
REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

Ease

Evolutionary Algorithms Scripting Environment

Joachim Sprave

No. CI-54/99

Technical Report ISSN 1433-3325 January 1999

Secretary of the SFB 531 � University of Dortmund � Dept. of Computer Science/XI
44221 Dortmund � Germany

This work is a product of the Collaborative Research Center 531, \Computational
Intelligence", at the University of Dortmund and was printed with �nancial support of
the Deutsche Forschungsgemeinschaft.

Contents

1 Introduction 1

2 Getting Started 1

3 Index Sets 2

4 Population Commands 2

4.1 configure . 2

4.2 stat . 3

4.3 age . 3

4.4 mutate . 3

4.5 reproduce . 3

4.6 evaluate . 3

4.7 best, worst . 3

4.8 copy . 4

4.9 get... 4

4.10 set... 4

5 Example: (�; �) Evolution Strategy 4

6 Example: Linear Ranking Genetic Algorithm 5

7 Genetic Operators 6

8 User De�ned Fitness Functions 6

9 Modeling of Population Structures 7

10 Modifying the Example Scripts 8

11 Population Parameter Reference 9

12 Platform Dependencies 12

1 Introduction

Ease { Evolutionary Algorithms Scripting Environment { is an extension to the Tcl scripting language,

providing commands to create, modify, and evaluate populations of individuals represented by real number

vectors and/or bit strings.

It is assumed that the reader of this document is familiar with the basics of the Tcl scripting language.

Furthermore, basic knowledge of the C programming language is required to implement user-de�ned

�tness functions. General concepts of Evolutionary Algorithms (EAs) are beyond the scope of this

document, as well. For a general overview of EAs, the reader is referred to [1].

In the current state, Ease does not cover any of the traditional Evolutionary Algorithms (EAs) entirely

{ it is missing correlated mutations from Evolution Strategies (ES), proportional selection from Genetic

Algorithms (GA), the special tournament selection used in Evolutionary Programming (EP), and much

more. It does provide real valued vectors and bit strings, both separately and in combination, ES-style

step size adaptation, tournament selection and linear ranking as well as (�; �) and (� + �) truncation

selection.

In the �rst place, Ease was designed to analyze non-panmictic population structures. As a conse-

quence, it o�ers a simple method to address subsets of a population. Individuals are identi�ed by their

indices, and a subpopulation is formed by a list of indices. Hence, the operators provided by Ease can be

restricted to any subpopulation by using index lists.

2 Getting Started

To enable the EA commands, you have to load the Ease module at the beginning of your Tcl/Ease script:

load lib/Ease.so

Ease.so contains the commands to manage populations, but no evaluation function. This should be

loaded before the �rst evaluations are performed:

load lib/Func_sphere.so

The creation of user de�ned evaluation function is quite easy, as described in section 8. Ease actually

de�nes only two commands: population and iset. The latter one allows an elegant way to address

subsets of a population and will be described later in this document. The population command creates

a new population named by the string following the command. Two parameters must be speci�ed: the

number of real variables and the number of bits of the representation used in the objective function.

Example:

population mypop -vars 30 -bits 0

This creates a population of the default number of 50 individuals, each having 30 real parameters

and no binary parameter. Furthermore, a new command is created: mypop. This command is an

object command similar to widget commands in Tk. Consequently, you have to use the newly created

mypop command in combination with a subcommand to manipulate your population. The following line

evaluates the �rst 3 individuals, addressed by their indices, of the population mypop:

mypop evaluate {0 1 2}

If type this interactively into the Tcl interpreter, it responds a 3, which means that 3 individuals have been

evaluated. Repeating the same command returns a 0, because Ease knows that the given individuals have

not been altered since the last evaluation. If your �tness function is noisy, you can force the evaluation

by adding -force at the end of the command.

O�spring is created by the reproduce subcommand. It accepts two lists, a children index list and

a parents index list. For each child, two parents are selected from the parent list. The parents are

recombined into one new individual which is stored in the child's place. In the following example, a single

child is created by selecting 2 parents from the second list using tournament selection with a tournament

size of 3. The result is stored at index 0 of the population:

mypop reproduce {0} {4 5 6 7 8 9} -select tournament -tournsize 3

1

In the next example, the same procedure is done four times:

mypop reproduce {0 1 2 3} {4 5 6 7 8 9} -select tournament -tournsize 3

Instead of reproduction, mutation works in-place:

mypop mutate {0 1 2 3} -mrate 0.01

This mutates the individuals residing in the �rst 4 positions of the population using a mutation rate

of 0:01.

The parameters of the subcommands can be set in four ways:

� By default. Most parameters are set to default values if they are not set explicitly.

� As options of the population command. The parameters set here are used as long as the population

exists.

� As options of the configure subcommand. Parameter values set by the configure subcommand

replace those set by the population command, as well as settings made by earlier configure calls.

� As option to a subcommand. Options of subcommands override parameter values set by the

population command or configure subcommand temporarily.

There are only three parameters of the population command which cannot be altered: size, vars,

and bits.

3 Index Sets

Individuals in Ease are addressed by their indices in the population. All Ease commands which accept a

list of individuals also understand the following shortcuts (assuming a population size of 8):

Syntax Description Example Expands to

a:b Range from a to b incl. 0:3 0 1 2 3

a<n> n individuals starting from a 4<3> 4 5 6

all The entire population all 0 1 2 3 4 5 6 7

To allow ranges to be assigned to variables conveniently, the iset command is provided and performs

the shortcut expansion shown above:

set mu 15

set lambda 100

population mypop -vars 10 -bits 0 -size [expr $mu + $lambda]

set parents [iset 0<$mu>]

set children [iset $mu<$lambda>]

The iset command command also works as a union operator. To select the � survivors from both

the parents and the children in a (�+ �) Evolution Strategy, just write

mypop copy $survivors [mypop best [iset $parents $children] $mu]

Note that iset does not check for multiple instances of an index.

4 Population Commands

4.1 configure

This command can change most of the population parameters. Changes persist until they are overridden

by another configure call.

Example: Change the mutation rate to 0:02:

mypop configure -mrate 0.02

2

4.2 stat

This command accepts a list of indices and returns the following information about the corresponding

individuals (rv: real-valued representation only. If not used, values are set to zero. bs: bit string

representation only).

� Lowest mutation step size (rv)

� Highest mutation step size (rv)

� Feasibility of the best individual

� Fitness value of the best individual

� Feasibility of the worst individual

� Fitness value of the worst individual

� Bias (bs)

� Number of converged bits (bs)

Example: Calculate some statistics about the �rst 4 individuals in the population mypop and write it

to the standard output channel:

puts stdout [mypop stat {0 1 2 3}]

4.3 age

The age command increases the age of the given individuals by one. The age is automatically set to zero

by initialization, mutation, or recombination.

Example: Increase the age of some individuals:

mypop age {3 2 5 10}

4.4 mutate

The mutate command mutates the real-valued vectors and bits strings of the given individuals according

to the con�guration of the current population. The settings can be temporarily overidden by appending

the options to the mutate command.

Example: Mutate all individuals using the con�gured settings. Mutate the �rst 4 individuals once

more using a mutation rate of 0:1 for bit strings and �0 = 0:5 for step sizes of real-vallued parameters:

mypop mutate all

mypop mutate {0 1 2 3} -mrate 0.1 -tau0 0.5

4.5 reproduce

The actual reproduction including optional recombination is performed by the reproduce operator. It

take 2 lists of individuals: The �rst list contains the target individuals, i.e. the populations indices to store

the results of the generation process to. The second list contains the possible parents. For each position

in the target list, one or two parents are selected from the source list. The parent, or a recombination

of the parents, respectively, replaces the individual in the target position. Selection from the possible

parent list can be done uniformly, by tournaments, or mating (best 2).

4.6 evaluate

This command evaluates the given individuals using the most recently load objective function.

4.7 best, worst

These commands take 2 parameters: a list of indices, and the number of best/worst individuals to return.

If the option -sort is present, the result list is sorted according to the given criterion.

3

4.8 copy

The copy command expects two lists of equals sizes, a target and a source list. Each individual in the

second (source) list is copied to the corresponding position in the �rst list. If the option -elitist is

present, each individuals from the source list is compared to the corresponding individuals in the target

list, and only copied if it is better than the latter one.

4.9 get...

These commands allow the extraction of the internal values of individuals. getreal returns the real

valued vector of the given individuals, getsigmas the step sizes, getbits the bit strings, getfit the

�tness values, getvalid the feasibility
ags, and getage the ages. Note that the result of these commands

is a list of lists.

4.10 set...

In contrast to their get... counterparts, these commands expect a single individual to be altered. These

commands allow an external program to be used as objective function. Let be simulator an external

program, reading a list of real values from the standard input channel, calculating the �tness of this

vector, and writing the evaluated �tness to its standard output. An evaluation loop in Ease is sketched

below:

foreach indiv $parents {

set f [open "x.dat" w]

puts $f [mypop getreal $indiv]

close $f

set fx [exec simulator < x.dat]

mypop setfit $indiv $fx

mypop setvalid $indiv 1

}

5 Example: (�; �) Evolution Strategy

The following example implements a (�; �) Evolution Strategy. The objective function is the sphere

model

f(~x) =

30X

i=1

x2
i

.

load lib/Ease.so

load lib/Func_sphere.so

set vars 30

set maxgen 1000

set mu 15

set lambda 100

set sigmas n

set parents [iset 0<$mu>]

set children [iset $mu<$lambda>]

population mypop -vars $vars -sigmas $sigmas -bits 0 -size [expr $mu + $lambda]

set gen 0

set calls 0

4

while {$gen <= $maxgen} {

mypop reproduce $children $parents -select uniform

mypop mutate $children

incr calls [mypop evaluate $children]

mypop copy $parents [mypop best $children $mu]

puts stdout [mypop stat $parents]

incr gen

}

The example can be invoked from the Ease directory by typing

tclsh8.0 examples/ex1.tcl

after the command line prompt. A more
exible version of this program can be found in

examples/comma.tcl. This script can be called directly provided that it is executable for the oper-

ating system and that tclsh8.0 is in the search path for executables. Furthermore, it contains a simple

command line parser written in Tcl, enabling command line parameters and parameter �les. In can be

invoked, for example, like this:

examples/comma.tcl infile=es.in

where infile contains parameter settings in Tcl syntax, e.g.

set mu 15

set lambda 100

set vars 30

Parameter �le setting can be overridden by command line setting, e.g.:

examples/ex1.tcl infile=es.in vars=10 tau0=0.3

If you copy the command line parser into your own scripts, remember to call the population command

with variables for all parameters you want to be changeable by the command line parser.

6 Example: Linear Ranking Genetic Algorithm

The following example implements a Genetic Algorithm using linear ranking selection. The objective

function is a variant of the counting ones problem: Minimization of the number of zeroes in a bit string.

The following program can be found as ex2:tcl in the examples directory:

load lib/Ease.so

load lib/Func_countones.so

set bits 128

set mu 50

set maxgen 200

set beta 2.0

set popsize [expr 2 * $mu]

population mypop -size $popsize -bits $bits -vars 0 \

-mrate 0.01 -breco onepoint -init_zeroes 1.0 -beta $beta

set parents [iset 0<$mu>]

set children [iset $mu<$mu>]

set gen 0

set calls 0

5

incr calls [mypop evaluate $parents]

while {$gen <= $maxgen} {

mypop reproduce $children $parents -select linrank

mypop mutate $children

incr calls [mypop evaluate $children]

mypop copy $parents $children

set best [mypop best $parents 1]

puts stdout [mypop getfit $best]

incr gen

}

A more
exible version of this script can be found in examples/linrank.tcl.

7 Genetic Operators

Real Valued Vectors

All operators on real valued vectors are implemented according to Schwefel's book [3]. Discrete recom-

bination is also named uniform in analogy to binary uniform crossover. Since geometric intermediate

recombination has been added, the original intermediate recombination is also called arithmetic.

Bit Strings

Bits are also processed mostly by standard operators. Crossover is provided as one- or two-point crossover,

as well as uniform crossover. In analogy to Evolution Strategies, the latter is also called discrete in Ease.

Selection

Truncation selection has not been implemented directly. It can be easily expressed by the best pop-

ulation command, as shown in the (�; �)-ES example. Tournament selection uses deterministic k-ary

tournaments. Linear ranking selection is Ease draws from an approximated probability distribution

proposed by Whitley [7].

8 User De�ned Fitness Functions

The easiest way to de�ne a �tness function is a C-function taking the internal represantation of an

individual as arguments and returning the �tness. Since Ease can handle constraints, the �tness must

contains a
ag indicating the feasibilty of an individual and a �tness value. If the individual is infeasible,

the �tness value is interpreted as a measure for the degree of constraint violation. In both cases, feasible

or not, lower values denote better quality. The datatype Fitness is de�ned in ease.h which must be

included into the �tness function's source module:

typedef struct {

int valid;

double value;

}

Fitness;

The �tness function itself must be de�ned using the following prototype:

Fitness myfunction(double *x, int n, char *b, int m)

The vector x contains the real-valued part of the genome, and b is the bitstring representation of the

binary part of the genome. A particular bit can be extracted from b using the BITTST(b,pos) macro

de�ned in ease.h where pos is the position in bitstring b to be tested.

At the end of the �tness function module, the function must be exported using the following macro

call:

6

NAME_OF_THIS_FUNCTION_IS(sphere)

For each �tness function, a directory must be created in the Ease directory, appending .dir to the

function name. The directory contains the source module and a header �le using the the function name

as base names. The header �le may be empty. Assuming your function is named myfunction, you can

now compile it using

make f=myfunction

9 Modeling of Population Structures

The concepts of index lists used in Ease was developed in conjunction with a uni�ed model of population

structures based on hypergraphs [5]. Given a population structure � = (X; E ;Q), Q can be written as

a Tcl list of lists, where each Qi forms a sublist, and the same can be done with E . The body of an EA

with an arbitrary population structure can be sketched as

while {$calls <= $maxcalls} {

foreach offspring $Qtmp deme $E {

mypop reproduce $offspring $deme -select $select

mypop mutate $offspring

incr calls [mypop evaluate $offspring]

}

foreach tmp $Qtmp q $Q {

mypop copy $q $tmp

}

set stat [mypop stat $parents]

puts stdout "$gen $calls $stat"

if {[lindex $stat 3] < $stopat} {

break

}

incr gen

}

Since E and Q are two hypergraphs on the same set, we must avoid overlapping modi�cations. Therefore,

each new generation is �rst stored to Qtmp, which has the same structure as Q. When the o�spring is

complete, it is copied back to the actual population Q.

While this is the general algorithm, it is sometimes easier to implement a particular population

structure directly. For a torus based neighborhood model with comma selection, the �rst step is to de�ne

for each individual the set of its neighbors. This can be accomplished as follows:

for {set d 0} {$d < $popsize} {incr d} {

for {set i [expr $d - $nbrad]} {$i <= $d + $nbrad} {incr i} {

for {set j [expr $d - $nbrad]} {$j <= $d + $nbrad} {incr j} {

set x [expr ($i + $width) % $width]

set y [expr ($j + $height) % $height]

set pos [expr $y * $width + $x]

lappend deme($d) $pos

}

set kid($d) [expr $d + $popsize]

}

}

where width and height are the width and the height of the torus, nbrad is the neighborhood radius as

de�ned in [4]. The body of the neighborhood model is now as simple as

7

while {$gen <= $maxgen} {

for {set child 0} {$child < $birthrate} {incr child} {

for {set d 0} {$d < $popsize} {incr d} {

mypop reproduce $kid($d) $deme($d) -select uniform

}

mypop mutate $children

incr calls [mypop evaluate $children]

if {$child == 0} {

mypop copy $parents $children

} else {

mypop copy $parents $children -elitist yes

}

}

puts stdout "$calls [mypop getfit [mypop best $parents 1]]"

incr gen

}

The complete version of this scipt can be found in examples/nbcomma.tcl.

10 Modifying the Example Scripts

Tcl is a scripting language developed by John Ousterhout [2]. For those who have not programmed in

Tcl before, this section provides some syntactical basics which allow to modify the example scripts. For

a good textbook on Tcl, see [6].

The Tcl syntax is simple, but not always intuitive. Everything in Tcl is a list. A Tcl program is a list

of lists, where the �rst element of each list is interpreted as a command. A simple assignment statement,

for example, is a list of three elements, where the �rst element is the set command, the second a target

variable, and the third the value to be assigned:

set mu 15

Commands can be separated either by a semicolon or by end of line:

set mu 5; set lambda 30

set parents {0 1 2 3 4}

In the second line, the value to be assigned is another list. List grouped by brackets can extend over

several lines. This makes structured commands more readable:

set $i 0

while {$i < $mu} {

puts $i

incr i

}

Note that the open brace must be in the same line as the while statement because a while statement

is a list of three elements: The statement itself, a conditional expression, and a loop body. The body

may be a single statement, but it usually consists of a list of statements. Note that braces also delay the

evaluation of the list elements. As a consequence, The value of i, written as $i in Tcl, is evaluated at

each iteration.

Brackets are used in Tcl for command substitution. The statement

set popsize [expr $mu + $lambda]

�rst evaluates the expr statement, and then assigns the result to the variable popsize.

8

11 Population Parameter Reference

Name -size

Type Integer

Values >0

Default 50

Subcommands init

Description Population Size

Name -seed

Type Integer

Values >0

Default 0

Subcommands init

Description Random Seed

Name -bits

Type Integer

Values >0

Default

Subcommands init

Description No Of Binary Genes

Name -mrate

Type Real

Values >0.0

Default 0.01

Subcommands init con�gure mutate

Description Mutation Rate

Name -parents

Type Integer

Values >0

Default 2

Subcommands init con�gure reproduce

Description No of parents

Name -select

Type Enumeration

Values uniform|roulette|tournament|mating|linrank

Default uniform

Subcommands init con�gure reproduce

Description Selection type

Name -sort

Type Boolean

Values no|yes

Default no

Subcommands init con�gure best worst

Description Sort best/worst

Name -beta

Type Real

Values >1.0

Default 1.5

Subcommands init con�gure reproduce

Description Linear ranking sel pressure

9

Name -tournsize

Type Integer

Values >1

Default 2

Subcommands init con�gure reproduce

Description Tournament size

Name -xreco

Type Enumeration

Values none|uniform|discrete|intermediate|arithmetic|geometric

Default discrete

Subcommands init con�gure reproduce

Description Recombination type for x

Name -sreco

Type Enumeration

Values none|uniform|discrete|intermediate|arithmetic|geometric

Default arithmetic

Subcommands init con�gure reproduce

Description Recombination type for sigma

Name -breco

Type Enumeration

Values none|onepoint|twopoint|uniform|discrete

Default onepoint

Subcommands init con�gure reproduce

Description Recombination type for binary genes

Name -init_zeroes

Type Real

Values >0.0

Default 0.5

Subcommands init

Description Prob. for initial Zeroes

Name -vars

Type Integer

Values >0

Default

Subcommands init

Description No Of Variables

Name -sigmas

Type Enumeration

Values 1|n

Default 1

Subcommands init

Description No Of Sigmas

Name -tau0

Type Real

Values >0.0

Default 0.1

Subcommands init con�gure mutate

Description Global Sigma Variance

10

Name -taui

Type Real

Values >0.0

Default 0.3

Subcommands init con�gure mutate

Description Local Sigma Variance

Name -min_init_x

Type Real

Values >0.0

Default 0.0

Subcommands init

Description Lower Boundary For Initial x[i]

Name -max_init_x

Type Real

Values >0.0

Default 1.0

Subcommands init

Description Upper Boundary For Initial x[i]

Name -min_init_s

Type Real

Values >0.0

Default 0.001

Subcommands init

Description Lower Boundary For Initial sigma[i]

Name -max_init_s

Type Real

Values >0.0

Default 0.1

Subcommands init

Description Upper Boundary For Initial sigma[i]

Name -smin

Type Real

Values >0.0

Default 0.0

Subcommands init con�gure

Description Minimum sigma[i]

Name -smax

Type Real

Values >0.0

Default 0.0

Subcommands init con�gure

Description Maximum sigma[i]

Name -elitist

Type Boolean

Values no|yes

Default no

Subcommands init copy

Description Elitist replacement

Name -force

11

Type Boolean

Values no|yes

Default no

Subcommands init evaluate

Description Force re-evaluation

12 Platform Dependencies

Ease is written in ANSI C (more or less strictly) and should compile on most platforms. Ease was

developed and tested on Solaris 2 and Linux. It compiles on Microsoft 32-bit operationg systems as well.

However, the changes required for the dynamic loading of Ease and �tness functions are beyond the scope

of this document.

References

[1] T. B�ack, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation. Oxford

University Press, New York, and Institute of Physics Publishing, Bristol, 1997.

[2] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[3] H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer Technology. Wiley, New

York, 1995.

[4] J. Sprave. Linear neighborhood evolution strategy. In A. V. Sebald and L. J. Fogel, editors, Proc. Third

Ann. Conf. Evolutionary Programming, pages 42{51, San Diego, CA, Feb. 1994. World Scienti�c,

Singapur, 1994.

[5] J. Sprave. A uni�ed model of non-panmictic population structures in evolutionary algorithms. Reihe

CI 55/99, Sonderforschungsbereich 531, Universit�at Dortmund, 1999.

[6] B. B. Welsh. Practical Programming in Tcl and Tk. Prentice Hall, Upper Saddle River, NJ, 1997.

[7] D. Whitley. The GENITOR algorithm and selection pressure: Why rank{based allocation of repro-

ductive trials is best. In J. D. Scha�er, editor, Proceedings of the Third International Conference on

Genetic Algorithms, pages 116{121. Morgan Kaufmann Publishers, San Mateo, CA, 1989.

12

