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Abstract

In this paper we compare, from a practical point of view, approximation algorithms for

the problem MaxCut. For this problem, we are given an undirected graph G = (V;E)

with vertex set V and edge set E, and we are looking for a partition V = V1 [ V2 with

V1 \ V2 = ; of the vertex set which maximizes the number of edges e 2 E which have

one endpoint in V1 and the other in V2. The investigated algorithms include semide�nite

programming, a random strategy, genetic algorithms, two combinatorial algorithms and a

divide{and{conquer strategy.

1 Introduction

Consider an undirected, weighted graph G = (V;E;w) with vertex set V , edge set E and non{

negative weights wi;j of the edges fi; jg 2 E given by a mapping w:E ! R+
0 . The MaxCut{

problem consists of partitioning V into two disjoint subsets V1 and V2, such that the sum of the

weights of edges with endpoints in di�erent sets is maximized. Every partition V = V1 �[V2 is
called a cut and the sum of the weights of edges running between the two sets is called the weight

of the cut. In the following, we focus our investigation on the unweighted case. Therefore, we

have:

wi;j =

(
1 if fi; jg 2 E;

0 otherwise.

As the decision variant of MaxCut is NP{complete [3], we cannot expect to compute the opti-

mum e�ciently, i.e., in polynomial time. Therefore we are faced with the problem of measuring

the quality of the solutions found by the tested algorithms. To get an upper bound on the

optimal value, we choose the solution found by the semide�nite programming (SDP) approach

to a relaxation of the given MaxCut{problem. Goemans and Williamson showed in [4] that

this method can be used to obtain an 0.878{approximation to the optimum and in addition

an upper bound on the optimum. Let SDPValDual be the upper bound given by the semidef-

inite program and w(cutA) be the weight of the cut (number of edges between the two sets

in the unweighted case) returned by some algorithm A for the same instance. Then the quo-

tient ratioA = w(cutA)=SDPValDual gives a measure for the quality of the weight of the cut

returned by algorithm A. By the results of Goemans and Williamson, ratioSDP � 0:87 holds.
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If ratioA = 1, the optimal cut size is returned by algorithm A. An introduction to semide�nite

programming can be found in [6], a general survey on this topic is given in [1] and [11].

To get a reasonable lower bound on the optimum value of a solution of aMaxCut{problem, we

choose a pure random strategy called Random. The idea is that Random, due to its simplicity,

should be very fast but this strategy is not expected to give very good results. For this reason,

other algorithms which run more slowly than Random and give worse results, can be considered

to be not suitable to solve the MaxCut{problem, as long as they do not imply a reasonable

guarantee for the size of the cut.

As another random approach, we applied a genetic algorithm (GA) to the MaxCut{problem.

GAs are inspired by a model of natural evolution. They try to imitate natural optimization

mechanisms involved in the model of biological evolution in order to solve mathematical prob-

lems. An overview on GAs can be found in [5].

Other candidates are a combinatorial algorithm and its variant using vertex{colorings, see [7].

These algorithms are investigated because one can guarantee a certain lower bound on the quality

of the solutions. Although their solutions are worse than the one given by the semide�nite

program (SDP), from a theoretical point of view, these algorithms are expected to be much

faster than SDP.

The last algorithm investigated uses a Divide and Conquer strategy (D&C ). D&C -type algo-

rithms �rst divide a problem instance into subproblems. Then, these subproblems are solved

recursively. Finally, the solution to the original problem is constructed using the solutions to

the subproblems. In the case of MaxCut, the given input graph is divided into subgraphs and

then MaxCut is solved for these subgraphs recursively.

The D&C strategy contains a local optimization at every stage. All the other algorithms are

additionally locally optimized at the end with the result that the random algorithm after local

optimization gives the best compromise between quality and running time.

Altogether six di�erent types of algorithms are investigated:

1. SDP: Computes an approximate solution of MaxCut by means of semide�nite program-

ming. The solution of the semide�nite program also provides us with an upper bound on

the optimum, called SDPValDual. This upper bound is used to compare all algorithms

tested here.

2. Random: Random strategy to solve the MaxCut{problem, which is used as some kind

of lower bound on the optimum value of the MaxCut{problem. The output is used to

compare the quality of all algorithms.

3. Combinatorial: Computation of an approximation to the optimum of aMaxCut{problem

by a combinatorial approach from [7].

4. CombColorings: Variant of Combinatorial using vertex{colorings as in [7].

5. GA: Application of a genetic algorithm to the MaxCut{problem. Due to its relative

independence of the structure of the problem [9], this algorithm can be quite easily adapted

to other problems.

6. D&C : Approximation to the optimum of aMaxCut{problem using a Divide and Conquer

strategy with local optimization.

This overview is followed by a detailed description of the tested algorithms and their implemen-

tation. In Section 3 the types of graphs used in the tests are described and in Section 4 the

results of the test runs are presented. Finally a conclusion is drawn in the last section.
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2 Description of the Algorithms

2.1 Semide�nite Programming

Semide�nite programming is similar to linear programming. For both types of problems, poly-

nomial time algorithms are known which compute solutions which are arbitrarily close to the

optimum. For a survey on semide�nite programming we refer to [6].

Let G = (V;E) be an unweighted graph with vertex set V = f1; : : : ; ng. For solving the

MaxCut{problem for G we formulate it as the following quadratic integer program:

max
X

fi;jg2E

1� xi � xj
2

; such that xi 2 f�1; 1g; i = 1; : : : ; n :

Notice that the term (1�xi � xj)=2 contributes 1 if xi 6= xj , and 0, otherwise. Thus, if we

have a solution to this quadratic integer program, then by setting V1 = fi j xi = 1g and

V2 = fi j xi = �1g we have found a partition of V , i.e., V = V1 �[V2. The value returned by the

program yields the value of the cut, i.e., the number of edges e 2 E, running between the two

vertex sets V1 and V2.

Solving this quadratic integer program cannot be done e�ciently, unless P=NP . Therefore,

we transform it into a semide�nite program. First, we use some appropriate relaxation of this

program, namely we replace the variables xi by vectors ~xi 2 Rn with unit length. This is a

relaxation as we can view xi 2 f�1;+1g as a vector ~xi 2 R
n, having as entries only zeros with the

only exception that at position 1, we have the value of xi. Then, this vector ~xi has unit{length.

Hence, we have for the relaxation of our MaxCut{problem the following formulation:

max
X

fi;jg2E

1� ~xi � ~xj
2

; such that k~xik = 1; ~xi 2 R
n; i = 1; : : : ; n;

where ~xi � ~xj is the usual component{wise scalar product. Now we are ready to transform this

relaxed program into a semide�nite program by introducing new variables:

SDPValDual = max
X

fi;jg2E

1� yi;j

2
; where Y = (yi;j) is a positive semide�nite

n� n matrix and yi;i = 1 for i = 1; : : : ; n.

Recall that an n�n{matrix M is positive semide�nite i� ~xT �M � ~x � 0 for all vectors ~x 2 Rn.

In order to obtain from a (nearly) optimal solution to this semide�nite program a solution (of

high quality) for our original MaxCut{problem, one proceeds as follows, compare [4], [6]:

1. Solve the semide�nite program as accurately as possible, where one obtains as a solution

a matrix Y = (yi;j) and the optimal (or nearly optimal) value SDPValDual.

2. Compute, using Cholesky{decomposition, a matrix B such that Y = BT � B. (Such a

decomposition exists for positive semide�nite matrices Y .)

3. Choose a random vector ~r, which is distributed according to the normal rotationally sym-

metric distribution.

4. Let ~vi; i = 1; : : : ; n, be the ith column vector of the matrix B. Determine the partition

V = V1 �[V2 according to the following rule: We put vertex i 2 V into the set V1 if ~vi �~r � 0,

and into V2 otherwise. Compute the weight of the cut given by V = V1 �[V2.

5. Repeat steps 3 and 4 several times. Return the best solution V = V1 �[V2 found.

We remark that for the implementation for solving the semide�nite program we used the program

solver SDPA by Fujisawa, Kojima and Nakata [2].
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2.2 The Random Strategy

Given a graph G = (V;E) with vertex set V = f1; : : : ; ng, the algorithm Random divides the

vertex set V into two disjoint subsets V1 and V2 by going through all vertices of G successively

and drawing a uniformly distributed random number ri 2 [0; 1] for each vertex i 2 V; i= 1; : : : ; n.

Vertex i is inserted into one of the two sets V1 or V2 according to the following rule:

If ri � 0:5, then insert i into V1, otherwise insert it into V2.

Obviously, the vertices of G are uniformly at random distributed among V1 and V2, each with

probability 0:5. This distribution is done several times and each time the total weight w(cut) of

the corresponding cut is calculated.

Finally the cut with the biggest weight is returned as an approximate solution to MaxCut.

Random was not implemented with the hope to get very good solutions but to implement a

very fast algorithm which gives reasonable solutions which can be used as lower bounds in the

comparison with other algorithms.

2.3 Combinatorial

Combinatorial is based on a results from [7]. It was added to the group of investigated algorithms

because it has the linear running time O(n + m) in the uniform cost model for every given

weighted input graph G = (V;E;w) with n = jV j, m = jEj and w:E ! N0. Moreover, the

following lower bound on the weight of the computed cut V = V1 �[V2 was shown in [7]:

cut(V1; V2) �
w(G) + w(M)

2
:

In this inequality, w(G) =
P

e2E we is the sum of the weights of all edges in G. Analogously,

w(M) =
P

e2M we is the weight of a matching M in the graph. A matching M in a graph

G = (V;E) is a set fe1; : : : ; erg � E of pairwise non{adjacent edges.

The main idea of Combinatorial is to �nd a matching M with large weight in G, and then

to insert the vertices of the edges of M with endpoints in di�erent sets V1 and V2 in such a

way, that the weight of the corresponding cut is maximized. In order to decide whether for an

edge e = fi; jg 2 M vertex i should belong to V1 and vertex j to V2 or vice versa, a potential

function VAL(G) is used which re
ects the current achievable value of the desired cut. Here is

the procedure in detail:

1. Computing a large matching M :

We apply a well{known procedure for obtaining a \1{factorization" of a graph. Assume

that the number n of vertices of G is even. Let w.l.o.g. G be the complete weighted graph

Kn. Edges in G have weight 1, nonedges have weight 0. Imagine that (in an arbitrary

order) the �rst n�1 vertices of a complete graph Kn are the points of a regular (n�1)-gon,
where all diagonals are drawn. Using this as a base of a pyramid, we put above this the

n'th vertex of Kn and draw all edges to the (n�1) base points. If we now choose from the

base one of the sides of the regular (n�1)-gon as well as all the parallel diagonals and that

edge which goes from the missed base point to the n'th point, then we have a matching.

Let K be the set of all (n� 1) matchings, which we obtain with such a procedure. No two

distinct matchings in K have an edge in common. Let M 2 K be a matching with largest

weight, i.e., w(M) � w(M 0) for each M 0 2 K.

2. Computing a large cut using the matching M :

(a) Initialize V1 := V2 := ;.
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(b) For every edge e 2 E the parameter Val(e) is de�ned as follows:

Val(e) =

8><
>:

we=2 if je \ (V1 [ V2)j � 1,

we if je \ V1j = je \ V2j = 1,

0 otherwise.

(c) Initialize a potential function VAL(G) by VAL(G) :=
P

e2E Val(e) = w(G)=2.

(d) For every edge e = fi; jg 2M do successively:

E0 := the set of all edges e 2 E, where one endpoint is i or j, and the other

is in V1 [ V2. Put the vertices i and j into V1 and V2 in such a way that the

sum S =
P

e02E0 Val(e0) is maximized and both vertices i and j lie in di�erent

sets. Update the values Val(e0) for all e0 2 E0 and Val(e).

(e) If there exist more vertices, join them into pairs in an arbitrary way and sort them into

V1 and V2 as described in step (d). Update the corresponding values Val(e). In case

the number of vertices n is odd, add an additional `isolated auxiliary vertex', i.e., all

edges leaving this vertex to the other vertices have weight 0 and apply the algorithm

as described above. Then delete the auxiliary vertex after this computation.

(f) Combinatorial returns a partition V = V1 �[V2.

2.4 Combinatorial with Colorings

The algorithm CombColorings is a variant of Combinatorial which uses proper vertex{colorings.

A vertex{coloring �:V �! N of a graph G = (V;E) is proper, if for all edges e = fi; jg 2 E

the colors of their endpoints are di�erent, therefore �(i) 6= �(j) holds. The algorithm can be

described as follows:

1. Let G = (V;E;w) be a weighted graph with weightfunction w:E �! N0.

2. Color the vertices by positive integers as follows: For all vertices in V successively, assign,

starting with color 1, every vertex the smallest color, which is not used by its adjacent

vertices yet. We obtain a proper coloring �:V �! f1; : : : ; tg using, say, t colors.

3. Let G0 = (V 0; E0;w0) be the graph obtained by collecting all vertices of G with the same

color to macro-vertices:

(a) V 0 = fv01; v
0
2; : : : ; v

0
tg; t = number of used colors.

(b) v0i = fk 2 V j �(k) = ig.

(c) E0 = ffv0i; v
0
jg j i 6= j; 9 k 2 v0i; l 2 v0j with fk; lg 2 Eg.

(d) w0(fv0i; v
0
jg) =

P
e2A

w(e); A = ffk; lg 2 E j k 2 v0i; l 2 v0jg.

4. Let macro-cut V 0 = V 0
1
�[V 0

2 be the result when Combinatorial is applied to the graph G0.

5. Transform macro-cut into a cut of G:

(a) Let V 0
1 and V 0

2 be the two sets constituting macro-cut.

(b) Set ColCut :=(V1,V2) with V1 = fv 2 v0 j v0 2 V 0
1g, V2 = fv 2 v0 j v0 2 V 0

2g.

6. Let ColCut be the result of CombColorings.

5



CombColorings guarantees the following lower bound on the size of the returned cut [7]:

cut(V1; V2) �
w(G)

2
�

�
1 +

1

t� 1

�
; t = number of colors;

provided t is even, otherwise, for t odd we have: cut(V1; V2) �
w(G)

2
�
�
1 + 1

t

�
:

2.5 Genetic Algorithms

Genetic Algorithms (GAs) are random search algorithms inspired by the model of natural evo-

lution. Potential solutions are coded in a simple chromosome-like data structure. According to

the model of biological evolution, the single potential solutions are called individuals and the set

of individuals is called population. In order to solve an optimization problem, GAs successively

create k populations developed with the help of the random operators selection, crossover and

mutation with the goal to increase the qualities of the corresponding solutions coded by the

individuals:

Algorithm GA:

begin

t := 0;

initialize P (t); evaluate P (t);

while not t � k

t := t + 1;

P (t) := select P (t � 1);

recombine P (t); mutate P (t); evaluate P (t);

endwhile

end

The procedure initialize creates randomly an initial population. In the evaluation step, all

individuals of the current population P (t) are assigned some �tness value which quanti�es the

quality of the solution they code. These �tness values are used by the selection operator which

chooses the individuals from the population P (t�1) which are used to build the new population

P (t). The higher the �tness of an individual is, the higher is the chance for this individual to be

selected. The chosen individuals are either copied into the new population as they are or | with

some probability pc | they are subject to a recombination to form new individuals which are

inserted into the new population. At the end of the loop, all individuals of the new population

are mutated with the probability pm.

In order to use a GA to solve aMaxCut{problem, we �rst have to code the potential solutions,

i.e., cuts of the given graph G. These will be the individuals. Several cuts (individuals) will form

the population. For this purpose, for graphs on n vertices the cuts are coded into bit-strings

(x1; : : : ; xn) of length n. Let V = f1; : : : ; ng be the vertex set of G. The value xj at position

j 2 f1; : : : ; ng of the string has the following meaning:

xj =

(
0 () vertex j 2 V1;

1 () vertex j 2 V2:

Figure 1 illustrates this coding. The �tness value of each individual (bitstring) i is given by the

size of the cut it codes: Fitness(i) : = size of the cut coded by individual i:
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1

2

5

3

4

6

V1 V2

Cut: Coding:

Individual:

1 V1 0

2 V1 0

3 V2 1

4 V2 1

5 V1 0

6 V2 1

Node Partition Coding

1 2 3 4 5 6

0 0 1 1 0 1

Figure 1: Coding of an individual.

As the selection method, we used roulette-wheel-selection. We chose this method because it

favours individuals with high �tness values without totally suppressing the selection of individu-

als with low �tness values. This heuristically avoids a premature convergence of the population.

Procedure selection (in: Population; out: Individual)

begin

TotalFitness: =
Pn

i=1 Fitness(i);

RelFitness(i): = Fitness(i)=TotalFitness;

CumulativeFitness(i): =
Pi

j=1 RelFitness(j);

r: = uniformly distributed random number in [0; 1] ;

i: = 1;

while CumulativeFitness(i) < r

i: = i+ 1;

endwhile

return(Individual [i]);

end

The last individual of the population is assigned the cumulative �tness 1 and, as r 2 [0; 1], there

is always an individual i with CumulativeFitness(i) � r. Obviously, those individuals with a

higher �tness than the others are selected more often to form the new population. Therefore

the increase of �tness is encouraged.

To implement crossover, two di�erent methods were used, namely Single-point crossover and

Fixed crossover. The �rst method is a standard crossover method for GAs independent of

the structure of the individuals which are crossed [9]. The second method is dependent on

the structure of the crossed individuals and was implemented to investigate whether the use

of structural information is an advantage. For single-point crossover a natural number j 2
f1; : : : ; ng is chosen uniformly at random. Each of the two bit-strings which represent the

parents, is divided into two parts: the �rst j bits and the last (n � j) bits. Then we form the

�rst new individual by concatenating the �rst j bits of individual 1 and the last (n� j) bits of

7



individual 2. Vice versa, the second new individual is created by concatenating the �rst j bits

of individual 2 and the last (n� j) bits of individual 1. This process is shown in Figure 2.

1 1 0 0

0 1 0 1

1 1 0 1

0 1 0 0

individual 1:

individual 2:

child 1:

child 2:

   crossing point

  from ind. 2

  from ind.1

Figure 2: single-point crossover.

Fixed crossover is based on the following random function f : f0; 1g2 ! f0; 1g with f(0; 0)=0;

f(0; 1)=Random1; f(1; 0)=Random2; and f(1; 1)=1:Here, Random1 and Random2 are random

numbers from f0,1g, which are drawn at the beginning of the crossover and then are constant

during the execution of crossover. With the help of f , the new individual NewInd is created

from the old individuals OldInd in the following way:

NewInd [j] := f(OldInd1[j];OldInd2[j]);

OldIndi[j] = value of j'th bit of individual i.

Thus, if two individuals 1 and 2 have at some position j the same entry, then the new individual

has at position j also this entry. Otherwise, the entry of the new individual is given by Random1

or Random2, dependent on the old entries. Figure 3 gives an example for �xed crossover with

Random1 = 0 and Random2 = 1. In contrast to single-point crossover, the operation �xed

crossover returns only one child as o�spring.

1 1 0 0

0 1 0 1

1 1 0 0

individual 1:

individual 2:

child :

  f(1,0)=1    f(0,1)=0

Figure 3: Example for �xed crossover.

In order to apply mutation to a population, a random number r 2 [0; 1] is drawn for every

bit of every individual's bitstring and, if r is less than the given probability for mutation, the

corresponding bit is inverted. We used pm = 1=n (n = length of bitstring) as the probability for

mutation [9]. Other values for this probability were also tested, but gave no better results. As a

variant, we additionally tested a mutation method, where one chooses randomly the bits to be

inverted in the same manner like in the previous described method, but a bit is only inverted if

this inversion yields a bigger cut value than the former bitstring.
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Algorithm GA:

input:

G = an undirected Graph,

MaxGen = maximal number of generations which will be created,

pc = probability for crossover, pm = probability for mutation.

output: A partition V1 [ V2 = V .

begin

createInitPopulation();

evaluatePopulation(); // compute for all individuals the sizes of the represented cuts.

BestSoFar := individual of the current generation which represents the biggest cut;

for Gen = 1 to MaxGen // create a new population

i := 0;

while i < n

selection(Population,Individual 1);

r := uniformly distributed random number in [0,1];

if r � pc
Choose uniformly at random another individual from the old population.

Apply single-point crossover to the two chosen individuals as described above.

Insert both new created individuals into the new population.

i := i+ 2;

else

Insert Individual1 into the new population;

i := i+ 1;

endif

endwhile

if i < n

selection(Population,AdditionalInd);

Insert AdditionalInd into the new population;

endif

Apply mutation to the whole new population with probability pm as described above.

evaluate();

BestSoFar := individual of the current generation which represents the biggest cut;

endfor

return(BestSoFar);

end

Procedure: createInitPopulation()

begin

for i = 1 to n // go through all individuals successively

for BitIndex = 1 to GraphSize// go through all bits of individuali

InitVal := 0 or 1 , each chosen with the probability 1=2.

individual i[BitIndex ] := InitVal.

endfor

endfor

end
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If one uses �xed crossover instead of single-point crossover, the counter i must only be in-

cremented by 1 instead of 2 after crossover, because �xed crossover produces only one new

individual.

2.6 D & C

D&C is a divide-and-conquer approach to solve the MaxCut{problem. Given an input graph

G = (V;E), the vertex set V is partitioned recursively into two subsets V1 and V2. In order to

partition V in the beginning, all vertices in V successively are inserted randomly into V1 or V2,

each with probability 1=2 and independently of each other. Every time the algorithm returns

from a recursive branch it delivers a cut for those two vertex subsets V1 and V2 of V that it

was working on. Since a single cut consists of two vertex sets we receive four subsets of vertices

altogether. These are combined to a cut, such that the weight of the created cut is maximized.

At each stage of the algorithm the result is locally optimized. We describe the algorithm in

detail as follows:

1. Let G = (V;E) be an undirected graph.

2. Compute a partition (V1; V2)=DivideAndConquer(G,V).

3. Apply local optimization to the resulting cut: Go through all vertices successively and

move it to the other vertex set if this step increases the weight of the cut. Every time a

vertex is moved, start the local optimization once again from the beginning until the last

vertex is reached without moving any vertex to the other vertex set.

4. Repeat steps 2. and 3. several times. As the result return the best solution V = V1 �[V2
found.

The procedure DivideAndConquer is de�ned as follows:

Procedure DivideAndConquer(G,V)

input: graph G = (V;E).

output: vertex sets V1 and V2 with V = V1 [ V2 and V1 \ V2 = ;.
begin

n := jV j;
if n � 2 then return (�rst element of V , second element of V ) else Q1 := Q2 := ;;
for i = 1 to n

r := uniformly distributed random number in [0; 1];

if r � 0:5 then Q1 := Q1 [ fvig; else Q2 := Q2 [ fvig;
(T1; T2) := DivideAndConquer(G,Q1); Apply local optimization;

(T3; T4) := DivideAndConquer(G,Q2); Apply local optimization;

Cut1 := (T1 [ T2; T3 [ T4);Cut2 := (T1 [ T3; T2 [ T4);Cut3 := (T1 [ T4; T2 [ T3);

return(biggest of the cuts Cut1; Cut2; Cut3);

end

end

2.7 Local Optimization of the Algorithms

In order to improve the quality of the solutions, we implemented a second version with local

optimization for all algorithms except for D&C, as there local optimization is already included
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in the algorithm. The local optimization was achieved by going successively through all vertices

that constitute the cut. For each vertex the new cut size is computed which would result from

moving the current vertex into the other vertex set. If the new cut size is bigger than the old one,

the vertex is moved and the local optimization starts from the beginning. The local optimization

stops when the last vertex is reached and no vertex is moved to the other vertex set.

The described local optimization was applied to SDP and Random after every trial constitution

of a cut. Recall that both algorithms build several cuts and choose the best of them as the result.

Concerning Combinatorial, the local optimization is used at the very end. At the same place

CombColorings, that uses Combinatorial as a sub-procedure, is optimized locally, too. But it is

also locally optimized after the cut consisting of macro vertices is in
ated to the original graph,

as this also improves the result. In the algorithm GA, every new individual created by crossover

is locally optimized immediately after its creation and in D&C local optimization is implicitly.

We also tested a second version of the local optimization. This second version di�ers from the

above one, as it does not start immediately at the beginning whenever a vertex has changed

its position. It continues until the last vertex is reached and then starts at the beginning. The

condition for the stopping of the algorithm remains. This second version stops, when it reaches

the last vertex without having moved any vertex to the other vertex set. It turns out that the

qualities of the solutions produced by both methods do not vary signi�cantly. For this reason

we do not distinguish the two methods in the following, however, we distinguish the test runs

which were started with local optimization and without this optimization.

3 Formal Aspects of the Tests

3.1 The Tested Graphs

In the test runs each of the di�erent algorithms was applied to undirected, unweighted graphs

with 100 vertices which were instances of 6 di�erent classes of graphs. Though most of the

algorithms are also able to cope with weighted graphs, we only tested the unweighted case here.

We used di�erent classes of graphs with the purpose to investigate whether the quality of the

solutions, which the algorithms produce, depends on the class of the graphs. The 6 classes can

be divided into two groups:

Simple random graphs GRand(n; p):

These graphs on n vertices are created by inserting each edge with probability p, indepen-

dently of the others.

Bipartite random graphs GBiRand(n; p; q):

The vertex set is divided into two parts:

V 0 = fvi j vi 2 V and i is oddg V 00 = fvi j vi 2 V and i is eveng:

Then, for all pairs (vi; vj) of vertices with vi; vj 2 V and i < j a uniformly distributed

random number r 2 [0; 1] is drawn and the corresponding edge fvi; vjg is inserted if r

is less than a given probability Prob. This probability is either p or q depending on the

numbers of the vertices:

Prob =

(
q if i and j are both odd or are both even,

p otherwise.
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This method of building a graph gives us the possibility of creating bipartite graphs only,

by choosing 0 � p � 1 and q = 0 as probabilities. A graph is called bipartite if its vertex

set can be divided into two subsets such that there only exist edges between vertices in

di�erent sets. The advantage of using bipartite graphs is that the optimal cut is given by

the two subsets by de�nition. Additionally, we can achieve \almost bipartite" graphs by

using small values for the probability q.

3.2 The Tests

All algorithms were tested on 20 random graphs from each of the following classes:

GRand(100; 0:7), GRand(100; 0:5), GRand(100; 0:3), GBiRand(100; 0:7; 0:0), GBiRand(100; 0:3; 0:0)

and GBiRand(100; 0:7; 0:3). Recall that the graphs for GBiRand(n; p; 0:0) are bipartite. We used

20 graphs from each of the classes to avoid that some of the algorithms behave very well or very

bad on certain graphs. Therefore we applied every algorithm to 20 random graphs of each of

the 6 classes that gives a total of 120 test runs per algorithm. For a better comparison of the

results of the algorithms, all algorithms are applied to the same 120 graphs.

3.3 Presentation of the Test Runs

Let us �rst explain the presentation of the test runs using Figure 4.
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Figure 4: Relative cut sizes computed by Random and SDP for di�erent numbers

of random trials.

As described above, we applied the algorithms to 20 di�erent random graphs of each class. The

results of these 20 runs per class were compressed to the biggest and the smallest value and the

median each algorithm achieved. These three values per algorithm and graph class are indicated

at each x position in the �gure. The middle marks the median and the upper and lower mark

the biggest and smallest value returned by the presented algorithm. Accordingly, one can �nd
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the type of the tested algorithm on the x-axis (e.g. R100 for algorithm Random and 100 trials)

and the achieved values, that is the cut size or the running time, on the y-axis. The running

time is given in seconds and the cut size is given as the quotient of the absolute cut size the

algorithm computed and the optimal cut size SDPValDual estimated by SDP :

RelCutSize =
AbsCutSize

SDPValDual
:

All �gures refer only to one graph class which is indicated by the caption of the �gure or

mentioned in the text referring to them.

4 Results of the Test Runs

Some of the algorithms, namely SDP, Random and GA, require the adjustment of their param-

eters before they are compared to the others. This is done by testing di�erent values for the

parameters and choosing the ones that lead to the best results on average. The parameters that

have to be adjusted and the actual values chosen are described in the next two sections.

Then we tested those versions of the algorithms that are not locally optimized. The purpose of

these test runs was to investigate the algorithms in their pure form without local optimization.

Then we compared the versions with local optimization. These versions were investigated,

because the local optimization improved the results of all algorithms without increasing the

needed running times signi�cantly and therefore these versions should be used in practice.

4.1 Adjusting Random, SDP and GA

In the algorithms SDP and Random the number Rnum of cuts that are created randomly is the

essential parameter, as the best one of these cuts is returned as the result.

The algorithm GA o�ers a large amount of parameters that can be adjusted. The parameters

we adjusted are the population size, the number of generations and some variants of building

the initial population, the crossover method and the mutation method. We used the value

pc = 0:6 as the probability for crossover. We tested some other values of pc, but these tests gave

no essentially di�erent results. The same holds for the probability pm of mutation. We used

pm = 1=n for the latter, where n is the number of vertices of the graph G. Thus, on average one

bit per individual is inverted. Other tested values for the probabilities did not really improve the

results. As variations of the last two parameters gave no di�erent results, we do not distinguish

them from now on.

In order to determine a value for Rnum which leads to good cut sizes and also keeps the running

times reasonable, we applied Random and SDP to all test graphs with the following numbers

of trials: 1, 5, 10, 50, 100, 500 and 1000. These tests showed that for both algorithms and for

input graphs of type GRand the di�erence between the best and worst result of the test runs

became smaller as the number of trials grew. At the same time the qualities of the calculated

cuts were improved, when the number of trials was increased.

Figure 4 shows typical results reached by SDP and Random without local optimization, as

they were applied on a random graph of the class GRand with 100 vertices and with an insertion

probability of p = 0:7. On the y-axis one can see the relative cut sizes computed with the number

of trials given on the x-axis. Recall that the relative cut size was de�ned as the returned cut size

divided by the value SDPValDual. Hereby the label R on the x-axis indicates that the values

for Random are given and the label S stands for SDP, e.g., S100 = 100 trials with algorithm

SDP.
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Figure 5: Random applied to a bipartite graph without local optimization.

As already shown in [8], we saw that when SDP was applied to graphs of the class GBiRand, it

always computed the optimum in terms of SDPValDual. The number of trials did not in
uence

the result in this case. On the other hand, the results which were computed by Random were

worse than the ones given by SDP. Therefore, the number of trials is important, as far as

Random is concerned. Figure 5 shows the results of Random for a graph of the type GBiRand

and di�erent numbers of trials.

The running times of both algorithms were quite similar in all tests. As an example, Figures 6

and 7 show the running times for a random graph of type GRand with an insertion probability of

p = 0:7. On the x-axis one can see the type of the tested algorithm and the number of random

trials (i.e., R50 means: algorithm Random and 50 trials) and on the y-axis one can see the time

in seconds which was needed for the computation.

Obviously, the running times of Random grow much faster than the ones of SDP as the number

of trials is increased. This is due to the fact that SDP needs most of its running time to solve

the semide�nite program and the time which is used for the random creation of cuts is relatively

small. As a compromise between the quality of the cut and a small running time we chose 100

random trials for Random and SDP in the comparison of all algorithms.
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Figure 6: Running times of Random for di�erent numbers of random trials.

74

76

78

80

82

84

86

88

90

92

94

96

S1 S5 S10 S50 S100 S500 S1000

T
im

e 
[s

ec
]

p=0.7,without local opt.,S=SDP

Figure 7: Running times of SDP for di�erent numbers of random trials.
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4.1.1 Parameters of GA

The algorithm GA uses the following basic settings for the involved parameters:

� size of the population: 50

� number of generations: 100

� insertion probability for the initial population: 0:5

� probability for crossover: 0:6

� method for crossover: single-point crossover

� probability for mutation: 0:01

� method for mutation: simple mutation (no local optimization).

These basic settings were varied as described below in order to see which settings yield the best

results. Every not explicitly mentioned parameter was set to its basic setting.

First of all we tested GA for 50, 100 and 200 generations. As can be seen typically in Figure

8 (G50-G100), the relative cut sizes were increased a little, when the number of generations

was increased. The same held when the size of the population was increased from 50 to 100

individuals (P100). Figure 9 shows the running times for the test runs from Figure 8.
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Figure 8: Relative cut sizes of GA for GRand(0:7) without local optimization.
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Figure 9: Running times of GA for GRand(0:7) without local optimization.

The use of di�erent insertion probabilities, say 0:25 instead of 0:5, did not improve the results

and also did not change the running times essentially.

When �xed crossover (c1) is used instead of single-point crossover, the running times stay the

same. However, the quality of the best solution is improved, but the variance grows which leads

to a worse median. The use of local optimization in the mutation operator (m1) improves the

size of the computed cut signi�cantly, without increasing the variance and without increasing

the running times signi�cantly.

All observations described above hold for graphs of type GBiRand accordingly. Altogether one

may say, that di�erent settings of the parameters in
uence the running times and partially

improve the quality of the cut a little, but there seems to be no real best input independent

setting. For this reason the basic settings described in the beginning of this section were used

in the comparison of all algorithms.

4.2 Comparison of the Algorithms without Local Optimization

As mentioned above, we used 100 random trials for the algorithms Random and SDP. Concerning

SDP, the running time is increased, if we use a larger number of random trials, though the

quality of the cut is hardly improved, if the number of random trials is increased beyond 100.

Therefore, we chose 100 random trials for SDP. The choice of an appropriate number of random

trials for Random is more di�cult. On the one hand, the quality of the cut is improved, when

the number of random trials is increased, but also the running time is increased, accordingly.

Remember that we implemented Random due to its simplicity and small running time in order

to get some kind of lower bound on the quality of the cuts, the choice of 100 random trials

seemed appropriate. For the genetic algorithm a population size of 50, 100 generations, single-

point crossover, mutation without local optimization, and a probability of 0:5 for building the

initial population were used. Altogether, 20 test runs for each of the 6 graph types and every
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algorithm except for D&C were executed using these settings. The algorithm D&C was left

out in this comparison because it optimizes locally implicitly. Hence, D&C is only compared

to the algorithms with local optimization discussed in the next section. Tables 1 and 2 show

the results of the test runs. Hereby we present the relative cut sizes CutSize
SDPV alDual

in Table 1 in

order to make the results comparable. Table 1 shows the maximal and minimal relative cut size

returned per algorithm and the type of graph. In Table 2 the running times (in seconds) are

listed which were used for the calculations presented in Table 1.

Comparing the results, we see that SDP always returned the results with the highest quality.

Next came Combinatorial followed by CombColorings,GA and Random, respectively. Moreover,

the relative cut sizes obtained with SDP are signi�cantly bigger than the theoretical 0.87-

guarantee for the cut size given in [4].

graph type Random SDP Combinatorial CombColorings GA

GRand(0:3) max 0.85343 0.97367 0.92096 0.90675 0.87331

GRand(0:3) min 0.82443 0.9553 0.88573 0.86645 0.83607

GRand(0:5) max 0.89087 0.97654 0.94319 0.92867 0.90788

GRand(0:5) min 0.86927 0.96697 0.90591 0.90578 0.88323

GRand(0:7) max 0.92244 0.98523 0.96269 0.95323 0.9345

GRand(0:7) min 0.91119 0.97812 0.9372 0.93819 0.92171

GBiRand(0:3; 0:0) max 0.56383 1 1 1 0.5992

GBiRand(0:3; 0:0) min 0.532 1 0.72583 0.6555 0.55285

GBiRand(0:7; 0:0) max 0.56819 1 1 1 0.58886

GBiRand(0:7; 0:0) min 0.51979 1 1 0.78786 0.5441

GBiRand(0:7; 0:3) max 0.75472 1 0.98706 0.95287 0.78399

GBiRand(0:7; 0:3) min 0.72328 1 0.86947 0.80645 0.7351

Table 1: Relative cut sizes [CutSize/SDPValDual] without local optimization.

graph type Random SDP Combinatorial CombColorings GA

GRand(0:3) max 0.187 76.964 0.008 0.009 8.4

GRand(0:3) min 0.148 77.289 0.008 0.009 8.172

GRand(0:5) max 0.239 77.757 0.014 0.017 14.537

GRand(0:5) min 0.193 78.73 0.013 0.016 14.023

GRand(0:7) max 0.328 77.254 0.02 0.025 18.806
GRand(0:7) min 0.34 77.257 0.019 0.026 19.217

GBiRand(0:3; 0:0) max 0.09 86.625 0.004 0.004 5.489
GBiRand(0:3; 0:0) min 0.113 86.625 0.004 0.004 4.618

GBiRand(0:7; 0:0) max 0.18 81.241 0.009 0.009 9.71

GBiRand(0:7; 0:0) min 0.179 81.241 0.009 0.009 9.693

GBiRand(0:7; 0:3) max 0.25 115.715 0.013 0.015 13.436
GBiRand(0:7; 0:3) min 0.25 115.715 0.013 0.015 14.345

Table 2: Running times [sec] without local optimization.

The quality of the cut sizes which were computed by CombColorings is slightly worse than the

ones calculated by Combinatorial though CombColorings has bigger running times. It seems

that the time spent for �nding a vertex coloring is useless because it returns no better results.

Compared to these three algorithms, the results of GA are quite bad but better than the ones

of Random. According to our test runs, the fastest algorithm was Combinatorial, followed by

CombColorings, Random, GA and SDP, in this order. The last two ones, namely GA and SDP

are signi�cantly slower than the others.
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4.3 Comparison of the Algorithms with Local Optimization

In the comparison of the algorithms with local optimization we used the same parameters as

before. For Random and SDP we used 100 random trials and for GA the population size 100 and

50 generations, single-point crossover, mutation without local optimization and a probability of

0:5 for building the initial population.

The local optimization was, except in the case of GA, always applied after the computation of

the cuts. This means that the basic structures of the algorithms were not changed. They only

were extended by local optimization. In the case of GA, each individual was locally optimized

right after its creation. For all algorithms, local optimization was used.

The results of the experiments with local optimization are given in Table 3 and 4. Table 3

shows the computed minimal and maximal relative cut sizes and Table 4 shows the correspond-

ing running times. Compared to the case without local optimization, GA and Random became

signi�cantly slower as these two algorithms spend a lot of their running times for local opti-

mization and hence the solutions of these two algorithms before local optimization have quite

a big distance to the nearest local optimum. The situation is di�erent with Combinatorial and

CombColorings. The running times of these two algorithms are not increased signi�cantly by

local optimization which indicates that their solutions are quite near some local optima.

type of graph Random SDP Combinatorial CombColorings GA D&C

GRand(0:3) max 0.97259 0.97581 0.95692 0.90675 0.97581 0.97474

GRand(0:3) min 0.96164 0.96479 0.9309 0.86659 0.96542 0.96542

GRand(0:5) max 0.98052 0.98083 0.9734 0.93968 0.98119 0.98119
GRand(0:5) min 0.9722 0.97497 0.94953 0.90646 0.97387 0.97566

GRand(0:7) max 0.98686 0.98736 0.98104 0.96197 0.98729 0.98729
GRand(0:7) min 0.97996 0.98253 0.96206 0.94106 0.98253 0.98353

GBiRand(0:3; 0:0) max 1 1 1 1 1 1
GBiRand(0:3; 0:0) min 1 1 1 0.6555 1 1

GBiRand(0:7; 0:0) max 1 1 1 1 1 1

GBiRand(0:7; 0:0) min 1 1 1 0.93139 1 1

GBiRand(0:7; 0:3) max 1 1 1 0.95586 1 1
GBiRand(0:7; 0:3) min 1 1 1 0.86678 1 1

Table 3: Relative cut sizes [CutSize/SDPValDual] with local optimization.

type of graph Random SDP Combinatorial CombColorings GA D&C

GRand(0:3) max 3.065 76.34 0.024 0.009 36.31 99.878

GRand(0:3) min 2.994 78.609 0.016 0.009 33.323 99.919

GRand(0:5) max 5.262 79.019 0.04 0.016 54.434 111.02

GRand(0:5) min 4.725 80.265 0.039 0.017 60.44 105.321

GRand(0:7) max 7.543 82.894 0.051 0.027 83.741 113.861

GRand(0:7) min 7.164 81.912 0.041 0.027 84.041 110.141

GBiRand(0:3; 0:0) max 1.572 86.816 0.008 0.004 16.914 96.408

GBiRand(0:3; 0:0) min 1.572 86.816 0.008 0.004 16.914 96.408

GBiRand(0:7; 0:0) max 3.279 84.997 0.011 0.01 35.064 95.08

GBiRand(0:7; 0:0) min 3.279 84.997 0.011 0.009 35.064 95.08

GBiRand(0:7; 0:3) max 5.172 92.506 0.022 0.016 46.234 116.922

GBiRand(0:7; 0:3) min 5.172 92.506 0.022 0.016 46.234 116.922

Table 4: Running times [sec] of the algorithms that refer to Table 3.

Such conclusions based on the increase of running time can not be made for SDP and D&C,
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because SDP has quite a big basic running time and so the time needed for the local optimization

increases the total running time only marginally. Comparing the relative cut sizes returned

by SDP in both cases, one can see that local optimization does not improve the relative cut

sizes very much. The algorithms which were most improved by local optimization are GA and

Random. Together with the small running time compared to SDP, the algorithm Random with

local optimization o�ers for the tested graphs the best compromise between small running times

and high qualities of the cuts, as long as no lower bound on the cut size is needed. If such a

lower bound on the cut size is important for an application, Random is not applicable. In these

cases the application of SDP should be considered.

Apart from the running time and only considering the quality of the cuts the tables show that

all algorithms except Combinatorial and CombColorings return similar results. The results of

Combinatorial and CombColorings are a little bit worse than the others when only the qualities

of the cut sizes are considered.

5 Conclusion

As we pointed out in the previous two sections, the algorithm Random with local optimiza-

tion gives the best compromise between small running time and quality of the relative cut size.

Comparing the locally optimized versions of Random and GA one can see that the qualities

of their relative cut sizes are quite similar, but GA needs a signi�cantly bigger running time.

Therefore GA is considered to be less applicable than Random. Even the advantage that GA is

quite independent of the structure of a problem and therefore can be easily adapted to similar

problems fades compared to the high quality results presented by the pure random strategy.

Though SDP is one of the slowest algorithms, it has the advantage of a good theoretical lower

bound on the minimal cut size proved by Goemans and Williamson [4]. Furthermore, in all

of our experiments the theoretically lower bound of achieving 0.87... of the optimum was ex-

ceeded. Therefore it would be interesting to put e�ort on improving the running times of this

algorithm. Both combinatorial algorithms, Combinatorial and CombColorings, returned quite

similar results. Without local optimization they obtained better results than Random but with

local optimization their results were slightly worse than the ones presented by the pure random

strategy. The last tested algorithm, D&C, returned results similar or even better than SDP,

but it also had the largest running time.

Altogether we observed that except for SDP, local optimization is an important tool to achieve

large relative cut sizes. Therefore the development of new algorithms based on local optimization

seems to be desirable.
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