
Hierarchical Genetic Programming using
Local Modules

Wolfgang Banzhaf
Dept. of Computer Science, University of Dortmund, Germany

Informatik Centrum Dortmund, Germany

Dirk Banscherus
Quantum GmbH, Dortmund, Germany

Peter Dittrich
Dept. of Computer Science, University of Dortmund, Germany

Abstract

This paper presents detailed experimental results for a new modular approach

to Genetic Programming, hierarchical GP (hGP) based on the introduction of local

modules. A module in a hGP program is context-dependent and should not be

expected to improve all programs of a population but rather a very speci�c sub-

set providing the same context. This new modular approach allows for a natural

hierarchy in that local modules themselves may de�ne local sub-modules.

1 Introduction

Genetic Programming is the development of computer programs by evolutionary means

[Koz92, BNKF98]. A population of randomly generated programs is subjected to mech-

anisms of variation and selection in order to arrive at behavior speci�ed by a prede�ned

�tness function. Over the course of the development, programs are generated that more

and more approach the desired behavior.

The mechanisms used to vary and select computer programs are similar to those in other

areas of evolutionary computation [Fog95], and employ stochastic events as the main

driving force for innovation. Mutation and crossover are operators used for variation,

proportional or tournament selection are frequently used as selection operators to direct

the search process.

As in other �elds of evolutionary computation, the representation of the problem is an

important aspect of its solution. Genetic Programming originally started with the tree

representation of computer programs. Program trees are easy to manipulate by mutation

and crossover, and until today they are the most frequently used representation in GP.

Genetic Programming is able to solve an impressive variety of problems from di�erent

problem domains [BNKF98]. However, it is well known that there are performance prob-

lems with Genetic Programming when tasks grow complex. In such a case, human pro-

grammers would rely on a modularization technique allowing them to decompose the task

into sub-tasks which are subsequently solved independently, to arrive at a solution by

decomposing the solutions of sub-tasks. Some modularization techniques have been pro-

posed for Genetic Programming. Koza has suggested automatically de�ned functions [4],

recently augmented by architecture altering operations [KABK99]. Angeline and Pollack

suggest libraries of functions [AP92], Rosca and Ballard adaptive representations [RB94].

It seems, however, that the real break-through for modular Genetic Programming is not

yet made.

This paper presents a new modular approach to Genetic Programming (hGP - standing

for hierarchical GP) which is based on the introduction of local modules. In contrast

to other approaches, our notion of a module in a program is that the context of the

module in the calling program is of great importance. A module should not be expected

to improve all programs of a population but rather a very speci�c subset providing the

same context. At the same time, our modular approach allows for a natural hierarchy in

that local modules themselves may de�ne local sub-modules.

Modules are allowed to evolve at a much slower rate than programs reecting the need of

programs to rely on their modules for improving their function. We discuss this principle

which seems to be at work in other natural and arti�cial modular systems.

Results are presented on a set of discrete and continuous problems, including comparison

with regular Genetic Programming.

2 Modular Concepts in Genetic Programming

2.1 The Problem

One of the important issues in Genetic Programming is whether GP is able to scale up.

Although there are a number of interesting applications of GP already (see [BNKF98],

chapter 12), real world applications su�er from a complexity threshold. It seems that

programs of small size may be readily evolvable, but as soon as one gets into hundreds or

even thousands of nodes1, GP becomes less and less e�ective as a means to generate the

targeted function.

A natural method to improve GP performance is therefore the introduction of sub-

programs. Partitioning of a problem into sub-problems that can be solved independently

is one of the most powerful and general approaches to problem solving that we have de-

veloped [AS85]. In Computer Science in particular, where problems of large complexity

are solved daily, modularization is a key enabling technology for progress. Many of the

biggest steps in software and hardware development over the last decades may be traced

back to the introduction of modularization / hierarchization techniques.

Thus, one of the big challenges for genetic programming may be formulated as this: Is

it possible for a Genetic Programming system to evolve modular solutions to problems

automatically? Note the emphasis on "automatically". It is clear that a manual speci�ca-

tion of sub-problems will work, provided the sub-problem complexity is su�ciently small

to be treated by regular GP. However, will it be possible to delegate the structuring of

the problem to an automatic process like GP?

2.2 Existing Approaches

Mainly three approaches have been proposed in the course of the last decade to solve the

problem of modularization by Genetic Programming, "automatically de�ned functions"

1Three nodes in a tree usually correspond to one line of code.

ADF0 ADF1

defun defun

Content of
 main program

progn

values values

values

ADF1ADF0

Arguments
 List of

Arguments
 List of

Content of Content of

Figure 1: Structure of program using 2 automatically de�ned functions, ADF0 and ADF1

(ADFs) [Koz94], evolutionary module acquisition [AP92] and adaptive representation

[RB94]. This section will briey summarize these approaches.

2.2.1 Automatically de�ned functions

Automatically de�ned functions are the most widely used method of modularization in

genetic programming to date. ADFs typically are predetermined in a couple of aspects

before a run can start using them: Name of ADF, Number of arguments of an ADF, Set

of functions for an ADF, and Set of terminals for an ADF.

Simply put, ADFs have a form and a function. The function is evolvable the form is

not. Technically, ADFs consist of two di�erent parts, a function de�nition part and and a

function evaluation or work performing part. Evolution during a run only takes place in

the work performing part. Figure 1 gives an idea of the principle. In [Koz94] Koza shows

that ADFs are advantageous in many problems of a complexity increased in comparison

to standard GP problems, e.g. the 6-parity problem. A comparison is based on the

computational e�ort (in the number of �tness evaluations) necessary to solve an instance

of such a problem with 99 % probability. Complexity of a tree is measured by counting

the nodes in that tree, with assigning one node only to each of the ADFs.

The �xed structure of ADFs is a mixed blessing. On the one hand, it requires the user

of the GP system to specify before-hand the number and features of ADFs, on the other

hand, it allows the user to identify important elements of an anticipated successful solution

to the problem that the evolutionary process should make use of in its search. Addressing

the downside, Koza has recently proposed architecture altering-operations, that manip-

ulate the function-de�ning structure of an ADF as well as the number of ADFs allowed

[KABK99].

2.2.2 Module Acquisition

Module acquisition is another method to modularize genetic programming. Here, two

additional operators are added to the system that allow to manipulate trees by compress-

ing and expanding nodes. Compression of nodes takes place when a subtree is isolated

and substituted by a node with a unique name. Everything below a prespeci�ed depth

of the subtree is considered argument to that new node. As a result, the function set of

the problem is enlarged by a newly de�ned function. This function is stored in a genetic

NOT

d2

AND

NOT

OR

OR

AND NOT d2

compress

d0

AND

NOT NEWFUNC

d0

d0

d1d2 NOT

d1 NOT

d0

Figure 2: The compression in module acquisition. NEWFUNC is added to the genetic

library for further use by the population.

NOT

d1

AND

NOT F(d0, d2)

d1

AND

NOT

OR

OR

d0 NOT d2

d0

Figure 3: Adaptive representation. F is considered a module with the same arguments as

the full tree.

library for use by other population members as well. A sketch of the procedure is shown in

Figure 2. Nodes can be used repeatedly, thus a hierarchic structure of modules is possible.

The opposite action is taken by the expansion operator which takes a node from the

genetic library and expands it again. Angeline and Pollack who introduced the method

o�er no striking conclusion as to whether their approach is advantageous. Kinnear states

that it is not saving space or time [Kin94], but his study is based on one problem only.

It remains to be seen whether the idea of module acquisition can be used e�ciently.

2.2.3 Adaptive Representation

In the approach by Rosca and Ballard [RB94], full subtrees only are allowed to be used

as modules. Figure 3 gives an idea of the procedure.

Modules in AR are selected according to criteria that are tied to the performance of

the individual or parts of it. Rosca and Ballard discuss some variants of performance

measures and show that a considerable improvement in evolution speed is possible with

their approach. In addition, however, to the introduction of a modular concept, AR works

with epochs of evolution, where at the beginning of each epoch a number of individuals

in the population is substituted by newly generated individuals that make use of the

modules generated in the last epoch. It thus remains unclear where the advantage of AR

comes from.

Module

Module

x

Module Module

Module

5

5

5

-

- +

x

Module level 2

2

-

+

*

x

1

+

-

*

31

Module

2

x

-

+

+ 2

*

+ x

*

*

x

Module level 1
+

- 1

x

-

-

Figure 4: Example of three hierarchical levels of evolution in hGP. Modules on each level

evolve in their own level and are called from the next higher level.

2.3 Local, context-sensitive modules: hGP

We shall introduce here another general method for specifying modules. The idea of local

and context-sensitive modules is motivated by the success of Gruau's work on cellular

encoding [Gru93]. At the surface, cellular encoding is about making graphs available

for use with genetic programming. Gruau develops neural networks, other researchers

develop other graph-like applications, e.g. electric circuits [KBA+97].

The aspect interesting here, however, is that of hierarchical evolution. We use a number of

hierarchical levels of evolution, with a population on each of them. On the highest level,

individuals of the population evolve their functionality. On the lower levels, modules of

level 1 ... n evolve through the same mechanisms of variation and selection. Figure 4

depicts the situation. Modules on higher levels (including the individuals on the highest

level) are able to call modules of the next lower level as subprograms.

As in ADFs, the newly de�ned modules are local to an individual. They are not available

to the population as a whole but only to the one individual which has called them. Thus,

an individual has to evolve a good choice of modules completely for itself, only taking

help through crossover of material from other individuals having de�ned modules at the

same level. Much as an entire GP system has global convergence to a solution, so do the

local modules have a tendency to converge, even without being able to be accessed by all

individuals.

Arbitrary crossover of material is forbidden in this method. Rather, modules at the same

level of description are able to exchange material. Koza has called this method structure

preserving crossover [Koz92]. ADFs make use of this method, too, since the two types of

branches in an ADF are only allowed to be crossed over with their kin.

What is the di�erence, then, between modules on di�erent levels? An important di�erence

lies in the fact that modules on di�erent levels evolve with di�erent speed. Similar to the

compress operation in module acquisition, which explicitly forbids further evolution of

material that has been compressed, speed of evolution is the key di�erence. The radical

step of freezing the compressed material completely is substituted, however, by a less

radical, but more general step: to decrease the speed of evolution. The lower in the

hierarchy a module is located, the slower it is allowed to evolve. Although this is somewhat

counter-intuitive at �rst glance, it is indeed the method which Nature used when evolving

modules. The more fundamental the modules are the less evolution Nature allows at

that level. The appearance of the genetic code is a typical example of this phenomenon

[Osa95], the development of repair mechanisms in the replication of genetic material is

another [FWS95].

Thus, our method to evolve modules at di�erent levels will be to adjust the speed of

evolution. The lower in the hierarchy, the less crossover and mutation events will hit

them. In a nutshell, higher level modules can be discerned from lower level modules by

their larger speed of evolution. Interestingly if we turn this argument around, another

observation in Nature seems to �t in very well with this picture: Higher level modules,

i.e. modules commanding higher complexity must be faster in evolution if there is no way

to reduce evolution speed in lower levels, i.e. to stabilize developments there.

The generation of a lower level module in hGP is done during the evolution of the higher

level individual: After crossover, modules are identi�ed in the best individuals of a pop-

ulation only. Modules are formed by search for valuable sub-trees in these individuals.

The general method for �nding valuable subtrees is to compute the di�erential �tness

[RB96, Ros95b] with and without the subtree under discussion (Sec. 3). Ranking se-

lection is then applied to identify the best subtrees and generate a module of them in

the next lower level. Various parameters determine this procedure, like e.g. maximum

number of modules per individual, maximal depth for computation of di�erential �tness,

etc.

Since on the lower level evolution should progress, too, a �tness must be assigned to each

of the newly created modules. In hGP, the �tness of a module is exactly the same as the

�tness of the individual which is calling it in the next higher level. Thus, a good program

will automatically transfer its high �tness to the module used by it.

Crossover and mutation on lower module levels work similar as on higher levels. hGP

also allows di�erent variants, e.g. based on homology and quality of subtrees. hGP was

implemented as an extension of gpc++0.4.

2.3.1 The hGP Algorithm

In pseudo code the algorithm executed for each generation in hGP reads:

FOR level := 0 TO maxLevel DO

DO popSize(pop[level]) * evolutionSpeed[level]TIMES

(mum, dad, child) := Selection(pop[level])

Crossover(mum, dad, child)

Mutate(child, mutationStrength[level])

IF level < maxLevel - 1

ModuleList := searchModules(child)

AddModules(pop[level], ModuleList)

FI

OD

OD

3 Identi�cation of Valuable Modules

One important problem in hGP is how to �nd good modules. This function is implemented

by searchModules(...) above. Our general approach is to measure the value of a system

component by exchanging the component by a neutral component [Ros95b]. The following

variants di�er in the way a neutral component is generated:

� Constant value. The subtree is replaced by a global constant value.

� Intron. The subtree is replaced by a randomly generated intron.

� Random constant. The subtree is replaced by a random constant. A new random

constant is drawn for every subtree that has to be rated.

� Random stream (many random values). The individual is evaluated many times,

while the subtree is replaced by di�erent randomly drawn constants.

Figure 5 shows a comparison of the module rating techniques constant value, random

constant, and intron. Random stream was discarded after preliminary experiments did not

show its e�ectiveness. From the �gure it can be observed that constant value has the worst

performance. The methods random constant and intron showed comparable performance.

Although Fig. 5 indicates a better performance for the intron method in the continuous

case (regression) and a better performance for the random constant method in the discrete

case (even-7-parity), a general conclusion concerning which method is preferable should

not be drawn based on only two problem instances. For the experiments in Sec. 5 the

method showing the best performance for the respective case is applied.

4 Performance Measure

To calculate the run time performance of an algorithm one has to assign a duration time

to every statement (operation) of the algorithm. An easy and typical approach is to

identify the most time consuming operations and to assign a constant value of 1 to them.

All other operations are considered to have a duration time of 0. In a time complexity

analysis of sorting algorithms, for instance, one assumes that each comparison operation

takes 1 unit of time and all other operations 0.

In most evolutionary algorithms time is measured in terms of the number of �tness eval-

uations. This model of computation time assumes that every �tness evaluation requires

constant time (e.g. 1 time unit) and other operations require 0 time. These assumptions

are reasonable in most conventional GAs or ES with �xed length representations. In GP,

however, as well as in other length-changing EAs, these assumptions are not adequate

and may lead to wrong conclusions.

As an example consider the following regression experiments with and without ADFs:

The runs with ADFs show a faster convergence in terms of �tness evaluation, e.g. 464,000

evaluations compared to 6,528,000 �tness evaluations in runs without ADFs. However,

the evaluation time of an individual with ADFs is 21 times longer (in terms of node

evaluations) than an individual without ADFs. In this case the conclusion based on the

time measurement in terms of �tness evaluations is wrong.

0 10 20 30 40 50 60 70 80 90 100

6000

7000

8000

9000

10000

GENERATION

F
IT

N
E

S
S

LOCAL
RANDOM VARIABLE

INTRON

CONSTANT

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

GENERATION

F
IT

N
E

S
S

INTRON

LOCAL RANDOM VARIABLE

CONSTANT

Figure 5: Average �tness for di�erent module rating strategies. Upper: Even-7-parity,

Lower: Regression problem on f4. 30 runs for each strategy and problem.

In order to circumvent these problems we use the number of evaluated nodes as a mea-

surement for execution time. This is reasonable, because in our case the evaluation of

every operator and constant takes about the same time. In general, it might become

necessary to distinguish the evaluation time of di�erent operators.

It should be noted that there are also GP scenarios where simpler models of time and

others where more complex models of time have to be applied, e.g. in case of online

evolution [DBB98] or sub-tree sharing. Therefore, we think that it is always wise to

question the time model before drawing any conclusion related to the speed of a GP

system. In our opinion a time model is reasonable for drawing certain conclusions if and

only if these conclusions are invariant when the time model is exchanged by a model with

higher precision.

5 Results with Hierarchical Genetic Programming

(hGP)

For the following experiments hGP has been substantially restricted. Two variants re-

ferred to as hGPminor and hGP are tested with the following restrictions:

� Number of modular levels: Only level 1 modules allowed

� Number of modules per calling individual: Only 1 module allowed

� Mutation only on highest level allowed

In hGPminor evolution on module level is not allowed. In this case the generation of

modules works mainly as a protection of valuable code against mutation and crossover.

In hGP evolution on the module level is allowed. The settings for the evolution on the

module level are:

� Crossover variant: replace a bad subtree by a randomly selected subtree

� Crossover probability on module level: 33%. Thus, evolutionSpeed[0] = 1.0; evolutionSpe

Surprisingly, the crossover variant \replace a bad subtree by a good subtree" has led to sig-

ni�cantly worse results. Experiments have also con�rmed that hGP is robust concerning

the setting of the crossover probability on module level (up to 50 %).

5.1 Test Problems

We report on six test problems here that have been used (Tab. 1), to compare the

performance of hGP with standard GP: 4 continuous problems from function regression

(Fig. 6 and 7) and two instances of the discrete even-N-parity problem [Koz92] with

N = 5 and N = 7.

Even-5-parity, even-7-parity and regression on f4 have been used during the development

process of hGP and extensive experiments have been carried out based on these problems

[Ban98]. Regression problems on f1; f2, and f3 are used after development of hGP for

validation.

Problem Type Symbol Regression function

1 continuous f1 randomly selected y-values (Fig. 6, left)

2 continuous f2 steps (Fig. 6, right)

3 continuous f3 x6 � 4x5 � 3x4 + 4x3 � 2x2 � x+ 4

4 continuous f4
x3�x2�x+3

x+5
9

5 discrete even-5-parity

6 discrete even-7-parity

Table 1: Test problems used here to measure the performance of hGP.

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

-15 -10 -5 0 5 10 15

-30

-20

-10

0

10

20

30

X

Y X X X X X X

X X X X X

X X X X X X X X

X X X X X

X X X X X

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

X

Y

Figure 6: Test functions f1 (left) and f2 (right).

Tables 2 and 3 give the run parameters of these test runs in overview.

We compared standard GP, ie. Genetic Programming without modules, and hGP, without

(hGPminor) and with (hGP) evolution on the module level. In preliminary experiments

a reduction of evolution speed to about 1/3 that at the level of individuals turned out to

be e�cient, although di�erent applications shall require di�erent module evolution speed.

In another application, we were successful with a speed of 1/10 that at the higher level

programs [OBN96]

-600

-400

-200

0

200

400

600

-4 -2 0 2 4
x

f3(x)

-20

0

20

40

60

80

100

-10 -5 0 5 10
x

f4(x)

Figure 7: Test functions f3 (left) and f4 (right).

Parameter Setting

population size 3 000

selection (10,1)-tournament

generation equivalents 100

crossover-frequency on top level 100 %

crossover-frequency on module level 0 % (hGPminor)

33 % (hGP)

mutation-frequency on top level 2 %

maximum tree depth 17

maximum initial tree depth 6

initialization ramping half and half

maximum number of modules

per individual 1

problem function regression for f

raw �tness � = 100 �
P

i
max(10; kf(xi) � yik

parsimony term 100 � (1� 10
10+�(ai)

terminal set T = f0; 1; ::::9; xg

function set F = f+;�; �; =0g

termination-criterion exceeding the maximum number of generations

Table 2: The Koza tableau of parameter settings for the regression problem in hGP.

Comparison with standard GP containing no modules. �(ai) is the expanded structural

complexity of the individual ai [Ros95a].

Parameter Setting

population size 3 000

selection (10,1)-tournament

generation equivalents 100

crossover-frequency on top level 100 %

crossover-frequency on module level 0 % (hGPminor)

33 % (hGP)

mutation-frequency on top level 2 %

maximum tree depth 17

maximum initial tree depth 6

initialization ramping half and half

maximum number of modules

per individual 1

problem even-N-parity, N = 7

raw �tness � = 100 � (numberofmismatches)

parsimony term 100 � (1� 10
10+�(ai)

terminal set T = fD0; D1; :::; DNg

function set F = fAND;OR;NAND;NORg

termination-criterion exceeding the maximum

number of generations

Table 3: The Koza tableau of parameter settings for the even-N-parity problem in hGP.

Comparison with standard GP containing no modules. �(ai) de�ned as above.

0 10 20 30 40 50 60 70 80 90 100

5000

6000

7000

8000

9000

GENERATION

F
IT

N
E

S
S

BEST

AVERAGE

WORST

0 10 20 30 40 50 60 70 80 90 100

0

500.000

1.000.000

1.500.000

GENERATION

K
N

O
T

E
N

E
V

A
L

U
A

T
IO

N
E

N

Figure 8: Even-7-parity, standard GP. 50 runs. Left: best, average, and worst �tness over

time (measured in generation). Right: node evaluations per generation.

0 10 20 30 40 50 60 70 80 90 100

5000

6000

7000

8000

9000

10000

GENERATION

FI
TN

E
S

S

BEST

AVERAGE

WORST

0 10 20 30 40 50 60 70 80 90 100

0

1.000.000

2.000.000

3.000.000

4.000.000

GENERATION

K
N

O
TE

N
E

V
A

LU
A

TI
O

N
E

N

GESAMT

OHNE MODULSUCHE

Figure 9: Even-7-parity hGP minor. 50 runs. Left: best, average, and worst �tness over

time (measured in generation). Right: node evaluations per generation. Lower curve

shows the node evaluation needed only for �tness evaluation. The upper curve shows the

node evaluation needed for �tness evaluation and module search. The area between the

upper and the lower curve represents the additional e�ort which is spended for searching

good modules.

0 10 20 30 40 50 60 70 80 90 100

5000

6000

7000

8000

9000

10000

11000

12000

GENERATION

FI
TN

E
S

S

BEST

AVERAGE

WORST

0 10 20 30 40 50 60 70 80 90 100

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

GENERATION

K
N

O
TE

N
E

V
A

LU
A

TI
O

N
E

N

MODUL-CROSSOVER

MODULSUCHE

STANDARD-GP

Figure 10: Even-7-parity hGP. 50 runs.

0 10 20 30 40 50 60 70 80 90 100

0

3010

6020

9030

12040

15050

18060

21070

24080

27090

Max = 30100

GENERATION

FI
TN

E
S

S

BEST

AVERAGE

WORST

0 10 20 30 40 50 60 70 80 90 100

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

GENERATION

K
N

O
TE

N
E

V
A

LU
A

TI
O

N
E

N

Figure 11: Regression on f4, standard GP. 50 runs. Left: best, average, and worst �tness

over time (measured in generation). Right: node evaluations per generation.

0 10 20 30 40 50 60 70 80 90 100

0

3010

6020

9030

12040

15050

18060

21070

24080

27090

Max = 30100

GENERATION

FI
TN

E
S

S

BEST

AVERAGE

WORST

0 10 20 30 40 50 60 70 80 90 100

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1.600.000

1.800.000

GENERATION

K
N

O
TE

N
E

V
A

LU
A

TI
O

N
E

N

GESAMT

OHNE MODULSUCHE

Figure 12: Regression on f4, hGP minor. 50 runs. Left: best, average, and worst �tness

over time (measured in generation). Right: node evaluations per generation. Lower curve

shows the node evaluation needed only for �tness evaluation. The upper curve shows the

node evaluation needed for �tness evaluation and module search.

0 10 20 30 40 50 60 70 80 90 100

0

3010

6020

9030

12040

15050

18060

21070

24080

27090

Max = 30100

GENERATION

F
IT

N
E

S
S

BEST

AVERAGE

WORST

0 10 20 30 40 50 60 70 80 90 100

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

GENERATION

K
N

O
T

E
N

E
V

A
L

U
A

T
IO

N
E

N

MODUL-CROSSOVER

MODULSUCHE

STANDARD-GP

Figure 13: Regression on f4, hGP. 50 runs.

0 100.000.000 200.000.000 300.000.000

0

3010

6020

9030

12040

15050

18060

21070

24080

27090

Max = 30100

KNOTENEVALUATIONEN

B
E

S
T

 F
IT

N
E

S
S

HGP

STANDARD-GP

0

1.000.000

2.000.000

3.000.000

4.000.000

S
P

E
IC

H
E

R
B

E
D

A
R

F

HGP

STANDARD-GP

Figure 14: Regression on f1, standard GP vs hGP. 30 runs each. Left: Best �tness over

time. Time is measured in node evaluations. Right: memory consumption.

0 100.000.000 200.000.000 300.000.000

0

3010

6020

9030

12040

15050

18060

21070

24080

27090

Max = 30100

KNOTENEVALUATIONEN

B
E

S
T

 F
IT

N
E

S
S

HGP

STANDARD-GP

0

1.000.000

2.000.000

3.000.000

4.000.000
S

P
E

IC
H

E
R

B
E

D
A

R
F

HGP

STANDARD-GP

Figure 15: Regression on f2, GP vs hGP. 30 runs each.

0 100.000.000 200.000.000 300.000.000

0

300.010

600.020

900.030

1.200.040

1.500.050

1.800.060

2.100.070

2.400.080

2.700.090

3.000.100

KNOTENEVALUATIONEN

B
E

S
T

 F
IT

N
E

S
S

HGP

STANDARD-GP

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

S
P

E
IC

H
E

R
B

E
D

A
R

F

HGP

STANDARD-GP

Figure 16: Regression on f3, GP vs hGP. 30 runs each.

0 50.000.000 100.000.000 150.000.000

0

400

800

1200

1600

2000

2400

2800

3200

KNOTENEVALUATIONEN

B
E

S
T

FI
TN

E
S

S

HGP

STANDARD-GP

0

500.000

1.000.000

1.500.000

S
P

E
IC

H
E

R
B

E
D

A
R

F

HGP

STANDARD-GP

Figure 17: Even-5-Parity, GP vs hGP. 30 runs each. Left: Best �tness over time. Time

is measured in node evaluations. Right: memory consumption.

0 100.000.000 200.000.000 300.000.000

0

1280

2560

3840

5120

6400

7680

8960

10240

11520

12800

KNOTENEVALUATIONEN

B
E

S
T

 F
IT

N
E

S
S

HGP

STANDARD-GP

0

300.000

600.000

900.000

1.200.000

1.500.000

1.800.000

2.100.000

S
P

E
IC

H
E

R
B

E
D

A
R

F

HGP

STANDARD-GP

Figure 18: Even-7-Parity, GP vs hGP. 30 runs each.

0 50.000.000 100.000.000 150.000.000 200.000.000 250.000.000

0

5000

10000

15000

20000

25000

30000

KNOTENEVALUATIONEN

B
E

S
T

 F
IT

N
E

S
S

HGP

STANDARD-GP

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

S
P

E
IC

H
E

R
B

E
D

A
R

F

HGP

STANDARD-GP

Figure 19: Regression on f , GP vs hGP. 30 runs each.

6 Discussion

Figures 8-13 show the detailed performance of standard GP, hGPminor and hGP for the

test problems 4 (regression on f4) and problem 7 (even-7-parity). In addition to best,

average, and worst �tness the nodes evaluated per generation is depicted in the right

�gures. It can be seen that in both cases hGPminor outperforms standard GP and hGP

outperforms hGPminor. The nodes evaluated per generation increase in all cases which

reects that average individual length is growing. The growing process is bounded because

a parsimony pressure is activated. Note, that the parsimony pressure is very weak. E.g.

for the parity problem it has only an e�ect, if two individuals represent exactly the same

function.

For a fair comparison of convergence speed in Fig. 14-19 time is now measured in node

evaluations. For all 6 test problems hGP outperforms standard GP. The performance

gain depends on the problem. In some cases its obvious in some cases only marginal.

Figures 14-19 compare also the memory consumption of standard GP vs. hGP. In general

hGP does not consume signi�cantly more memory than standard GP. In many cases its

memory consumption is even smaller.

The performance gain in hGPminor is achieved because good modules are found. This

has been shown (not here) by a neutral model where module are generated by randomly

selecting a subtree which shows a worser performance. Why does hGPminor reaches

better �tness values than standard GP ? The module generation implies a proliferation

of \good" and locally valuable code. This code seems to be also globally valuable.

7 Conclusion

hGP shows good performance even when a more detailed time model { number of node

evaluation { is applied. The performance gain is based on e�cient module search tech-

niques which are based on the di�erential �tness calculated by replacing the designated

module by a neutral structure. Whether a larger number of levels increases the perfor-

mance of hGP is still an open question and should be a subjects for future investigations.

ACKNOWLEDGMENT

Support has been provided by the Deutsche Forschungsgemeinschaft within the Sonder-

forschungsbereich 531, project B2.

References

[AP92] Peter J. Angeline and J. B. Pollack. The evolutionary induction of subroutines.

In Proceedings of the Fourteenth Annual Conference of the Cognitive Science

Society. Lawrence Erlbaum, 1992.

[AS85] Harold Abelson and Gerald Sussmann. Structure and Interpretation of Com-

puter Programs. MIT Press, Cambridge, MA, 1985.

[Ban98] Dirk Banscherus. Hierarchische Genetische Programmierung mit lokalen Mod-

ulen. diploma thesis, Dept. of Computer Science, University of Dortmund,

Informatik XI, D-44221 Dortmund, Germany, 1998.

[BNKF98] Wolfgang Banzhaf, Peter Nordin, Robert Keller, and Frank D. Francone. Ge-

netic Programming | An Introduction. dpunkt/Morgan Kaufmann, Heidel-

berg/San Francisco, 1998.

[DBB98] Peter Dittrich, Andreas Buergel, and Wolfgang Banzhaf. Learning to move a

robot with random morphology. In Phil Husbands and Jean-Arcady Meyer,

editors, Evolutionary Robotics, First European Workshop, EvoRob98, pages

165{178. Springer, Berlin, 1998.

[Fog95] David Fogel. Evolutionary Computation. IEEE Press, Piscataway, NY, 1995.

[FWS95] Errol C. Friedberg, Graham C. Walker, and Wolfram Siede. DNA Repair and

Mutagenesis. ASM Press, New York, 1995.

[Gru93] Frederic Gruau. Genetic synthesis of modular neural networks. In Stephanie

Forrest, editor, Proceedings of the 5th International Conference on Ge-

netic Algorithms, ICGA-93, pages 318{325, University of Illinois at Urbana-

Champaign, 17-21 July 1993. Morgan Kaufmann.

[KABK99] John R. Koza, David Andre, Forrest Bennett, and Andrew Keane. Genetic

Programming III. Morgan Kaufmann, San Francisco, CA, 1999.

[KBA+97] John R. Koza, Forrest H Bennett III, David Andre, Martin A. Keane, and

Frank Dunlap. Automated synthesis of analog electrical circuits by means

of genetic programming. IEEE Transactions on Evolutionary Computation,

1(2):109{128, July 1997.

[Kin94] Kenneth Kineer. Alternatives in automatic function de�nition: A comparison

of performance. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic

Programming, pages 119{141. MIT Press, Cambridge, MA., 1994.

[Koz92] John R. Koza. Genetic Programming { On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, 1992.

[Koz94] John R. Koza. Genetic Programming II. MIT Press, Cambridge, MA, 1994.

[OBN96] Markus Olmer, Wolfgang Banzhaf, and Peter Nordin. Evolving real-time be-

havior modules for a real robot with genetic programming. In Proceedings

of the international symposium on robotics and manufacturing, Montpellier,

France, May 1996.

[Osa95] Suyozo Osawa. Evolution of the Genetic Code. Oxford University Press, Ox-

ford, 1995.

[RB94] Justinian P. Rosca and Dana H. Ballard. Learning by adapting representations

in genetic programming. In Proceedings of the 1994 IEEE World Congress on

Computational Intelligence, Orlando, Florida, USA, Orlando, Florida, USA,

27-29 June 1994. IEEE Press.

[RB96] Justinian P. Rosca and Dana H. Ballard. Evolution-based discovery of hier-

archical behaviors. In Proceedings of the Thirteenth National Conference on

Arti�cial Intelligence (AAAI-96). AAAI / The MIT Press, 1996.

[Ros95a] Justinian P. Rosca. An analysis of hierarchical genetic programming. Technical

Report 566, University of Rochester, Rochester, NY, USA, 1995.

[Ros95b] Robert Rosen. Life Itself. Columbia UNiversity Press, New York, 1995.

