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Abstract

In this paper we report results for the prediction of thermodynamic properties

based on neural networks, evolutionary algorithms and a combination of them. We

compare backpropagation trained networks and evolution strategy trained networks

with two physical models. Experimental data for the enthalpy of vaporization were

taken from the literature in our investigation. The input information for both

neural network and physical models consists of parameters describing the molecular

structure of the molecules and the temperature. The results show the good ability

of the neural networks to correlate and to predict the thermodynamic property. We

also conclude that backpropagation training outperforms evolutionary training as

well as simple hybrid training.

Keywords: Neural Networks, Evolution Strategies, Hybrid-Learning, Chemical

Engineering
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1 Introduction

In chemical engineering the simulation of chemical plants is an important task. Millions

of chemical compounds are known yet and experimental data are often not available. For

this reason there is a need for calculation methods which are able to predict thermody-

namic properties. Usually models are developed, which have a physical background and

where the model parameters have to be �tted to experimental data. This leads usually

to nonlinear regression models with a multi-modal objective function where encapsulated

evolution strategies [GUS99, GUS98, GUSB99] are successfully used. In contrast to mod-

els with physical background simple so-called incremental methods are widely used, too.

Each functional group of a molecule gives a contribution to the thermodynamic property

and the sum of all contributions have to be calculated. A new way for the calculation and

prediction of thermodynamic properties is the use of neural networks. Descriptors, which

can be derived from the molecular structure, have to be de�ned for the input layer. Then

experimental data for a speci�c thermodynamic property can be used for training. Predic-

tions of this thermodynamic property are then possible by using the molecular structure

for a chemical compound, where no experimental data are available. In this investigation

the enthalpy of vaporization was taken. In section 2 we give a brief overview of the mod-

els used and continue in section 3 with an experimental comparison of physical models,

networks trained with backpropagation, networks trained with evolutionary algorithms

and a combination of the latter two.

2 Models for the enthalpy of vaporization

2.1 Physical Models

The physical background for the enthalpy of vaporization �Hv consists of electrostatic

interactions forced by the atoms of the molecules. Equations can be derived from statis-

tical thermodynamics in order to describe the interactions between molecules (�rst level)

and between functional groups of these molecules (second level). Physical models, such

as UNIFAC (UNIversal Functional Activity Coe�cient) [FJP75] were developed in order

to describe the real behavior of liquid mixtures. The part of the UNIFAC model, which

summarizes the interactions between functional groups of the molecules within a pure

liquid were taken as a basis for the development of the so-called UNIVAP model (UNI-

versal enthalpies of VAPorization) [KSU94, UKS96, Ulb96]. This model consists of sums

of exponential terms, which include the interaction parameters and the temperature. The

interactions are weighed by the surface fractions of functional groups of a molecule. The

interaction parameters have to be �tted to experimental data of enthalpies of vaporiza-

tion. This leads to a non-linear regression problem which objective function consists of the

mean absolute error (MAE) over all experimental data points N between the calculated

values (physical model) and the experimental data:

MAE =
1

N

X
N

���Hcalc:

v
��Hexp:

v

�� (1)
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Due to the complex structure of the physical model, especially the exponential terms,

multimodality usually occurs. An encapsulated evolution strategy for solving this problem

was developed [GUS99, GUS98, UFG+97, Ulb96].

In contrast to UNIFAC an extended temperature dependence was used in order to describe

the behavior of the enthalpy of vaporization in principle. For the UNIVAP model it

was di�cult to reach the critical point, where the enthalpy of vaporization reaches null.

Therefore a modi�ed temperature dependence was used in this investigation (UNIVAP).

Another theoretical approach is the so-called EBGCM (Enthalpy Based Group Contribu-

tion Model) [KFUS99, Ulb96] in order to describe the enthalpy of mixing of binary liquid

mixtures. This model is similar to UNIFAC, but has a slight di�erent background. It

was used to derive an equation for the enthalpy of vaporization, which is similar to the

UNIVAP model. This so-called EBGVAP model (Enthalpy Based Group contribution

model for enthalpies of VAPorization) was used in our investigation, too. For UNIVAP

and EBGVAP three parameters for the interactions between functional groups of the same

type have to be �tted by non-linear regression. For interactions between di�erent kinds

of functional groups six parameters have to be estimated. In principle the enthalpy of

vaporization can be calculated as follows:

�Hv =
X
k

�
(i)

k
"
(i)

k
= kJ=mol (2)

R is de�ned as the universal gas constant of 8.314 J/(mol�K) and �
(i)

k
is the number of

groups of kind k within the molecule i. The term "
(i)

k
/ J/mol is called group enthalpic

factor of group k. This factor can be written for UNIVAP (Eq. 3):
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and for EBGVAP (Eq. 4):
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with Qk is de�ned as the relative van der Waals surface of group k and the surface fraction

of a group m within a molecule i can be calculated with:
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The interaction parameter 	mk between the groups of kind m and k is de�ned as:

	mk = exp

�
��umk

RT

�
(6)

The equations for the temperature dependence for UNIVAP (Eq. 7 and EBGVAP (Eq. 8)

are:

�umk = R � (amk + bmkT + exp(cmkT
2) �K): (7)

�umk = bmkT + 1K exp
�
cmkT

2
�

(8)

Here amk, bmk and cmk are the interaction parameters, which have to be �tted. Considering

Eq. 3 and 4, the heat of vaporization in Eq. 2 should have the unit J=mol. Usually, heats

of vaporization extend over a range between 0 J/mol and > 105 J/mol. This leads

to di�culties in the optimization procedure, because exponential terms describing the

temperature dependence as given in Eq. 7 and 8 cannot correlate data within this large

range with satisfying results. A factor of about 1000 is introduced and therefore the

output of Eq. 2 is set to kJ/mol.

2.2 Neural Networks

Neural networks are able to acquire an internal model of a process by learning from

examples. After successful training the network will be a model for the process which led

to the experimental data. Theoretical results show that feed-forward networks are capable

of arbitrary exact function approximation, given an unlimited number of free parameters

or in�nite precision [HSW89].

In our experiments we used simple feed-forward networks with non-linear sigmoid activa-

tion functions. The network model can be written as Eq. 9:

o =
1

1 + e
�

��
nP
i=1

wi;o�hidi

�
+wbias;o

� (9)

hidi =
1

1 + e
�

  
mP
j=1

Ij�wj;i)

!
+wbias;i

! (10)
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with n as number of hidden units, m as number of input units and Ij as input value for

unit j.

As training algorithms for the networks weights wi;j we employed the standard Backprop-

agation algorithm [RM86] and various (�,�) evolution strategies [Sch95, B�ac96] as well as

a combination of both.

3 Experiments and Results

Comparing di�erent methods or models is at least two-fold. On the one hand a fair

comparison should allow all models the same number of free parameters to adjust to the

problem. On the other hand, one can say that it is su�cient if a model performs good

on formerly unseen data regardless of the number of parameters it needed. In both cases

our main concern is generalization capability.

Some of our experiments were designed to �nd good neural models under the most similar

conditions for the calculations as the physical models. Here the number of adjustable

parameters was almost the same for all models. In other experiments we searched for

good results independent of the number of free parameters (weights) used. One di�culty

is to �nd the optimal structure of the neural network and the optimal structure of the

temperature dependent equation of the physical model. Here we only investigated the

structure of the network. Another important issue is to have the same input information

for all methods, which can be derived from the structure of the molecules.

3.1 Generation and Description of the Data

3.1.1 Selection of data

The experimental data concerning the enthalpy of vaporization were taken from di�erent

data handbooks [MSK85, SVZ+87, SJO86]. Data for three di�erent classes of chemical

compounds were used: normal alkanes, 1-alcohols, and branched alcohols. These data

were chosen for the investigation of three (3MG) and �ve (5MG) di�erent functional

groups, the so-called main groups: CH3, CH2 and CHnOH. The group CHnOH contains

the functional groups CH3OH, CH2OH and CHOH. The experimental data for both data

sets cover a temperature range from 92 K to 776 K. The number of carbon atoms in the n-

alkanes ranges from 2 (Ethane) to 19 (Nonadecane), for the 1-alcohols from 1 (Methanol)

to 14 (Tetradecanol) and for the branched alcohols from 4 (2-Methyl-2-propanol) to 6

(2-Methyl-2-pentanol). The preprocessing steps and experimental setting were the same

for the 3MG and 5MG data sets.

3.1.2 Selection of descriptors

There are several possibilities for the de�nition of descriptors as input variables for a

neural network: number of atoms, number of single bonds, molar mass, dipole moment

and topological parameters concerning the connectivity between atoms [EJ93]. In our
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investigation the descriptors for the input layer are the surface fractions of the functional

groups within a molecule and the temperature. Therefore a de�nition of functional groups

is necessary. Here the de�nition of the UNIVAP model [KSU94, UKS96, Ulb96] shall be

used.

3.1.3 Partitioning into subsets for cross validation

After generating a data set (either 3MG or 5MG) it was subdivided into 3 classes: training

(50%), validation (25%) and test (25%) set. Only the training set was used to adapt the

parameters for all our models. The validation set could be used for NN during the adaption

process to evaluate the algorithms performance on unknown data and stop the adaption

process if the error on the validation set increases. The validation set do not have any

inuence in the parameter �tting procedure of the NN or our physical models UNIVAP

and EBGVAP. Validation and test set therefore measure the generalization ability of all

our models. However, 50% of the data were used only for comparison, i. e. for a test of

the prediction of the enthalpy of vaporization. The distribution of the data in the 3MG

and 5MG data sets can be seen in Table 1 and Table 2.

3.1.4 Transformation

For the use with the neural network the data were normalized via separate linear transfor-

mations of main-groups, temperature and enthalpy to the interval [0.1 .. 0.9]. Network re-

sponses outside of this interval were mapped onto the boundaries and then re-transformed

to the original scale.

3.2 Physical Model Experiments

Only the training set was used for the non-linear regression of the interaction parameters

and for the training of the neural network. First the parameters were computed suc-

cessive, i. e. �rst the 12 parameters for the interactions CH3 $ CH3, CH3 $ CH2

and CH2 $ CH2 were �tted to the training data set. After this optimization process

(corresponding to Table 1), these 12 parameters are needed in the �tting procedure of

the remaining parameters of the interactions CHnOH $ CHnOH, CH3 $ CHnOH and

CH2 $ CHnOH, because data points of substances are used, which contain the main

groups CH3 and CH2, too. The advantage of an sequential �tting procedure is to keep

the dimension space as small as possible. These sequential experiments for the physical

models were done with the aid of an repeatedly started encapsulated evolution strategy

Group interaction np ndata;total ndata;training

CH3 CH3/CH3 CH2/CH2 CH2 12 248 128 (51.61 %)
CHnOH CHnOH/CH3 CHnOH/CH2 CHnOH 15 181 86 (47.51 %)

total: 27 429 214 (49.88 %)

Table 1: Number of experimental data for the di�erent group interactions (3MG)
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[GUS98] by using a multidimensional but non-correlated step-length control and a pan-

mictic generalized intermediate recombination of the objective and the strategic variables:

5*[GG 4+8(GG 7+19)
300]30. The used encapsulated evolution strategies were repeated four

times with 6:8 � 106 function calls in all, in order to guarantee the determination of the

global minimum or of a fairly good local minimum.

The determined results were optimized by a multi-start simplex-algorithm [NM65] with 50

di�erent runs of 2500 iterations each. The best result for UNIVAP (seq) and EBGVAP

(seq) can be found in Table 3 and 4. In contrast to this sequential regression of the

model parameters a simultaneous regression (sim) of all 27 (3MG) respectively 75 (5MG)

parameters was investigated by using the same encapsulated ES as for the sequential

experiments. The determined mean absolute errors of these runs were improved by a

multi-start simplex-method as well by using 50 di�erent runs of 3000 iterations each. The

results can be seen in Table 3 and 4, too.

3.3 Neural Networks Experiments (Backpropagation)

The learning rate � and the architecture of the network (number of hidden units and

connections) have the biggest inuence on the performance of the network [Man95]. In

order to �nd good neural network solutions we did a primitive parameter study. We

�rst varied the learning rate with a �xed architecture which had approximately the same

number of free parameters (connections) as the UNIVAP respectively as the EBGVAP

model. With the best learning rate found, we searched for a good number of hidden units.

All runs were performed 10 times.

3.3.1 Variation of the learning rate

We �xed the architecture of the network at 4 input, 4 hidden and 1 output units (4-

4-1) for the 3MG data at 6 input, 5 hidden and 1 output units (6-5-1) for the 5MG

data. This was done to have approximately the same number of free parameters (25 =

4 � 4 + 4bias + 4 + 1bias) as the UNIVAP method.

For both data sets (3MG and 5MG) we started with a very low learning rate � = 0:001

and ended with a far too high rate � = 10:0 (0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0). The momentum term � was �xed

to 0.2. A training run was stopped after it reached the error limit (tss � 5 � 10�5) or

Group interaction np ndata;total ndata;training

CH3 CH3/CH3 CH2/CH2 CH2 12 248 130 (52.42 %)
CH CH/CH CH2/CH CH3 15 133 58 (43.94 %)
C C/C CH/C CH2/C CH3 21 52 28 (53.85 %)
CHnOH CHnOH/CH3 CHnOH/CH2 CHnOH 15 181 89 (49.17 %)
CH CHnOH/C CHnOH 12 40 22 (55.00 %)

total: 75 654 327 (50.00 %)

Table 2: Number of experimental data for the di�erent group interactions (5MG)
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Figure 1: Training error 3MG (�=0.8) Figure 2: Validation error 3MG (�=0.8)

exceeded a maximum number of 100,000 pattern presentations (epochs). The error is

de�ned as:

tss =
1

2
�

nX
i=1

(�i � oi)
2 (11)

with � as target vector and o as output activation of the network. Figure 1 and 2 show the

curves for 10 di�erent runs (3MG) with the best learning rate which was used throughout

all other experiments. The left-hand side �gure gives the error on the training set and on

the right-hand side we see the validation error. If an error curve reaches the base of the

graph it satis�ed a speci�ed error limit for the whole training set. Networks with very

low learning rate never reached the speci�ed error limit, due to the very slow learning

progress. A too high rate resulted in oscillating error curves. The �gures look the same

for the 5MG data set.

3.3.2 Variation of the number of hidden units

After variation of � we used the best rate as a constant for the hidden unit search1. The

number of hidden units were varied between 1 and 40. Networks with less then 3 units

failed to learn the task. Up to 40 units the results on training as well as validation data

were almost independent of the number units employed. We therefore used our initial 4-4-

1 network for the 3MG data and a 6-5-1 network for the 5MG data. This is an additional

advantage because results can now be directly compared to other methods which use the

same number of free parameters.

1This does not mean that both parameter are independent of each other. We consider this value to

be a �rst estimate to start with.
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3.4 Neural Networks Experiments (Evolution Strategy)

In this experiment we substituted the Backpropagation algorithm with an evolution strat-

egy. Some authors [Wie93] reported good results when training a network with an ES.

Again we systematically searched for a good parametrisation of the (15,100){ES. Parame-

ters under consideration were the number of mutation step-sizes �i and the recombination

scheme used on the object variables xi (the network weights). Each parameter setting

was run for 10,000 generations (1,000,000 pattern presentations) and repeated 10 times to

have some statistical validity. All of the following variations of the bisexual recombination

scheme were done with 1 and 25 �.

� no recombination of xi and �i,

� discrete recombination of xi and discrete of �vivj ,

� discrete recombination of xi and intermediate of �vivj ,

� intermediate recombination of xi and discrete of �vivj ,

� intermediate recombination of xi and intermediate of �i.

For details on ES and recombination types see [B�ac96, Sch95].

None of the parameter settings lead to good and reliable results. Only one out of all

ES trained network performed comparable to Backpropagation. All other networks give

rather poor results. The quality of the average result did improve when using back-

propagation as local search procedure (an additional training of 250,000 epochs) after

ES optimization but was not as good as Backpropagation alone. Figure 3 shows the best

run, which we regard as a very rare event, with a (15,100){ES. We did not perform any

ES experiments on the 5MG data set.

3.5 Results and Comparison

3.5.1 The 3 main groups data set (3MG)

For a comparison between the physical models and NN, we took two network architectures

with learning rates gained by the previous experiments. Architecture A has 4 hidden units

and nearly the same number of free parameters (25 weights) as the UNIVAP respectively

the EBGVAP model (27). Architecture B performs alike and has 6 hidden units (37

weights).

1. Parameters for NN-A (4-4-1): �=0.8, epochs=250,000

2. Parameters for NN-B (4-6-1): �=0.8, epochs=250,000

3. Parameters for NN-ES (4-4-1): best (15,100){ES #� = n, intermediate recombina-

tion of xi and �i (100,000 generations)

10
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Figure 3: (15,100){ES on 3MG (error during training)

UNIVAP (seq) EBGVAP (seq) UNIVAP (sim) EBGVAP (sim)
Train 0.681 0.617 0.881 0.720
Valid 0.941 0.750 0.966 0.829
Test 0.557 0.576 1.003 0.766
All 0.716 0.640 0.933 0.759

NN-A NN-B NN-ES (best) NN-ES (avrg)
Train 0.652 0.570 0.612 1.143
Valid 0.566 0.878 0.876 1.536
Test 0.686 0.703 0.747 1.357
All 0.638 0.679 0.711 1.292

Table 3: Mean absolut error per pattern for di�erent data sets and models (3MG)

4. Parameters for NN-ES (4-4-1): average (15,100){ES #� = n, intermediate recom-

bination of xi and �i (100,000 generations)

Table 3 gives an overview of all experiments. In the �rst place, the results determined

by our physical models UNIVAP and EBGVAP show, that the newer group contribution

model EBGVAP is more suitable than UNIVAP for the correlation and prediction of heats

of vaporization because of its better physical background. On the other hand the results

show a superiority of a sequential �tting procedure. The Neural Network performs even

slightly better than the best physical model.

From the errors of the validation and test set we can derive the generalisation capabilities

of the di�erent models. The best generalisation is given by network A (backpropagation)

very closely followed by EBGVAP (seq), whereas the worst generalisation is delivered by

the same network trained with an Evolution Strategy and the UNIVAP (sim) model.

Figure 4 shows the errors of network A on all data sets. The errors are sorted by size and

bars depict the target, whereas the dots are the networks predicted values. Except for the
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Figure 5: NNES (Evolution Strategy) errors on training, validation and test set (3MG)

critical regions close to �Hv(Tcr) = 0 J/mol, the network comes very close to the desired

values. The network performs equally well on training, validation and test data. In �gure

5 we see the errors for the same network trained with an Evolution Strategy. The errors

are rather high for all three data sets.

As an additional test for generalisation ability, we used all data of an ethane molecule in

a range from 92 K to 305 K. In �gures 6 and 7 we compare all models on the enthalpy

prediction for ethane. It can be seen that the physical model EBGVAP and the neural

network performs equally well on this task, except for the critical regions near T ! Tcr and

�Hv(Tcr) = 0 J/mol, where the network outperforms all other models. The prediction by

using the network is however characterized by a point of discontinuity near T � 100 K,

which is not thermodynamically interpretable. A prediction by Neural Networks can be

therefore only used partly over the whole temperature range.

Almost all networks trained with an ES give only a poor approximation of the enthalpy

curve. In comparison to Table 3 the superiority of EBGVAP towards UNIVAP can be also

seen in the �gures 6 and 7 because of its smaller deviation at temperatures smaller than

T = 150 K and at temperatures near the critical temperature of Tcr(Ethane)= 305:4 K.

3.5.2 The 5 main groups data set (5MG)

As in the 3MG experiments, we took two network architectures with learning rates gained

by the previous experiments. Architecture A has 5 hidden units (41 weights), architecture

B has 9 hidden units (73 weights) that is nearly the same number of free parameters of

the physical models UNIVAP and EBGVAP (75 parameters).
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UNIVAP (seq) EBGVAP (seq) UNIVAP (sim) EBGVAP (sim)
Train 0.667 0.609 1.764 1.275
Valid 1.050 0.805 2.077 1.579
Test 1.180 0.939 2.013 1.707
All 0.891 0.740 1.904 1.459

NN-A NN-B
Train 0.702 0.564
Valid 0.649 0.589
Test 0.904 0.744
All 0.737 0.614

Table 4: Mean absolut error per pattern for di�erent data sets and models (5MG)

1. Parameters for NN-A (6-5-1): �=0.9, epochs=250,000

2. Parameters for NN-B (6-9-1): �=0.9, epochs=250,000

Table 4 gives on overview of all 5MG experiments. Again we see that the EBGVAP

model is superior to the UNIVAP model but both neural networks perform better than

the best physical model. Network A has only 55 % of the free parameters of the models

UNIVAP and EBGVAP but gives slightly better results, wheras network B with nearly the

same number of parameters is signi�cantly better. With the increased problem size the

simultaneously adaption method of parameters loses even more ground compared to the

sequential method. The results concering the physical models show the need of decreasing

the dimension of the variable space. It is obvious, that an simultaneous optimization of

75 parameters in all did not lead to satisfying results. To split the optimization procedure

of all 75 parameters into several sequential optimizations by using already �tted constant

parameters lead to the best results which could be seen in the �gures 10 and 11.

Figure 8 shows the errors of the network A on all data sets. The errors are sorted by size

and bars depict the target, whereas the dots are the networks predicted values. Except

for the critical regions close to �Hv(Tcr) = 0 J/mol, the network comes very close to the

desired values.
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Figure 8: NN errors on training, validation and test set (5MG)

In �gures 9 we again compare all models on the enthalpy prediction for ethane.
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Figure 9: 5MG - Performance on ethane

When we take a closer look at the performance of the sequential and simulataneous adap-

tion of the physical model (�gures 10 and 11), we clearly see that the sequential method

outperforms the other on both problem sizes. The superiority of the sequential �tting

procedure can be explained by the negative inuence of increasing numbers of parameters

for the optimization process. The dimension of 27 simultaneously �tted parameters in all

makes the adaption of the strategic variables used by (encapsulated) evolution strategies

more di�cult in contrast to sequential �tting procedures, which result in smaller dimen-

sions. With the increased problem size from 3MG to 5MG the simultaneous adaption

methods is 2-3 times worse than the sequential one and the generalisation performance

is even worse. The NN instead is not sensitive to an increase in the number of free

parameters.

4 Discussion

The most important result of this investigation is the good ability to correlate as well as to

predict the enthalpy of vaporization with neural and physical methods. Neural networks

with simple Backpropagation training are as good as the physical based group contribu-

tion methods UNIVAP and EBGVAP and especially at critical temperatures even slightly

better, but their computational e�ort is much lower. Precitions by using Neural networks

however are often characterized by points of discontinuity over the thermodynamic sig-

ni�cant temperature range, which is shown in the �gures 6,7 and 9. These points are not

thermodynamically interpretable, so that a prediction by Neural Networks should only

be done carefully and should only be used partly over the whole temperature range.

The results concerning the sequential versus simultaneous parameter optimization of the

3MG and the 5MG data sets show the need of a relative relative small dimension of variable

space by carrying out a sequential optimization, where thermodynamic information is
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Figure 10: Physical models: sequential vs. simultaneous (3MG)
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included as much as possible. Optimization of interaction parameters by using already

�tted constant parameters could lead to incompatibilties during the �tting procedure

[KFUS99] but results obviously in better determinedmean absolute errors, which is shown

in the �gures 10 and 11.

The comparison of the results for UNIVAP and EBGVAP shows the inuence of the

structure of the model itself. Further investigations could use evolutionary algorithms to

optimize the structure of the models with regard to the temperature dependence. For the

neural networks it can be stated that the use of surface fractions of functional groups as

descriptors for a neural network leads to good results for both correlation and prediction.

The big advantage of this new procedure is, that the molecules can easily be divided

into functional groups, which makes it easy to use in engineering applications and allows

the direct comparison of neural networks and physical models, due to the same input

information. The investigations concerning the architecture of the neural networks show,

that a simple network structure is su�cient and a more complicated network does not give

better results. In this context evolution strategies as training algorithms and combinations

of ES with backpropagation failed to deliver useful models in almost all experiments.

From a thermodynamic point of view, it is interesting that a simple method like a neural

network can give similar results in comparison with much more complicated physical

motivated models. If a physical model gives results with a quality less than a neural model,

the physical model should be improved. However, in chemical engineering there are many

thermophysical properties, which are usually not described by physical methods, but by

incrementalmethods. These methods, for example, for critical data, normal boiling points

and so on, could be replaced by neural networks. However, these results are �rst steps

in developping e�cient network structures for our purpose and especially investigations

with more functional groups will give a better comparison between physical models and

neural networks.
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