.
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Now, from assumption (1) we obtain
(8)  [ISup{F(x)[x0 U} -Sup{G(y)ly JU}|=Sup{F(x)|x DU} - Sup{G(y)ly DU}
By continuity of the subtraction r —sfor real numberswe get
(9 Sup{F(x)IxOU} -Sup{G(y)ly DU} < Sup{F(x) -Sup{G(y)ly U} |xOU},
hence by (4), (5), (8), and (9) we obtain
[Sup{F(x)[x O U} = Sup{G(y)|y D U}| < Sup{|F(x) ~G(x)[Ix DU} .
|
Remark Using the definition of hgt and pc, the above lemma says that for every
F,GOFPU),
Ihgt(F) —hgt(G)| < pc(F, G).

Theorem 2.5.3
If R=IFF THENG andJ is an interpretation of R such that

1. K iscontinuous
2 Q=Sup

then <D§ is continuouswith respect to pc andFP(U), i. e d)? isglobally correct with respect
to pc and FP(U).

Proof We haveto prove

Oe(e>0 - O(60>00

@) OHOH'(H,H' OFPU) Opc(H,H') <6 - pc(PF(H), PF(H") < €))).

Assume ¢ > 0. Then we want to show

2 pc (PRH), dFH")) <.

Because of lemma2.5.1 it is sufficient to prove

3 |¢§(H)(y) - ¢§(H')(y)| <& forevery yOU.
Hence by definition of CD§ it is sufficient to show

4 ISup{ & (H(x), T(F(x), G(Y))Ix DU} =Sup{k (H'(x), 1(F(x),G(Y)))|x OU}|< €
foreveryyOduU,

henceby lemma2.5.2 it is sufficient to prove

Sup{ Ik (H(X), 1(F (), G(y)) ~ Kk (H'(x), m(F (), GW))IIx DU} < ¢

5
®) foreveryyOduU,

hence by definition of Sup it is sufficient to prove

(6) |k (H(X), 7T(F (x), G(y))) — k (H'(x), 1(F (x), G (¥)))| < € for every x,y O U.
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Because K is continuous, we have

(7) Oe(e>0- (6> 000rOrOsds(r,r',s,s O M, 1M r-r'|< 60|s—S|<d
- [K(r,5) = K(r',s)|< €))).

Put I =def H(X)

I =get H'(X)

S=def S =det TT(F(X),G(Y)).
Thenthereisa d > 0 such that the condition

(8) HX)-H'(X)|<d foreveryxdU
implies (6).

Now, (1) gives the assumption

) pc(H,H") <9,

hence by lemma2.5.1, (9) implies (8).

For investigating the continuity of operators @ : FP(U) - FP(U) in more detail for
F OFP(U) we define

Definition 2.5.1
1. @ jssaidto be point-wise continuousin F
=ger HeOx(e > 00xOU -
(6> 000FOG(F,GOFUOIFX)-G(X)|< 0 - [P (P(X) —P(G)(X)|< €))).

2. @ issaid to be uniformly point-wise continuousin F
=qe De(e> 0 - 05(6> 00OXOFOG(x DU OF,G O F O|F(X) - G(X)| < &
- |P(F)(X) - P(G)(X)| < €))).
3. @ jssaidto be CHEBY SHEV -continuousin &
=qet P iscontinuousin F with respect to the CHEBY SHEV metric p¢ .

We have the following

Lemma25.4
1. @ isuniformly point-wise continuousin F if and only if
@ js CHEBY SHEV -continuousin &

2. The CHEBY SHEV -continuity of ® in F implies its point-wise continuity in .

3. If U is finite then the point-wise continuity of ® in & implies its CHEBY SHEV -
continuity in &

4. If U is infinite then the point-wise continuity of ® in ¥ does not imply its
CHEBY SHEV -continuity of ®, in general.

Proof
ad 1 Obvious by definitions.

ad 2 Obvious by definitions.

ad 3 By assumption for every € > 0 and every x 0 U there exists a ¢ x such that

OF0G(F,G 0 FOIF() G| < Sx — [(F)(X) - DG)(K)|< ).
68 :dEf Sup{ 68,)(‘)( D U} .
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Because U isfinite, o isafinite real number, furthermore we have
6£,x < 68

for al x O U, hence d, can be used to prove the CHEBY SHEV-continuity of @ in F.

ad 4 By analyzing the following remark, definition and theorem we get a method to con-
struct an operator which is point-wise continuousin J(U) but not CHEBY SHEV-continuous
inFU). |

Remark Theproof of theorem 2.5.3 showsthat thistheoremistill valid if the function k
isonly continuousin itsfirst argument, but uniformly continuous with respect to its second
argument.

For definiteness we repeat
Definition 2.5.2
1. K issaidto be continuousin its first argument
=4t JeOs(e > 00sO M, 10- 03(6 > 000rOr'(r,r' O 0, 1O|r-r'|< o
- [k(r,9)=K(r',9)|< €)))

2. K is said to be uniformly continuous in its first argument with respect to its second

argument
=4ef (>0 - O(6> 000rOr Os(r,r',sO 0,1 r-r'|< O
- [K(r,9) —K(r',9)| < €))).

Then, by analyzing the proof of theorem 2.5.3 we get

Theorem 2.5.5
If R=IFF THENG andJ is an interpretation of R such that

1. k iscontinuousin its first argument
2. Q=8Sup
then <D§ is point-wise continuous with respect to FP(U).

Remark The continuity of operators of the form CD§ isinvestigated for special J and spe-
cial Fin[11].
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Chapter 3

|F-THEN Rule Bases

3.1 Fundamental Conceptsand Notations

We consider afixed IF-THEN rule base

IFF, THENG;
RB: :
IFF, THENG,

wheren=1land Fq,... Ry, Gq,... ,G, arefuzzy setson U, i.e forevery i O{ 1.... ,n} we
haveF :U - [0,1Cand G; : U - [0, 10

For interpreting RB we fix a (3n +4)-tuple J of theform

J=[m,... . Th, Ko, K1, ... ,Kn,Q0, Q1. ... ,Qn, a1, 3]
where
1. Th,... . Th, Ko K1, ... . Kn : 0,103 - [0,10
2. Q0,Q1,...,Qn PO, 10- 0,10
3. a,5:0,10 - 0,10

In generalization of the terminology introduced in section 2wecal 1, ... , T, “implication
functions’, Ko, K1, ... ,Kn “combination functions’, Qg, Q1, ... ,Qn (rea) “quantifiers’, and
a, B “aggregation functions’.

The definition of an interpretation for an IF-THEN rule base is done in three steps.

Step 1. Interpretation of the rules IFF THENG;.
Forevery i O{ 1.... ,n} we define a binary fuzzy relation on U by

S(xY) =det H(Fi(X),Gi(y)  (xyDOU).
We say that the implication function 7z interpretsthe rule IFF THEN G;. The correspond-

ing relation S is caled “implication relation” generated by the rule IFF, THEN G; and the
implication function 7z.
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We underline that every rule has its own interpretation. Of course, this general approach
coversthe case of auniversal interpretation (i.e. T = (E 11,) as well as the case that the
rule base RB contains “weighted rules’, for instance.

Notethat at this stage of discussion we do not assume any specia propertiesof 75. Thiswill
be done later for proving theorems and in considering examples.

Step 2 and step 3 depend on the principle FATI or FITA which will be used for an interpre-
tation of the rule base being considered [7, 8, 37,40, 46].

Wedefine FATI =g First Aggregation Then I nference.

Step2 (FATI)

This step 2 consists of aggregating the defined binary fuzzy relations S;,... ,SyonU toa
binary fuzzy “ superrelation” S onU asfollows

SXY) =der A(S(XY), .., S(Xy)  (xyOU).

Asin step 1 we do not make any assumptions about the real function a. In severa publi-
cations (see, for instance, [46]) one can find the opinion that a must be the function max
or the function min. But we do not share this opinion because we think that in this way the
approach is too strongly restricted.

Step3  (FATI)

For an arbitrary “argument” F, where F isafuzzy set onU, weinfer from F and the aggre-
gated implication relation § by Qg-Kg-composition the fuzzy set H on U where for every

yOU, Ho(y) isdefined by Ho(y) =det Qo({ Ko(F(x), So(x,¥)) X U}).
Now with respect to the interpretation J we define the functional operator FATIFE, whichis
amapping FATIRE : FP(U) - FP(U), asfollowswhere F : U - [0,10and y O U:

Definition 3.1.1 (FATI)
FATIFB(F)(Y) =der Ho(Y) -

Conseguently, we have

FATIZB(F)(y)
= Qo ({ ko (F(¥), So(x, ) xOU})
= Qo({ Ko(F (), a(ma(F1(x), G1(¥)), ... » Th(Fn(X), Gn(¥)))) X O U})

Now, wedefine  FITA =4 First Inference Then Aggregation.

In order to define the corresponding functional operator FITATE we exchange step 2 with
step 3,i.e. foragivenfuzzy set F : U - [0,10weinfer from F and the “local” implication
relation § by Q;-kj-composition the fuzzy set H; and after this we aggregate the “local”
resultsHy, ... ,Hp to the global result H by the aggregation function (3.

That means

Step2 (FITA)  Hi(y) =aer Q{&i(F(¥),S(xy))[xOU})  ( OUY.
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Step 3 (FITA)  H(Y) =ger B(H1(Y), - ,Hn(Y)) (you).
Likein case of FATIFE we define

Definition 3.1.2 (FITA)
FITARB(F)(Y) =¢et H(Y) -

Consequently, we have

FITARB(F)(y)
=B (H(y), --- ,Hn(¥))
= BQ1{ k1 (F(X), m(F1(¥), G1(¥))) Ix O U}), ..., Qu({ Kn(F (X), T(Fa(X), Gn(y))) IX O U}))

Example3.1.1 Inmany applications so-called “crisp” inputs play an important role. We
definefor F:U - [0,1Cand xo O U:

Definition 3.1.3

F is said to be an xg-crisp fuzzy set onU

=gt F(Xg) =1 and F(x) =0 for every x O U with X £ Xg.

Because an Xo-crisp fuzzy set on U is uniquely determined by xo, we denote this set by F,.

For crisp inputs we get the following theorem.

Theorem 3.1.1
If 1. Ko,K1, ... ,Kn @et-normsand

2. Qo=Qq = Q, =Sup and
3 a=p8
then for every xo,y O U,
1. FATIE(Fo)(¥) = a(Su(*0, ), S(%0,Y))

2. FITASB(F)(y) = B(S1(%0,Y), - Sh(%0,Y))
3. FATIFB(F)(y) = FITARB(Fy,).

Pr oof
ad 1. By definition of FATIFE we have
FATIFB(F) = Qo ({ Ko(Fo (9, a(S1(xY), - . Sh(x ) [xOU})
=Sup({ ko(1, a(S1(x0,Y) - » Sa(X0, Y}

O{Ko(0, a(S1(X,Y), - , (%)) Ix O U Ox# x0})
= a(S1(x0,Y),- - »Sh(%0,Y))

because ko(1,5) = s, Kg(0,5) =0, Sup{r,0} =r.
ad 2. Analogously to assertion 1.
ad 3. Immediately from assertions 1 and 2. |
Note that this result isindependent of the interpretation of therules IFF THENG;, i. e. the
interpreting functions 7 can be chosen without any restrictions (i 0 {1, ... ,n}).

By analyzing the proof of theorem 3.1.1 we obtain the following generalizations of thisthe-
orem.
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Theorem 3.1.2
1. If  Os(sO0,10- ko(0,5) = 00ko(L,9) = S)
and
Or (r 0 ,10- Qo{0,r} =r)
then for every xo,y OU,  FATIFB(F)(y) = a (S1(X0,Y)--- » Sn(¥0,Y))

2. If foreveryiO{1,...,n},
Or (r 00,10~ ki(0,5) =00ki(1,5) =)
and
Or (r 0 ,10- Q{0,r} =r)
then for every xo,y DU, FITARB(F))(Y) = B(S1(%0,Y)--- »Su(X0,Y))

3. If foreveryi{0,1,...,n},
Or (r 0 0,10- ki(0,s) = sOki(1,9) =)
and
Or (r 0 ,10- Q{0,r} =r)
then for every xo O U, FATIRB(Fy,) = FITARB(Fy,).

Remark Inthepast theapplicationsof IF-THEN rule baseswererestricted to crisp inputs
of the form F, (see definition 3.1.3), also called “singleton” inputs.

For acrisp input Ky, therelations S, ... , S, have the form

S(Xo,Y) =15 (Fi(X0), Gi(¥)) -

Now, in some applicationsthevector [F1(Xp), ... , Fn(Xg)] iscalled“fuzzification” of thecrisp
value Xg.

We underlinethat thistermis very misleading with respect to using “fuzzy inputs” or “non-
singleton” inputs (see [5, 25, 29], for instance) which newly play an increasing role in ap-
plications. But this means that a crisp value Xy will be fuzzified by assigning a fuzzy set
F = ¢(xg) on U to xg where ¢ is defined by the block “fuzzifier” of afuzzy controller (see
page 4).

Hence, by fuzzifyingin the second sense weindeed obtain afuzzy set F = ¢(Xg). In contrast
to this concept in the first sense the vector [F1(Xg), ... , Fn(Xg)] is no fuzzy set in any sense,
S0 using the term “fuzzification” in this case is very confusing.

Theorem 3.1.1 and 3.1.2 give occasion to define for F O FP(U):

Definition 3.1.4
FATIZ® and FITAR® are equivalent with respect to &
=qef For every F O F, FATIRB(F) = FITAB(F).

Remarkstodefinition 3.1.4 Thisdefinitionisvery important both in theory and in appli-
cations. Implementations of the inference procedure Q;({ki(F (X),S(x,y))|x O U}) tend to
have a very high computational complexity depending on the cardinal number card U of U.

So, with respect to FATI we havethe advantagethat FATI requiresonly oneinferenceproce-
dure. In contrast to this, FITA requires n such procedures, i. e. its computational complexity
is much higher, in general. But aswe will seelater, FITA has the advantage that it is much
easier to check important properties, for instance, the correctness.
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Example 3.1.2 Now, we discuss the “classical” MAMDANI controller. For this purpose
we assume

1 Qo=0Qy = Qn=3Sup
2. Kg= Ky =UIF Kn=min
3. o =B =max
4. 1 = 0F 15 = min.
Then theorem 3.1.1 holds and for acrisp fuzzy set Fy, we obtain

FATIE(Fy,)(¥) = FITATR(Fx,)(y) = max(min(Fy(xo), G1(¥)), .. , Min(Fn(Xo), Gn(¥)))-
For illustration we consider the rule base

T =g4er Temperature
where NG =g¢ Natural Gas (vol/sec)

X0 =def 45

IFF, THENG;

RB: |EE, THENG,

and the sets 1, G1, F, and G, are defined by the following figures.

F G
1 ! 1 !
Flbo)| /) S N min(Fy(xo),
; G1(y))
0 T T L e e e O A
0 100 T 0 50 100 NG
G
1 1 2
Re)| A N
min(F2(xo), G2(y))
O 71171 T T 1 O T T T 1T T 1T T T T 77
0 00 T 0 50 100 NG
Then we get
1 1 '
min(F2(%o), G2(Y))
min(Fy(Xo), G1(Y))
€ N B B O T T 1T 1 T 1T T 1T T 77
0 50 100 NG 0 50 100 NG

andfinally  FITASE(Fq)(y) = G(y) = max(min(F1(x), G1(y)), min(F2(xo), G2(y))
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FITARB(F,) =G

Example3.1.3 The LARSEN controller
Assumption
1. Qo =Qq =M= Qn = Sup
2. Ko =Ky =IEKn=min
3. a=B=max
4. m = ¥ 5, = prod where prod(r,s) = r [3.
Then theorem 3.1.1 holds and for a crisp fuzzy set Fy, we obtain

FATIB(F)(y) = FITARB(F)(y) = max(prod(Fi(xo), G1(Y)), .. , prod(Fn(Xo), Gn(¥)))-

For illustration we choose the same rule base RB asin example 2. Then we get

F Gy

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, prod(F1(%o),
Gi(y)

T T T T T 17T 1T T
50 100 NG

Gy

prod(F2(x0), G2(¥))

prod(F>(%o), G2(y))

prod(F1(%o), Ga(y))

e e I B L e e e O A
0 50 100 NG 0 50 100 NG
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andfinally  FITAS(F)(y) = G(y) = max(prod(Fi(xo), G1(y)), prod(F2(xo), G2(¥))

14
FITAR(Fy) =G

3.2 On some Concepts of Correctnessfor Rule Bases

3.2.1 TheRule-wise Correctness of a Rule Base

We recall that for the given IF-THEN rule base

IFF, THENG;
RB: :
IFF, THENG,

and the given interpretation

J=[m,... , Th,Ko,K1, ... ,Kn,Q0,Q1, ... ,Qn, a1, B]

of RB we have defined S(X,Y) =4 T5(F(X),Gi(y)) for x,ydU. Now, for arbitrary
F:U - [0,10andy OU we put

Definition 3.2.1
(F ©®S)(Y) =det Qi({ ki (F (), S(x,y)IxTU})

Using this“product” ® we define

Definition 3.2.2
RB issaidto berule-wisecorrect withrespect toJ =4¢ Foreveryi 1{ 1,... ,n},F©S =G;.

Obvioudly, definition 3.2.2 is a generalization to rule bases of the correctness of one rule
(see definition 2.4.1).

The following five theorems state the rule-wise correctness of IF-THEN rule bases with re-
spect to J under sufficient assumptions.

Theorem 3.2.1
If foreveryi 0{1,...,n},

1. 1 and k; aret-norms

2. Qi =Sup

3. at least one of the following conditionsis fulfilled
3.1. hgt(R) = hgt(G;) and 15 = K; =min  or
3.2. hgt(R) =1 and 11 and k; are continuous  or
3.3 thereisanxOU withF(x)=1
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then RB is rule-wise correct with respect to J.

Proof Application of corollary 2.4.3. |

Theorem 3.2.2
If foreveryiO{1,...,n},

1. OrOs(r,s0 0,10 75(r,s) < min(r,s) Oki(r,9) < min(r,s))
2. Q=Sup
3. at least one of the following three conditions is satisfied

3.1. hgt(F) = hgt(G;) and
OrOs(r,s0 [, 10- min(r,s) < 75(r,9) Omin(r, ) < ki(r,9)

32 hgt(R) = 1, 1 is continuous in its first argument, k; is continuous, and
Os(s010,10- 75(1,9) = ki(1,9) =)

3.3 x(x DU OR(x) = 1) 00s(s 0 0,10 75(1,9) = ki(1,9) =)

then RB is rule-wise correct with respect to J.

Proof Application of corollary 2.4.8. |

Theorem 3.2.3
If foreveryiO{1,...,n},

1. Os(sO[0,10- 75(1,9) = ki(L,9) = 5)
2. thefunctins 15 and k; are monotonein their first argument
3. at least one of the following three conditionsis satisfied

3.1. hgt(F) = hgt(G;) and
OrOs(r,s 0 ,10- min(r,s) < 75(r,s) Omin(r, s) < ki(r,9))

3.2. hgt(FR) =1, 15 is continuousin its first argument, and K; is continuous
33 X(xOUORKX =1)

then RB is rule-wise correct with respect to J.

Proof By applying corollary 2.4.9. |

Theorem 3.2.4
If foreveryi O0{1,...,n},

1. hgt(R) > hgt(G;) or (hgt(F)=hgt(G;) and Tx(x O U 0OG;(x) = hgt( G)))
2. Or(r 0,10 &i(r,0)=00ki(r, 1) =r)

3. thefunction K; is monotone and continuous in its second argument

4. 15 is defined by Ti(r,s) =ger Sup{ t|t 0 [0, 100k (r,t) < s} for every r,s0 0,10
5 Q =Sup

then RB is rule-wise correct with respect to J.

Proof Application of corollary 2.4.13. |

Theorem 3.2.5
If foreveryi O0{1,...,n},



1. hgt(F) = hgt(G))
2. Or(r 0,10 &(r,0)=00k(r,1) =r)
3. thefunction k; ismonotoneand continuousinitsfirst aswell asinits second argument

4. the function 1% is defined by
15(r,9) =t Sup{ t|t O 0, 1(0IK;(r,t) < s}
foreveryr,sO 0,10
5 Q =Sup

then RB is rule-wise correct with respect to J.

Proof By applying corollary 2.4.14. |

3.2.2 Theloca Correctness of FATI and FITA

Independently of the question whether FATIR and FITAR® are equivalent with respect to a
set 5 [ FP(U) we define for ® 0 { FATIS®, FITARE} :

Definition 3.2.3
@ issaid to belocally correct =q4¢ For everyi 0{1,... ,n}, ®(R) =G;.

3.2.3 Versionsof the Global Correctness of FATI and FITA

Let p be a co-tolerance relation on FP(U). We assume that we have an ¥ 0 FP(U) with
Fi,... ,Fn 0 F. Asinsection 3.2.2 independently of the equivalence of FATIFE and FITAR®
(in ) for & O { FATIEE, FITARE} we define:

Definition 3.2.4
1. @ jssaidto be weakly globally correct with respect to p in F
=4ef 1.1. ® islocally correct

1.2. ®iscontinuousinF,... ,F, with respect to p and &.

2. ® jssaidto be globally correct with respecttop inF
=4t 2.1. @ islocally correct

2.2. ®jscontinuousin al “points’ of & with respect to p and F.

3.3 Criteriafor Local Correctnessof FITA and FATI

3.3.1 Onthelocal Correctnessof FITA

Referring to our remarks to definition 3.1.4 we start our considerations with the principle
FITA because the investigation of FITA§B with respect to local correctness is easier and
more successful than the studying of the same question for FATIRE.

Theorem 3.3.1
If 1. RB isrule-wise correct with respect to J

2. B=max
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3 foreveryi,j0{1,..,n}, ROSOROS
then FITAR® is locally correct.

Proof By definition of FITAR® we havefori 0{1,...,n}andy O U:
FITARB(R)Y) = B(F @ S)O), --- . (R @ S)(Y)).
By assumption 3we get forevery i,j O{1,... ,n} wherey O U
(FOS)Y) < (FROS)WY),
hence by assumptions 2 and 1
FITAB(F)(Y) = (F O S)() = Gi(y)-
|

Remark The assumptions 2 and 3 are sufficient but not necessary. Instead of these as-
sumptions even the following assumption is sufficient:

BROS)Y),....(FOSKY) =(FROS))  ( Of{iL...,n},ydu).

“Dual” to theorem 3.3.1 the following theorem holds:

Theorem 3.3.2
If 1. RB isrule-wise correct with respect to J

2. B=min
3 foreveryi,j0{1,...,.n}, ROSOROS
then FITARB is locally correct.

Proof Asfor theorem 3.3.1. [ |

Remark Intheorem 3.3.2 the assumptions 2 and 3 are again sufficient but not necessary.
Instead of these assumptions even the same assumption

B(FOS)Y),....(ROK)W)=F®S)y) ( O{L...,n},y0U)
as for theorem 3.3.1 is sufficient.

Theorem 3.3.3
If 1. theassumptionsof oneof thetheorems3.2.1,3.2.2, 3.2.3, 3.2.4, and 3.2.5 are satisfied

2 foreveryi,jd{1,...,n}, ROS0OROS
3. B=max
then FITARB is locally correct.
Proof By applying theorem 3.3.1 and the theorems quoted above under 1. |

Theorem 3.3.4
If 1. theassumptionsof oneof thetheorems3.2.1,3.2.2,3.2.3, 3.2.4, and 3.2.5 are satisfied

2 foreveryi,jd{1,...,n}, ROSOROS
3. B=min
then FITAR® is locally correct.

Proof By applying theorem 3.3.2 and the theorems quoted above under 1. |
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Remark Analogousto theorems 3.3.1 and 3.3.2 we can state that in theorems 3.3.3 and
3.3.4 the assumptions 4 and 5 are sufficient but not necessary. In both theorems we can
replace these assumptions by the assumption

B(ROS)Y), .- . (FOSIW)=(ROS)Y)  ( O{L...,n},y0U)

which is also sufficient.

3.3.2 Onthelocal Correctness of FATI

Once more referring to the remarks to definition 3.1.4 we shall see that the investigation
whether FATIE® is locally correct or not is much harder than for FITARE.

Theorem 3.3.5
If 1. RBisrule-wise correct with respect to J

2. o =max
3. Ko =Ky = [I[E Ky, and Ko is at-norm

4. Qo=Sup
5 foreveryi,j0{1,..,n}, KOS OROS
then FATIR® is locally correct.

Proof We get

FATIRB(F)(y) = Qo({ Ko(F (), a(Si(x.Y), ... , Su(x,))) X O U})

by definition, hence by assumptions 2 and 4

= Sup{ KO(F (X)1 max(sl(xvy)v 1S"I(va))) |X U U} .

Because kg isat-norm we havefor every r,s,, ... ,s, 0 [0, 10

KO(r! maX(Sl, rer 13'1)) = maX(KO(rvSCL)! rery KO(r: 51))

Conseguently we obtain

FATIFB(F)(y) = Sup{ max(ko(F (), S1(X,Y)), - .. . Ko(F (X), Sa(x,Y))) Ix DU} .

Now, because we can exchange Sup for max we get

FATIFB(F)(y) = max(Sup{ Ko(F (X), Si(x,y)) Ix DU}, .., Sup{ Ko(F (x), Sn(x,¥))[x D U})

and
=max((F @S)(y), ... ,(FOS)(Y))

by definition, hencefor F = F;

FATIRB(R)(y) = max((F © S)(Y), ... , (F © Sh)(Y))

thus by assumptions 5, 3 and finally 1
=(FOS)(Y)=(FOS)(Y) =Gi(y).
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Remarks
1. Theorem 3.3.5 also holdsif we replace assumption

3. Kg =K = IF Kk, and Kg isat-norm

by
3. Kgisat-norm

and replace assumption
5 foreveryi,jO{1,...,n},ROS0FRO®S

by
5. foreveryi,j0{1,...,n},ROS0FROS.

2. We can state that the assumptions 2 and 5 in theorem 3.3.5 are sufficient but not nec-
essary. We can even replace these assumptions by

a((FO@S)Y), -, (FOS)(Y)) = (FOS)(Y)

foreveryi O{ 1,... ,n} andy O U whichis aso sufficient.

3. If we have replaced assumption 3 by 3' and assumption 5 by 5' then we can together
replace 3' and 5' by

a((ROS)(Y), ... . (RESKY(Y) =(FOS)(y). (O{1..,n},yOuU).

Now, we shall discuss the case that the aggregation function a is the minimum function.

Before we shall formulate and prove the theorem in question we prove the following theo-
rem on the comparability of FATIS® with FITARE.

Theorem 3.3.6
If 1. Kg=ky=UIF Ky and Kg isat-norm

2. Qo =Qq == Qn=Sup
3. o =B=min
then FATIFE(F) O FITARB(F) for every F : U — (0,10

Proof Because kg isat-normwe havefor every r,s;, ... ,S, O [0, 1[]

Ko(r,min(sy, ... ,Sn)) = Min(Ko(r,S1), .. , Ko(r, Sn))-
Then we get by definition of FATIS® and by assumptions 1 and 3

FATIFE(F)(Y) = Sup{ ko(F (), min(Si(x,¥), ... ,S(xy))xOU} , thus
= Sup{ min(KO(F (X)1 S]_(X,y)), ey KO(F(X)a S‘I(va))) |X U U}

because kg isat-norm, so

< min(Sup{Ko(F (¥), S1(x,¥)) XD U}, ..., Sup{ Ko(F (X), Sh(x,y)) X T U})
because of

Sup{min(F (x), G (x))Ix J U} < min(Sup{F (x)|x 0 U}, Sup{G(X)|x 0 U})
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where F and G are arbitrary fuzzy setson U, hence

FATIRB(F)(y) < min((F @ S)(y), ... ,(F @ S)()).

Because of assumptions1, 2and3wehave F© S =F ® § forevery i 0{1,... ,n}, thusfor
everyylluU

min((F @ S)(), - ,(F @ S)(¥)) =min((F @ S)(), ... , (F ®S)(y)) = FITAPE(F)(y),

hence FATIFB(F) O FITARB(F). [

Theorem 3.3.7
If 1. Kg=ky=UIE Ky and Kg isat-norm

2. Qo =Qy =¥ Qn =Sup

3. o =B=min

4. RB isrule-wise correct with respect to J

5 foreveryi,jO{1,... . n}, ROSOROS
then FATIFB(F) O Gi.

Proof From assumptions1, 2 and 3 we get by theorem 3.3.6

FATISE(F) O FITARB(F) for every i O{ 1....,n}.

From assumptions 3, 4 and 5 we get for every i 0 {1,... ,n},

FITARB(F) = Gj,
hence theorem 3.3.7 holds. [
If we can replace the conclusion FATIRB(F)OFITARB(F) in theorem 336 by

FATIRB(F) = FITARB(F) for every i O { 1..,n} then we get a further correctness
theorem for FATIEE. Now, let us prove FATIRB(F) = FITARB(F) for every i O{ 1....,n}.

Theorem 3.3.8
If 1. kKg=kq =¥ Ky and Kq isat-norm

2. Qo =Qq =+ Qn=3Sup
3. a=B=min

4. foreveryi O{1,...,n} andeveryyOU thereisaj 0{1,... ,n} such that for every
xdu,

K0(|:|(X),Sj (X!y)) < Sup{ mi n(KO(FI(X)!Sl(Xry))! 1KO(FI (X),Sq(x,y))) |X O U}
then FATIRE(F) = FITARB(F) for every i O{1,... ,n}.

Proof We start the proof as the one for theorem 3.3.6.

Thenwe havefor every i O{ 1.... ,n},

FATIFB(F)(y) = Sup{ min(Ko(F (X), Si(X.)). - , Ko(Fi(X), Sn(x,¥))) Ix D U} .
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Now, assumption 4 impliesfor certain j 0{1,... ,n} that
Sup{ ko(Fi(x), Sj(x,y))[x DU}
< Sup{ mi n(KO(FI(X)l Sl(X,y)), e IKO(FI (X)! S\(X!y))) |X O U} ’

hence

min(Sup{ ko(Fi(x), S1(x,y)) X O U}, ..., Sup{Ko(Fi(X), Sa(x,¥)) Ix T U})
< Sup{min(ko(Fi(x), S1(x,Y)), ... . Ko(F (X), Sh(x.))) XD U} .

Therest of the proof follows the proof of theorem 3.3.6, hence we get

FATIFB(F) = FITARB(R) for every i O{ 1,... ,n}.

Theorem 3.3.9
If 1. Kg=ky=UIE Ky and Kg isat-norm

2. Qo =Qq =+ Qn=3Sup

o =f=min

RB is rule-wise correct with respect to J
foreveryi,j0{1,... nfFOSOFROS

o 0 A W

foreveryi O{1,...,n} andeveryyOU thereisaj 0{1,...,n} such that for every
xdu,

Ko(Fi(x), Sj(x,y)) < Sup{ min(ko(Fi(X), S1(X,Y)), --. , Ko(Fi(x), Sn(x,))) X D U}
then for every i 0{1,.... ,n}, FATIRB(F) = Gj, i. e FATIR® islocally correct.

Proof Application of theorems 3.3.7 and 3.3.8. |

3.4 OntheContinuity of FATI and FITA

3.4.1 Discussing the Operator FATI
Remember that FATIR® is defined by

FATISB(H)() =der Qo ({ Ko (H(¥), So(x,))|x T U})

where

So(%Y) =der a (T (F1(%), G1(Y)) -, Th (Fa(X), Gn(¥))) -

Becausethe“ superrelation” S doesnot depend on F the operator FATIRE hasthe sameform
as the operator ®F defined by asinglerule, i. .

®5()(y) = QU k (H(), T(F (x), G ()| x T U}).

Therefore we can adopt the corresponding results from chapter 2, in particular the theo-
rems2.5.3and 2.5.5.
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Theorem 3.4.1
IfRBisarule base and J is an interpretation of RB such that

1. Kq Is continuous
2. Qo = Sup
then FATIF® is CHEBY SHEV -continuous with respect to FP(U).

Asin theorem 2.5.3 we can generalize the assumption “ k is continuous’ to “ k isuniformly
continuousin its first argument with respect to its second argument”.

Furthermore, we obtain

Theorem 3.4.2
If RB isarule base and J is an interpretation of RB such that

1. kg iscontinuousin its first argument
2. Qo=Sup
then FATIR® is point-wise continuous with respect to FP(U).

3.4.2 Discussingthe Operator FITA
Remember that FITAT® is defined by

FITARB(H)(Y) =der B(H1(Y), - ,Hn(¥))

whereforevery i O{ 1.... ,n}

Hi(Y) =ger Qi ({ i (H(X), 7% (R (), Gi(y))) | x D U}).

Obviously, each H; is defined by asingle rule R, = IFF THEN G;, hence we can apply the-
orem 2.5.3 and 2.5.5 to each operator ¢3R‘. Assuming additionally the continuity of 3, we
get the following theorems.

Theorem 3.4.3
IfRBisarulebaseand J is an interpretation of RB such that

1. foreveryiO{ 1,...,n}, K; is continuous
2. foreveryiO{1,...,n},Q =Sup
3. B iscontinuous

then FITAR® is CHEBY SHEV -continuous with respect to FP(U).

Asintheorem 2.5.3 and 3.4.1 we can weaken assumption 1 to “ k is uniformly continuous
in the first argument with respect to its second”.

Theorem 3.4.4
If RB isarule base and J is an interpretation of RB such that

1. foreachi O{1,...,n},K; iscontinuousin the first argument
2. foreachi O{1,...,n},Q =Sup
3. B is continuous

then FITARB is point-wise continuous with respect to FP(U).
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3.5 OntheEquivalenceof FATI and FITA

We generalize theorem 3.3.6 as follows:

Theorem 3.5.1
If 1. Qu=Qq == Q,=Sup

2. foreveryr,s,... .S 00, 10Ko(r, a(S1, --- ,Sn)) < B(K1(r,S1); - , Kn(T, Sn))
3. B ismonotone
then for every F : U — [0, 10FATIFE(F) O FITARE(F).

Proof We obtain

FATIB(F)(y) = Qo{ Ko(F (), a(S1(X,Y), ... ,Sh(x,Y))) Ix D U})
by definition of FATIR®, hence

< Sup{ B(K1(F (), S1(X,Y)), - , Kn(F (X, Sa(x,Y)))[x DU}

by assumptions 1, 2 and the monotonicity of Sup. Furthermore, because 3 is monotone by
assumption 3 and Sup fulfills

F(X)<Sup{F(X)|xOU} and Sup{F(X)|xOU} <cif F(x)<cforeveryxOU
for anarbitrary F : U - [0, 10Jwe get

Sup{ B(K1(F (X), S1(x,Y)), ... . Kn(F (X), Sa(x,Y)))|[x DU }
< B(Sup{ k1 (F(X), S1(x,y))IXO U}, ..., Sup{ kn(F (X), S(x,y)) X D U})
=FITA®B(F)(y)  because of assumption 1,

hence, we get FATIFB(F) O FITARE(F). [
Remark Theorem 3.5.1 can be interpreted in the form that “ FATI ?B is more specific than

FITAR® or is equivalent to FITARE.” The following theorem will express that “FITARE is
more specific than FATIRE or equivalent to FATIFE.”

Theorem 3.5.2
If 1. QOZQl:[ﬂ]E:Qn:SUp

2. foreveryr,sy,... .S U0, 10 B(Ka(r,S1), ... . Kn(T, ) < Ko(h, (S, ... Sn))
3. foreveryHq,... ,\Hn:U - [0,10]

B(Sup{H1(x)Ix U}, ..., Sup{Hn(x)[x O U})
< Sup{ B(H1(¥), ... ,Hn(x))|x DU}

then for every F : U — [0, 10FITARE(F) O FATIFE(F).
Proof We obtain

FITARB(F)(y) = B(Q1{ K1(F (%), S1(x,¥)) XU}, ..., Qn{ Kn(F (X), Sh(x,¥)) X O U})

by definition of FITARE, hence
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= B(Sup{k1(F(x),Si(x,y)) [xT U}, ..., Sup{ kn(F (X), Sa(x,y)) Ix D U})
by assumption 1, thus

< Sup{ B(Ka(F (%), SLX.Y)), .- , Kn(F (%), Sh(x,y))) [x O U }
by assumption 3, so

s Sup{ Ko(F(X), a(Sl(X,y), 131(Xry)))|x 0 U}

by assumption 2' and the monotonicity of Sup
= FATIZB(F)(y)

by definition of FATIFE. Consequently, we get FATIFE(F)(y) < FITARB(F)(y) for every
yOuU, i.e FATIRB(F) O FITARB(F). [

Now, we formulate the following theorem on the equivalence of FATIRE and FITARE.

Theorem 3.5.3

If the assumptions 1, 2, 3and 2', 3 of theorems 3.5.1 and 3.5.2 are fulfilled then for every
F:U - O,10FATIE(F) = FITARB(F), i. e FATIE and FITAR® areequivalent with respect
to the set of al fuzzy setsonU (see definition 3.1.4).

Example3.5.1 (Generalized MAMDANI Case)
We assume Qg = Q = = Qn = Sup

Ko = K1 = E Kpn =min

a =B =max.

Thentheassumptions1, 2, 3, 2" and 3' arefulfilled, hence FATIS® and FITAT® are equivalent
with respect to the set of all fuzzy setson U.

Notethat thisresult holdswithout any restrictions of thefunctions 7, ... , 7T, which interpret
therulesIFF; THENG,, ... ,IFF, THEN Gy,
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