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ABSTRACT

Uninitiated may find it strange that artificial evolu-
tion resides among a class of problem solving methods
belonging to a field named computational intelligence.
Some people still believe that nature’s trial-and-error
way to adapt subsystems to their environment is a
prodigal game at dice that has led to admirable results
only due to vast resources of time and space. A rather
simple gedankenexperiment, however, reveals that all
10%° most elementary particles in the universe together
with 106 tiniest time steps since the begin of time can-
not explain the development of even simplest bacterial
genomes by pure random sampling. Organic evolution
must have found a more efficient way to develop clever
individuals and manage complex systems. Since about
forty years now, a couple of scientists have tried to
mimic this process, and they have learned to exploit
some tricks of life for solving an amazing variety of de-
sign and management tasks. This paper tries to give
an overview of some recent applications as well as a
summary of what we know about the general behavior
of evolutionary algorithms.

1 COMPUTATIONAL INTELLIGENCE

The term Computational Intelligence (CI), as coined
by Bezdek in [1], basically subsumes three approaches
to make use of natural problem solving procedures:

o Artificial Neural Networks (NN},
e Fuzzy Logic (FL), and
e Evolutionary Algorithms (EA).

Whereas the two former approaches are centered on
imitating processes within individual brains, the latter
makes use of the collective behavior of populations.
The common characteristics are thought to be:

Adaptivity,

Fault tolerance,

Inherent parallelism,

Optimal balance between processing speed and ac-
curacy.

In contrast to classical Artificial Intelligence (Al)
methods, CI incorporates subsymbolic knowledge ag-
gregation and information processing. Another fea-
ture of CI techniques is their mutual complementarity,
which has already led to a couple of hybrid systems.
In the following, the focus will be set on EA, mainly.

2 EVOLUTIONARY COMPUTATION

Since long ago, attempts have been made to model
evolutionary processes. Among the time-continuous
models the Fisher-Eigen approach [see 2] may be the
best known one. Time-discrete models became popular
with the first digital computers on campuses. Among
them are three, that were devised independently of
each other at different places and are still in use in
a more or less modified manner:

e Evolutionary Programming (EP),

o Genetic Algorithms (GA), and
e Evolution Strategies (ES).

Genetic Programming (GP) is a more recent offspring
of GA, especially devised to evolve computer programs.
A history of those early days of evolutionary algorithms
may be found in the Handbook of Evolutionary Com-
putation (EC) [3], an annotated collection of early pa-
pers in the field in D. Fogel’s Evolutionary Computa-
tion — The Fossil Record [4]. Different motives are at
work behind mimicking evolutionary mechanisms. One
of them has been the exploration of life’s mechanisms
for a better understanding of natural phenomena, an
other the exploitation of the ability of such processes
to solve adaptation and optimization problems even if
traditional methods fail.

Though the basic ideas of EC were originated in
the late Fifties and early Sixties of this century, broad
acceptance and use for practical applications cannot be
reported before the mid-Eighties. According to Alan-
der’s [5] amazing annotated bibliography, several hun-
dreds of articles are published now annually, and there
is hardly any field of engineering and management,
where the algorithms have not yet been applied.

For a collection of management and business exam-
ples see Biethahn and Nissen [6]; other examples are
more or less scattered in the proceedings of the major
conference series:

o International Conference on Genetic Algorithms
(ICGA, since 1985, biennial),

e Foundations of Genetic Algorithms (FOGA, since
1990, biennial),

e Parallel Problem Solving from Nature (PPSN, since
1990, biennial),

e Annual Conference on Evolutionary Programming
(EP, since 1992),

e IEEE International Conference on Evolutionary
Computation (ICEC, since 1994, annually),



o Genetic Programming Conference (GP, since 1996,
annually).

and in the journals of the field:

e Evolutionary Computation (The MIT Press, since
1993),

e IEEE Transactions on Evolutionary Computation
(since 1997),

e Evolutionary Optimization (E-journal, since 1998),

e Genetic Programming and Evolvable Hardware
(Kluwer Academic Press, forthcoming).

There are at least twenty other regularly scheduled
conferences embracing the topic EA/EC as well as
more and more journals editing special issues on vari-
ous aspects from that scope.

3 MAIN INGREDIENTS OF
EVOLUTIONARY ALGORITHMS

This is not the place to give a formal description of any
of the many incarnations of EA. The reader may get
such information from numerous books, especially the
Handbook of EC [7], already mentioned above. Brief
overviews may be found in [8,9,10]. However, the main
ingredients of all basic algorithms will need some com-
ments in order to refer to them in the following sec-
tions. Though not all EA have been devised for serving
to solve optimization tasks, this very common kind of
application will be assumed here to explain algorithmic
features.

Population
In contrast to classical optimization procedures, EA
operate with several instead of just one search points
in the space of the decision variables. Each search
point is called individual and the set of those existing
at a given time population. The objective function to
be maximized or minimized is called fitness function,
though this 1s not correct in biological terms.

Representation
Canonical GA use a binary representation of the vari-
ables characterizing an individual. Except for Boolean
functions describing the relationship between the bi-
nary genotype and the individual’s fitness, a mapping
of the bitstrings onto the set of decision variables (the
phenotype) is required. So-called Hamming cliffs exist,
even if the Gray code is used, if more than one bit is
flipped at a time within the bits encoding one variable.

The earliest ES operated with equidistant discrete
(integer) variables describing experimentally tested de-
vices like slender bodies in a flow. Despite of that, ES
are better known in conjunction with real-coded vari-
ables, since most of the theoretical results have been
derived for this domain. Counterexamples are Rechen-
berg’s [11] butterfly mimicry simulations, Rudolph’s
[12] investigations of mutation processes for integer
variables, computer experiments with binary variables
and multicellular individuals [13], and even variable-
length genomes already used in 1968 [14]. Likewise

early, the individuals of ES were represented as a set
of two vectors each, one vector for the object vari-
ables, the other for the most important internal strat-
eqy parameters. In the simplest case, just one common
standard deviation, encoding the mean step size of all
Gaussian mutations, was used. For a more sophisti-
cated version, see [15].

Originally, EP used finite state automata as indi-
viduals, but recently ES-like representations have be-
come common practice. In GP, one typical representa-
tion is a tree of S-expressions, and variable length 1s a
must. From the application point of view, more often
than not, mixed representations are necessary. Some
examples will be given below.

Variation
In nature we distinguish between mutation and recom-
bination, the latter kind of variation being connected
with sexual inheritance. EP does not make use of re-
combination, because species are thought of as evolv-
ing units. GA (and GP) emphasize crossover of two
genomes as main or only genetic operator, used with a
probability of about 60%. Bit flipping as mutation op-
erator has been introduced mainly to avoid the prema-
ture loss of diversity at single positions of the evolving
unit, the genome. A typical mutation rate is 0.1%. In
general, both probabilities are fixed over one run of a
GA. EP mutations will not be handled explicitly, be-
cause they were of very special type for varying finite
state automata long ago, and they are very similar to
ES mutations now.

Mutation and recombination, both at 100% rates,
are common practice in ES - except for the earliest ver-
sion with one parent and one descendant, used in ex-
perimental optimization without computer. Since the-
oretical results for mutations have been found earlier
(and easier), the false impression has been circulated
that recombination is considered less important within
ES. The contrary is true. Recombination, especially in-
termediary recombination of the internal strategy pa-
rameters, 1s essential for achieving high convergence
rates as well as auto-adaptation of the strategy pa-
rameters (like variances and covariances used for con-
trolling the mutation probabilities or probability den-
sities) [16]. Correlated variations may be thought of as
phenotypic changes caused by the corresponding set of
parameters that form the genotype by a mapping pro-
cess in the epigenetic apparatus. The evolving unit,
thus, is the individual or cell (most EA individuals are
not yet multicellular), a point of view shared by many
biologists.

Generation transition and selection
Most EA incarnations are using a rather simple scheme
for the generation transition. They start with a set of
let us say u parents, apply their variation operator(s)
as often as necessary to produce A offspring, evaluate
all individuals according to the given fitness (objec-
tive) function, and apply a selection operator to de-
cide upon which genomes, individuals, or species will



become parents during the next generation. A closer
look, however, reveals some interesting differences in
detail. One of them concerns the number of offspring
per parent within a generation, another the maximum
life span of individuals, and a third the mating fre-
quency.

Only ES work with a birth surplus, i.e. A > g, all
other EA not. The number of descendants may even go
down to g = 1 for all EA including ES, but only in case
of elitist selection, which means that parents survive if
there are not enough offspring that are at least equal
in terms of their fitness values. Thus, elitist selection
in principle allows infinite life span for individuals.

A modern EP version uses a set of tournaments
among a random subset of all old and new species,
and those species that gain highest scores will enter the
next generation. Canonical GA are based on propor-
tional non-elitist selection, a form that is out of prac-
tice, but still plays a role in theory. All offspring are
given a chance to mate (different partners, in general),
but this chance i1s proportional to their share of the
sum of all fitness values within the current population.
An alternative exists by just ranking the offspring, but
tournament selection has become the most frequently
used form of selection within GA, nowadays.

Contemporary ES [15] use a life span delimiter
within the genome, so that the older non-elitist (y, A)
version forms one extreme with maximum life span of
one generation, and the older elitist (1 + A) version
resembles the other extreme with infinite maximum(!)
life span. The life span is shorter, of course, if better
offspring appear. Among all offspring plus those par-
ents whose life span has not yet expired, a truncation
selection takes place, so that only the p best individ-
uals reach the next reproduction cycle. The mating
probability does not depend on fitness or age.

Especially the selection operators as mentioned
above model quite different natural phenomena. One
may resume that

e proportional and ranking selection model what has
been called sexual choice;

e tournament selection models competition for sur-
vival;

e truncation selection models environmental testing.

A completely different, non-generational, scheme of an
EA has been devised recently for multi-criteria as well
as dynamic optimization. It is based on a predator-
prey model and spatially distributed individuals, and
moreover, 1t no longer needs any synchronization of
birth and death processes [17]. The reader must be
referred to the literature for further details.

4 ONE OLD AND SOME RECENT
APPLICATIONS

Just to demonstrate the versatility of an evolutionary
approach to design and management challenges given
from real-world applications, a few examples will be

mentioned, referenced, and briefly commented subse-
quently:

e The experimental design of a Laval-nozzle for a one-
component two-phase supersonic flashing flow;

e The management of nuclear reactor refueling pro-
cesses;

e The design of chemical processing plants;

e The management of energy supply systems.

Nozzle length and shape optimization
Long ago, when three-dimensional supersonic flows
with turbulent wall friction and non-equilibrium phase
transitions could not yet be simulated on a computer,
the question was posed, how to shape the contour of
a flashing nozzle in order to maximize the efficiency
of transforming the thermal energy at a nozzle entry
into kinetic energy at its exit. Such task was solved
with a simple (1 + 1) ES using binomially distributed
mutations and decreasing variance during two weeks of
experimenting with hot water at the power station of
the Technical University of Berlin [14].

The nozzle was formed by conically bored brass seg-
ments of 1 cm width that could be assembled to form
an inner 3D contour with diameters varying from 6
mm at the throat to a maximum of 36 mm in steps
of 2 mm. With no more than 300 of such segments it
would have been possible to set up 1030 different noz-
zles with same diameters at adjacent ends of the rings.
Whether or not the globally optimal shape was finally
found, the result was better than expected and far bet-
ter than any nozzle contour known before. Just 300 ex-
periments had been sufficient to do the job. However,
some more time and effort was necessary to under-
stand why the result was so good despite of the rather
strange contour found (see http://LS11-www.cs.uni-
dortmund.de/people/kursawe/Demos/Duese/duese
GIFE.html).

Since the proper length of the nozzle was not known
in advance, two additional variables were added to the
list of the contour diameters: the numbers of segments
between entrance and throat and between throat and
nozzle end. By imitating gene duplication and gene
deletion, both the convergent as well as the divergent
parts became variable in length, the list of diameters
thus shorter or or longer. Without this trick no really
good result could have been achieved, because the best
nozzle turned out to be much longer than expected.

Fuel rod management for nuclear reactors
About once annually, the fuel assemblies of a nuclear
pressurized water reactor have to be rearranged. Some
of them are replaced by new ones, others have to be
carried into new positions and/or just to be given a new
orientation. This operation includes the change of fuel
rods between the core and a stock of used but still us-
able assemblies. The corresponding optimization prob-
lem is a combinatorial one, and the computing time to
simulate one year of operation are substantial. On the
one hand, experts already have got a lot of experience,
though no proven theory, how to do their job; on the



other hand, any slight improvement would save a lot of
money. In [18] the task is described in more detail. At
first, one was happy to find solutions from scratch and
automatically by means of a modified EA that were
nearly as good as those found by experts. Finally, by
incorporating some clever heuristics, based on physical
and mathematical analyses, into the variation opera-
tors, even better than previously known results could
be obtained.

Synthesis of heat exchanger networks
Modern chemical plants comprise dozens to hundreds
of different process units with interconnecting streams
of fluids at different temperatures. Heat exchangers
serve as means to reduce production cost by transfer-
ring heat from flows to be cooled to those that need
additional heat. Other devices are flow splitters and
mixers. A cost optimal design of a complete heat ex-
changer network is a great challenge for an optimiza-
tion algorithm due to mixed type variables (real, inte-
ger, otherwise discrete) and a variable number of de-
vices and their design variables.

Specialized simulation tools are available today, but
they do not support the iterative amelioration of pa-
rameters automatically. This task has to be done by
the design engineer, and rather often a handful of sim-
ulation experiments with selection of the best one is
called optimization. Devising an EA for solving such
kind of problems has been done recently [19].

Most important in this case has been the choice
of the proper representation and the design of corre-
sponding genetic operators. Only a graph representa-
tion turned out to be manageable for larger arrays of
heat exchangers, heaters, and coolers, because a matrix
representation, the first attempt, exploded quadrati-
cally with the number of both hot and cold flows. The
simulation alone already being quite time consuming,
the EA was devised to make use of a cluster of worksta-
tions in parallel. A (244+1) ES outperformed all other
variants with respect to the convergence velocity, but
a (128,768) linear-neighborhood ES [20] was more re-
liable while still preserving reasonable time efficiency.

Power station network management
To balance electricity supply and demand within conti-
nentally interconnected networks requires anticipative
control of a set of electricity producing units. Kiendl
[21] since long makes use of fuzzy rule bases to predict
the load and to control the power plants. His Fuzzy-
ROSA toolkit deals with positive as well as negative
rules by means of hyperfuzzification and hyperdefuzzi-
fication, the rules not being extracted from the experts
via classical knowledge acquisition, but by evolving the
rules in a data-driven way, the data being gathered
from observing the experts at work. An ES is used to
select the best set of fuzzy rules, while the internal pa-
rameters of the ES are controlled during the search for
an optimum by means of a fuzzy controller. This type
of hand-in-hand cooperation of different CIl-methods
may become more and more typical for successful hy-

brid systems in the future. Combining NN with EA has
been reported several times; one recent example may
be found in [22], the goal being to predict the thermo-
dynamic properties of new chemical compounds from
data of their constituents only, that is without experi-
ments.

What is missing to a great extent, are theory-based
rules for devising specialized evolutionary algorithms.
However, some more insight into their behavior has
been found during the last years.

5 THEORETICAL RESULTS

Last, not least, a few comments and hints should be
given with respect to theoretical results concerning
the convergence, efficiency, and reliability of evolution-
ary algorithms. Here, we mostly rely upon some re-
cent results of the Collaborative Research Centre (Son-
derforschungsbereich) 531 for The Design and Man-
agement of Complex Technological Processes and Sys-
tems by Means of Computational Intelligence Meth-
ods, sponsored by the Deutsche Forschungsgemein-
schaft (DFQG).

Many GA users still rely upon Holland’s schema
theorem [23] and the building block hypothesis. This
schema theorem, saying that above average bitstring
schemata spread exponentially over time within a pop-
ulation under proportional selection and not too high
mutation as well as crossover probabilities, has been
revised recently, i.e., more than twenty years after its
creation, by Menke [24]. The building block hypothe-
sis, saying that crossover lives from putting together
parts of the genome that have selection advantages
themselves, holds for linear and other separable fitness
functions, but not in general. Salomon’s investigations
[25] demonstrate that using simple GA on quadratic
functions may need in the order of n™ fitness samples
if m out of n bits must be flipped simultaneously to
achieve any further progress.

Beyer’s analyses [26] suggest a different under-
standing of the benefit of recombination (in ES), called
genetic repair. Investigations of the acceleration by
global intermediary as well as discrete recombination
hint to a gain factor proportional to the population
size (p) under certain conditions like parallel compu-
tation. Using Cauchy probability density distributions
instead of Gaussian ones has sometimes been thought
of as being beneficial. Rudolph [27] has shown that
this 1s not true. On the contrary, it may lead to a sub-
stantial decrease of convergence velocities, if one does
not make use of a spherically symmetric n-dimensional
distribution.

Generally, convergence rates of EA can be predicted
only for simple fitness functions and simple incarna-
tions of the algorithms. One of the best investigated
fitness functions always has been the so-called hyper-
sphere model, a simple quadratic form. Bick [28],

Beyer [29], and Rudolph [30] had already pushed for-



ward the front of insight into ES and other EA during
the past years, including preliminary investigations of
the acceleration by global intermediary as well as dis-
crete recombination [26], self-adaptation of mutation
strengths [31] and the influence of noise [32]. More
recently, Oyman [33] has found interesting results for
other fitness landscapes, so-called ridge functions. The
(1 + 1) ES selection scheme used with otherwise GA-
typical fitness landscapes has led to exact results for
two complete function classes [34,35], i.e. linear and
unimodal Boolean functions. The same authors have
also given a first proof of the effort reducing effect of
crossover under similar conditions [36]. For a special
function, the savings of function evaluations are super-
polynomial. The discouraging no-free-lunch theorem
of Wolpert and Macready [37] has been replaced by
them by a free appetizer theorem [38], thus encour-
aging the search for special algorithms that perform
better than others on certain classes of optimization
problems. First theoretical results for the predator-
prey approach to find, within one run of an EA, the
whole Pareto set of non-dominated solutions of a multi-
ple criteria optimization problem have been presented
by Rudolph [39].

For keeping pace with the ongoing research, it
might be worthwhile to have an eye on the report
series of the above mentioned SFB 531 at the Uni-
versity of Dortmund (see http://stbClLinformatik.uni-
dortmund.de/reiheci.html).

6 CONCLUSION

Nobody should forget the good old linear and non-
linear optimization procedures like conjugate gradient
and quasi Newton methods. If they work, they can-
not be beaten by evolutionary algorithms. The latter
prove to be helpful in many cases where the former
fail. But they cannot solve NP hard or NP complete
problems in polynomial time. The curse of dimensions
is valid for them, as well. Under simplest conditions
their average rate of convergence is inversely propor-
tionally to the number n of degrees of freedom of the
optimization problem. Distances in space growing at
least with the square root of n and the effort to evalu-
ate objective functions at least proportional to n, no-
body should wonder, that the time complexity often
increases cubically, if not worse.

But, EA can make better use of parallel processing
environments, may they be parallel computers or clus-
ters of workstations - due to their inherent parallelism.
With proper hard- and software tools, linear speedup
can be maintained for a certain range of processors
involved in the search.

What remains to be said here, is that also EA
underlie the tradeoff between robustness and conver-
gence velocity. If one implies incarnations that make
them too greedy, they may lose the ability to approx-
imate better solutions or even diverge (e.g. non-elitist

versions that are otherwise better suited for the self-
adaptation of internal parameters). On the other hand,
EA concepts present a rather flexible frame that can
quickly be adapted to different situations by a skill-
ful user. Their attractivity stems from the fact that
this often is less time consuming than looking for a
specialized algorithm, which could reduce the compu-
tational effort by an order of magnitude, but would
require months to be developed.
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