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Abstract

The search for minimal elements in partially ordered sets is a generalization of the task of
finding Pareto-optimal elements in multi-criteria optimization problems. Since there are usually
many minimal elements within a partially ordered set, a population-based evolutionary search is,
as a matter of principle, capable of finding several minimal elements simultaneously and gains
therefore a steadily increase of popularity. Here, we present an evolutionary algorithm which
population converges with probability one to the set of minimal elements within a finite number
of iterations.

1 Introduction

The search for minimal elements in partially ordered sets is a generalization of the task of finding
Pareto-optimal elements in multi-criteria optimization problems. Since there are usually many mini-
mal elements within a partially ordered set, a population-based evolutionary search is, as a matter of
principle, capable of finding several minimal elements simultaneously and gains therefore a steadily
increase of popularity. This increase of popularity is witnessed by numerous proposals of multi-
criteria evolutionary algorithms during the last few years – this rapid development was, however, not
accompanied by a comparable build-up of a theoretical foundation.
But the first steps towards an elimination of this shortcoming has been made: It was shown in [1]
in case of finite search sets that an evolutionary algorithm (EA) with ‘positive variation kernel’ and
‘elite preservation strategy’ (these notions are explained later) is capable of generating a sequence of
populations such that at least one individual enters the set of minimal elements of the partially ordered
fitness set in finite time with probability one and stays there forever. Moreover, it was proven that the
population of such an EA converges completely to the set of minimal elements if the population at
stept+1 is just the set of minimal elements of the union of the population of parents and the generated
offspring at stept. Evidently, the population size is not fixed in this case; it grows to the size of the
set of minimal elements which may be prohibitively large. Therefore, it is the goal of this paper to
devise an evolutionary algorithm withfixed population size which population converges to the set of
minimal elements. Such an EA is described in Section 3 and analyzed in Section 4. Basic terminology
is introduced in Section 2.
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2 Partially Ordered Sets

A prerequisite to introduce ‘partially ordered sets’ is the notion of the ‘relation.’ The definitions
presented in this section are extracted from Ester [2] and Trotter [3].

Definition 1 Let X be some set. The subset R � X � X is called a binary relationin X . Let
x; y 2 X . If (x; y) 2 R, also denoted xRy, then x is said to be in relationR to y. A relationR in X
is said to be

(a) reflexiveif xRx is true for all x 2 X ,
(b) antireflexiveif xRy ) x 6= y is true for all x; y 2 X ,
(c) symmetricif xRy ) yRx is true for all x; y 2 X ,
(d) antisymmetricif xRy ^ yRx) x = y is true for all x; y 2 X ,
(e) asymmetricif xRy) yRx is true for all x; y 2 X ,
(f) transitiveif xRy ^ yRz ) xRz is true for all x; y; z 2 X . ut

Some relations that possess several of the properties above simultaneously bear their own names.
For example, ifR is a reflexive, symmetric, and transitive relation thenR is called anequivalence
relation. In this case it is common to use the symbol “�” in lieu of R. A reflexive, antisymmetric, and
transitive relation “�” is termed apartial order relation whereas astrict partial order relation “�”
must be antireflexive, asymmetric, and transitive. The latter relation may be obtained by the former
one by settingx � y := (x � y) ^ (x 6= y). After these preparations one is in the position to turn to
the actual objects of interest.

Definition 2 LetX be some set. If the partial order relation “�” is valid onX then the pair (X ;�) is
called a partially ordered set(or short: poset). If x � y for some x; y 2 X then x is said to dominate
y. Distinct points x; y 2 X are said to be comparablewhen either x � y or y � x. Otherwise, x
and y are incomparablewhich is denoted by x k y. If each pair of distinct points of a poset (X ;�)

is comparable then (X ;�) is called a totally ordered setor a chain. Dually, if each pair of distinct
points of a poset (X ;�) are incomparable then (X ;�) is termed an antichain. ut

For example,(IRn;�) with n � 2 is a partially ordered set whenx � y meansxi � yi for all
i = 1; : : : ; n. One obtains a strict partial order relation “�” from this partial order relation if it is
additionally required thatx 6= y. Notice that the poset(IRn;�) is neither a chain nor an antichain.
The situation changes for the poset(IR;�) with x � y if and only ifx � y. Since each pair of distinct
points inIR is comparable the poset(IR;�) is totally ordered and therefore a chain. An example for
an antichain is the set of “minimal elements” introduced next.

Definition 3 An element x� 2 X is called a minimal elementof the poset (X ;�) if there is no x 2 X
such that x � x�. The set of all minimal elements, denoted M(X ;�), is said to be completeif for
each x 2 X there is at least one x� 2 M(X ;�) such that x� � x. ut

Minimal elements are the targets of the evolutionary search studied here. Since the analysis presented
shortly requires the completeness ofM(X ;�) it is useful to know under which circumstances this
assumption is fulfilled. If the poset(X ;�) is finite then the completeness ofM(X ;�) is guaranteed
([4], p. 91). This result shows that the set of minimal elements may be incomplete only if the poset
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is infinitely large. Sufficient conditions for the completeness ofM(X ;�) in case of infinitely large
posets(X ;�) may be found, for example, in [5]. This general case is beyond the scope of this paper
– hereinafter it is assumed that the posets are always finite and hence endowed with a complete set of
minimal elements.

3 Evolutionary Algorithm

Let S be some finite search set andf : S ! F = ff(x) : x 2 Sg the fitness function with
partially ordered fitness values, i.e.,(F ;�) is a poset. An individual of the evolutionary algorithm is
represented by the pair(x;  ) 2 S � 	 where	 is a compact subset ofIRm. Here, represents the
values ofm parameters that may affect, for example, the mutation distribution or any other procedure
that is involved in the production of offspring. The mappingf : S ! F induces also a partial order
relation “�f ” on the search setS (and similarly on the set of individuals) via the definitions

x1 �f x2 , f(x1) � f(x2)

x1 �f x2 , f(x1) = f(x2)

x1 �f x2 , x1 �f x2 _ x1 �f x2 :

For the sake of notational convenience, the subscriptf will be omitted hereinafter, i.e., the statement
x1 � x2 will actually meanx1 �f x2, and an analogous convention applies to the remaining relations.
The targets of the evolutionary search are the elements ofM(F;�). Clearly, whenever the fitness
valuef(x) of an individual(x;  ) is an minimal element of the poset(F ;�) thenx is a minimal
element of the poset(S;�f) and vice versa.
The pseudo code of the evolutionary algorithm considered here is presented in Fig. 1. At the begin-
ning,� individuals are initialized arbitrarily from the setS �	. This yields the populationP0. After
setting the generation counter tot = 0 the EA enters the loop in which each iteration represents the
production and selection process of one generation. Each iteration can be divided into three phases.

Phase 1: At first, � parents of the current populationPt produce� offspring in some probabilistic
manner (� � � � 1). The offspring are collected in the multi-setQ (duplicate members are not
discarded). Those offspring which are minimal among all offspring are moved toQ� and the auxiliary
multi-setsP 0 andQ0 are emptied.
At the end of phase 1, the offspring are partitioned into the multi-setsQ andQ� with jQ�j � 1 and
jQj+ jQ�j = �. Every offspring inQ is worse than some offspring inQ�.

Phase 2: For each offspringq fromQ� letD(q) contain all parents fromPt that are dominated by
offspringq. If such parents exist then they are discarded fromPt and the offspringq is moved from
Q� to P 0. If no parent was dominated but offspringq is incomparable to all parents thenq is moved
fromQ� toQ0.
At the end of phase 2, setP 0 contains offspring that are better than some parent, setQ0 contains those
offspring that are either better than some parent or incomparable to all parents, andQ� now contains
offspring being not better than some parent. Those parents which are left over inP t are incomparable
to each offspring inP 0[Q0. Clearly, every offspring inQ is worse than any offspring inP 0[Q0[Q�.
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Phase 3: The multi-setPt+1 of parents of the next iteration consists of the union ofP 0 and the
residual multi-setPt. By construction, it is guaranteed1 that jPt+1j = jPt [ P

0j = jPtj+ jP
0j � �. If

jPt+1j < � then members ofQ0 are moved toPt+1. If Q0 contains more members than necessary to
fill Pt+1 an arbitrary rule may be applied to choose the members to be moved toPt+1. If Q0 contains
too few members to fillPt+1 the same procedure is applied toQ� and, if necessary, toQ. Since� � �

it is guaranteed that the new population can be completed to� members in this manner. If� is less
than� thenPt+1 might be filled with randomly generated individuals.
At the end of phase 3, each member of theoriginal populationPt (at the beginning of phase 1)
which is not dominated by some offspring has been passed to the new populationPt+1 whereas each
dominated parent has been replaced by some better offspring.

4 Analysis

By construction of the algorithm just presented one can easily deduce some auxiliary results that
facilitate the proof of the main result. For example, if an optimal individual is already a member
of the populationPt then it will be also a member of the next populationPt+1. This fact may be
formulated as follows:

Lemma 1
Let x 2 M(S;�). If x 2 Pt thenx 2 Pt+1 for t � 0. ut

Suppose that an optimal offspring has been produced which is not contained in the parent population
Pt. Two things may happen. First, the offspring dominates a parent in the current populationPt. In
this case it will move toP 0 and finally to the new populationPt+1. Second, there is no parent in
the current populationPt that is dominated by the optimal offspring. In this case the offspring will
move toQ0 and it is not guaranteed that it will also enter the new populationPt+1. Thus, an optimal
offspring may get lost although there exist (incomparable) parents that are not optimal! This situation
is summarized below.

Lemma 2
Let x 2 M(S;�). If x 2 Q butx =2 Pt for somet � 0 then eitherx 2 P 0 or x 2 Q0. Moreover, if
x 2 P 0 thenx 2 Pt+1. ut

If all parents are optimal we are done. Suppose there exist parents which are not optimal. Since the set
of minimal elements is complete it is guaranteed that there exists a minimal element that dominates a
non-optimal parent. In symbols:

Lemma 3
9 y 2 Pt : y =2 M(S;�) ) 9x 2 M(S;�) : x � y. ut

Evidently, one needs a mechanism that guarantees the creation of such elements (offspring) since such
an event would ensure the assignment ofx to P 0 in Lemma 2. A sufficient criterion for this purpose
is a ‘positive variation kernel.’

1If someq 2 Q� entersP 0 in phase 2 then at least one member ofPt is deleted.
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initializeP0; sett = 0

repeat
(* PHASE 1 *)
Q = offspring(Pt)

Q� =M(Q;�)

Q = Q nQ�

P 0 = Q0 = ;

(* PHASE 2 *)
for eachq 2 Q�:
D(q) = fp 2 Pt : q � pg

if D(q) 6= ; then
Pt = Pt nD(q)

P 0 = P 0 [ fqg

Q� = Q� n fqg

endif
if D(q) = ; ^ q k p for all p 2 Pt then
Q0 = Q0 [ fqg

Q� = Q� n fqg

endif
endfor
(* PHASE 3 *)
Pt+1 = Pt [ P

0

if jPt+1j < � then
fill Pt+1 with elements from:

1. Q0

2. Q�

3. Q
until Pt+1 = �

endif
t = t+ 1

until stopping criterion fulfilled

Figure 1: Pseudo code of the evolutionary algorithm with partially ordered fitness.

Definition 4
Let � with 1 � � � � denote the number of parents that participate in the process of producing a
single offspring(y;  ) 2 S � 	 whereS is the search set and	 is a fixed compact subset ofIRm. A
transition probability functionK : (S �	)� � (S �	)! [0; 1] with the property

K(x1;  1; x2;  2; : : : ; x�;  �; y;  ) � � > 0

for all y; x1; : : : ; x� 2 S and ; 1; : : : ;  � 2 	 is termed apositive variation kernel. ut

The positiveness of a variation kernel can be achieved easily. For example, suppose that the search set
is the set of binary strings of length` and that a new offspring is produced by (one point or uniform)
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crossover with crossover probability 1 and the usual bit-flipping mutation, i.e., each bit is inverted
independently with mutation probability 2. Even if 1 and 2 are controlled by some exogenous
schedule or some self-adapting mechanism, the positiveness of the variation kernel (representing the
joint transition probabilities of crossover and mutation) is guaranteed as long as 2 2 [ a; b ] � IR

with 0 < a � b < 1. Further examples may be found in [6, 7].

Lemma 4
If T denotes the random number of trials necessary to generate a specific offspring from an arbitrary
collection of parents with a positive variation kernel thenPfT <1g = 1.

Proof:
Since the variation kernel is positive the probability that a specific offspring is not generated from
an arbitrary collection of parents withint trial is PfT > t g � (1 � �)t. As a consequence, one
immediately obtainsPfT <1g = 1� lim

t!1

PfT > t g � 1 � lim
t!1

(1� �)t = 1. ut

Now one is in the position to prove the main result:

Theorem 1
Let the variation kernel of the evolutionary algorithm described in Figure 1 be positive. Then the
population entirely consists of minimal elements after a finite number of iterations with probability
one.

Proof:
Suppose that no member of the population at some stept � 0 is optimal. Lemma 3 ensures that there
exist a minimal element that dominates at least one of the parents. Owing to Lemma 4 this minimal
element can be produced by the variation operators in a finite number of steps with probability 1.
It follows from Lemma 2 that this optimal offspring will move toP 0 and finally toPt+1. Lemma 1
guarantees that this optimal individual will stay in the population forever. A�-fold repetition of this
argumentation leads to the conclusion that the entire population of the evolutionary algorithm consists
of minimal elements after a finite number of steps with probability one. ut

It should be mentioned that the evolutionary algorithm considered here realizes a stronger version of
the ‘elite preservation strategy’ than introduced in [1]: Unless there is an offspring that dominates a
specific parent, this parent will also be a parent of the next iteration. This stronger version is appar-
ently necessary for proving the convergence of the entire population to the set of minimal elements.
An example of an evolutionary algorithm that violates elite preservation is as follows: Suppose that
� parents produce� offspring with a positive variation kernel. LetM be the set of minimal elements
relative to the union of parents and offspring. In the algorithm of Peschel & Riedel [8], the setM

is exactly the population of parents of the next iteration. Needless to say, in this case the size of the
population is not constant over time and it will finally grow to the cardinality of the set of minimal
elements [1]. This kind of selection was later re-invented by several authors—with the difference that
the population size was kept fixed. This property is usually achieved by adding some individuals if
the size ofM is less than� and by deleting some individuals fromM at random if the size ofM is
larger than�.
This method does not lead to convergence: Suppose that all� parents at iterationt � 0 represent
minimal elements and that the cardinality of the set of minimal elements is at least larger than2�.
Moreover,� = �. Since the variation kernel is positive there exists a positive minimum probability
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that the� offspring are not minimal elements and that parents as well as offspring are mutually
incomparable. SincejM j = 6 > � = 3, three members ofM are deleted at random. With probability
3!=(6 �5 �4) = 1=20 all optimal parents will be removed fromM such that the population of parents of
the next iteration will not contain any minimal element. Thus, optimal individuals will be found and
lost, found and lost and so forth with some minimum probability. Clearly, such a behavior precludes
the property of convergence. But there is a simple remedy: If the cardinality ofM is larger than� then
one should delete only those members ofM at random which were not parents. In this case the ‘strong
elite preservation property’ is not violated and one obtains convergence of the entire population to the
set of minimal elements.

5 Conclusions

An evolutionary algorithm which population is guaranteed to converge to the set of minimal elements
in a finite number of iterations has been proposed. The more important contribution of this work,
however, is the observation which properties of the evolutionary algorithm are sufficient to prove the
convergence. These properties are (i) a positive variation kernel and (ii) the strong elite preservation
strategy. Future work should therefore be engaged in examining other evolutionary algorithms with
respect to these properties. Since these (sufficient) conditions were only proved for finite search sets
a generalization to infinite search sets is desirable. Some work on such search sets is available [9, 10]
albeit specialized to multi-criteria problems. It would be instructive to generalize these results to the
problem of finding minimal elements of arbitrary partially ordered sets.
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