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Abstract

The takeover time is the expected number of it-
erations of some selection method until a popu-
lation consists entirely of copies of the best in-
dividual under the assumption that only one best
individual is contained in the initial population.
This quantity is often used to assess the behav-
ior of selection methods in evolutionary algo-
rithms. Here, takeover times and probabilities are
analytically determined for some popular non-
generational selection rules. Moreover, a novel
classification number that aggregates additional
information about the selection method is pro-
posed.

1 INTRODUCTION

The notion of thetakeover time of selection methods used
in evolutionary algorithms was introduced by Goldberg and
Deb [1]. Suppose that a finite population of sizen consists
of a single best individual andn� 1 worse ones. The take-
over time of some selection method is the expected number
of iterations of the selection method until the entire popu-
lation consists of copies of the best individual. Evidently,
this definition of the takeover time becomes meaningless if
all best individuals may get extinct with positive probabil-
ity. In this case one could calculate the probability that a
complete takeover takes place at iterationk � 0. Since the
determination of a symbolic expression of these probabili-
ties is a complicated task, Chakraborty et al. [2] have calcu-
lated them numerically via a Markovian base model. Smith
and Vavak [3] did the same in case of non-generational se-
lection rules. Here, it is shown that the probabilistic mod-
els of non-generational selection rules are (more or less)
simple random walks that are amenable of a theoretical
treatment. For this purpose some basic results regarding
Markov chains and random walks are presented in Sec-

tion 2. These results are then used in Section 3 to cal-
culate the takeover time for some non-generational selec-
tion rules for which extinction of the best individual is pre-
cluded. Section 4 is devoted to those selection methods
for which extinction may happen with positive probabil-
ity. In these cases the probability of the event of complete
takeover (called thetakeover probability) is determined. A
summary of the results and their implications for practical
use are given in Section 5.

2 MATHEMATICAL PRELIMINARIES

2.1 MARKOV CHAINS

If S is a finite set andfNt : t 2 IN0g anS-valued random
sequence with the property

PfNt+1 = j jNt = i; Nt�1 = it�1; : : : ; N0 = i0g =

PfNt+1 = j jNt = ig = pij

for all t � 0 and for all pairs(i; j) 2 S � S thenfNt :

t 2 IN0g is called a homogeneous finite Markov chain with
state spaceS. SinceS is finite the transition probabilities
can be gathered in the transition matrixP = (pij)i;j2S.

The row vector�(t) with �
(t)
i = PfNt = i g denotes the

distribution of the Markov chain at stept � 0. Since

�
(t) = �

(t�1)
P = �

(0)
P
t

for all t � 1, a homogeneous finite Markov chain is com-
pletely specified by its initial distribution� (0) and its tran-
sition matrixP .

Since the behavior of the Markov chain depends on the
structure of matrixP the presentation is now restricted
to transition matrices that will be encountered here. Let



S = f1; 2; : : :; ng and

P =

0
BBBBBBB@

r1 q1 0 � � � 0

0 r2 q2 0 � � � 0
...

. . .
. . .

. . .
. . .

...
0 � � � 0 rn�2 qn�2 0

0 � � � 0 rn�1 qn�1

0 � � � 0 1

1
CCCCCCCA

with ri; qi > 0 andri + qi = 1 for i = 1; : : : ; n � 1.
In this case staten is termed absorbing whereas all other
states are called transient. LetT = minft � 0 : Nt = ng.
ThenE[T jN0 = i ] is the expected absorption time and
ain = PfNT = n jN0 = ig the absorption probability
for the Markov chain starting in statei 2 S. Since there
is only one absorbing state one hasain = 1 for eachi 2
S. The expected absorption time can be easily determined
here. Suppose that the Markov chain starts in statei <

n. Then it either stays in statei or moves to statei + 1.
As soon as statei + 1 is reached, the Markov chain will
either stay in statei + 1 or move toi + 2, and so forth
until staten is reached. LetTi;i+1 be the random number
of steps until a transition fromi to i + 1 happens. Since
Ti;i+1 is a geometrically distributed random variable with
E[Ti;i+1 ] = 1=qi = 1=pi;i+1 one obtains

E[T jN0 = k ] =

n�1X
i=k

E[Ti;i+1 ] =
n�1X
i=k

1

pi;i+1
: (1)

Now consider the general random walk with absorbing
boundaries which is a Markov chain with state spaceS =

f0; 1; : : :; ng and transition matrix

P =

0
BBBBBBBBB@

1 0 0 � � � 0

p1 r1 q1 0 � � � 0

0 p2 r2 q2 0 � � � 0
...

. . .
. . .

. . .
. . .

. . .
...

0 � � � 0 pn�2 rn�2 qn�2 0

0 � � � 0 pn�1 rn�1 qn�1

0 � � � 0 0 1

1
CCCCCCCCCA

with pi; qi > 0, ri � 0 andpi + ri + qi = 1 for all i =
1; : : : ; n� 1. In this case the states0 andn are absorbing.
The expected absorption time isE[T jN0 = k ] with T =

minft � 0 : Nt = 0_Nt = ng and it can be determined as
follows [4]. Let matrixQ result from matrixP by deleting
its first and last row as well as column. IfC is the inverse
of matrixI �Q with unit matrixI, thenE[T jN0 = k ] =

ck1 + ck2 + � � � + ck;n�1 for 1 � k < n. Each entry
cij yields the expected number of occurrences of statej

if the Markov chain has started in statei. Therefore, the
absorption probabilities are

akn = PfNT = n jN0 = kg = ck;n�1 � qn�1 (2)

andak0 = 1 � akn. For some special cases the absorp-
tion probabilities are well known (see e.g. [4], p. 108). If
(pi; ri; qi) = (p; 0; q) for all i = 1; : : : ; n� 1 then

akn =
r
n
� r

n�k

rn � 1
(3)

wherer = q=p 6= 1. If r = 1 thenakn = k=n. In the
general case, however, the derivation of a closed form ex-
pression may be tedious. The first step towards such an
expression requires the determination ofck;n�1. Thus, one
only needs the value of a single entry ofC = (I � Q)�1

which may be obtained via the adjugate of matrix(I �Q).
This avenue was followed in Rudolph [5] who determined
an expression for each entry of matrixC. Here, only the
value for c1;n�1 is of interest since we need the absorp-
tion probabilitya1n for the random walk starting at state1.
Owing to equation (2) and the result in [5] one gets

a1n =

n�1Y
k=1

qk

n�1X
k=0

 
n�k�1Y
u=1

pu

! 
n�1Y

v=n�k

qv

! : (4)

This equation may be used to prove another useful result.

Lemma 1 Let a1n = 1 � a10 2 (0; 1) be the absorp-
tion probability of the general random walk with absorb-
ing boundaries and transition probabilitiesp i; qi; ri > 0.
The absorption probability~a1n of the Markov chain with
transition probabilities

~pi =
pi

pi + qi

; ~ri = 0; ~qi =
qi

pi + qi

(5)

is ~a1n = a1n.
Proof: Simply insert the transition probabilities of equa-
tion (5) into equation (4) and delete the factor

1
. n�1Y

k=1

(pk + qk)

in numerator and denominator.

Thus, if the transition probabilities~p i; ~qi in equation (5)
are independent from the statei, then equation (3) yields
the absorption probability for the random walk with state-
dependent transition probabilities.

2.2 SPECIAL FUNCTIONS AND NUMBERS

2.2.1 Gamma Function

In case of positive integer arguments the Gamma function
�(�) obeys the relationships

n�(n) = �(n+ 1) = n!

For later purposes the following result is needed:
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Lemma 2 Forn 2 IN,

n�1X
k=0

�(n+ k + 1)

�(k + 1)
=

�(2n+ 1)

(n + 1)�(n)
:

Proof: Notice that

n�1X
k=0

(n + k + 1)!

k!
= (n+ 1)

n�1X
k=0

(n+ k)!

k!
+

n�1X
k=0

k

(n+ k)!

k!
:

Since

n�1X
k=0

k
(n + k)!

k!
=

n�1X
k=1

k
(n+ k)!

k!

n�1X
k=1

(n + k)!

(k � 1)!
=

n�2X
k=0

(n+ k + 1)!

k!

insertion into the first equation and rearrangement leads to
the desired result.

2.2.2 Beta Function

The Beta functionB(�; �) may be defined by the identity

B(n;m) =
�(n) �(m)

�(n +m)
:

2.2.3 Harmonic Numbers

Thenth harmonic number is defined by

Hn =

nX
i=1

1

i

and may be bracketed as follows:

log(n) < Hn < log(n) + 1

for n � 2.

3 TAKEOVER TIME

Let n < 1 be the population size andNt the number of
copies of the best individual at iterationt � 0. SetN0 = 1

and suppose that the selection method precludes the ex-
tinction of the best individuals. In this case the associated
Markov chain has only one absorbing state and thetakeover
time of the selection method is just the expected absorption
time of the Markov chain.

3.1 BINARY TOURNAMENT SELECTION

At each iteration of the non-generational binary tournament
selection method two individuals are chosen at random and

the worse of this pair is replaced by the better one. If both
individuals are equally bad or good the number of copies of
the best individual is not changed. Only if a copy of the best
individual and a copy of a worse individual are drawn then
Nt is incremented. This event happens with probability

pi;i+1 = 1�

�
i

n

�2

�

�
1�

i

n

�2
= 2

i

n

�
1�

i

n

�

where i denotes the instantiationNt = i. Sincepii =

1 � pi;i+1, pnn = 1 and all other transition probabilities
are zero, the takeover time of this selection method can be
obtained via equation (1) withk = 1. This leads to

E[T ] =
n

2

n�1X
i=1

n

i (n � i)
=

n

2

n�1X
i=1

�
1

i
+

1

n� i

�

= n

n�1X
i=1

1

i
= nHn�1

which is bounded by

n log(n� 1) < E[T ] < n (log(n� 1) + 1) :

3.2 TERNARY TOURNAMENT SELECTION

In case of ternary tournament selection three individuals
are drawn at random and the worst of this sample is re-
placed by the best of the sample. Therefore, the transition
probabilities are

pi;i+1 = 1�

�
i

n

�3

�

�
1�

i

n

�3
= 3

i

n

�
1�

i

n

�

pii = 1�pi;i+1 for i = 1; : : : ; n�1 andpnn = 1. Insertion
in equation (1) yields

E[T ] =
n

3

n�1X
i=1

n

i (n � i)
=

n

3

n�1X
i=1

�
1

i
+

1

n� i

�

=
2

3
n

n�1X
i=1

1

i
=

2

3
nHn�1

which is bounded by

2

3
n log(n� 1) < E[T ] <

2

3
n (log(n � 1) + 1) :

3.3 QUATERNARY TOURNAMENT SELECTION

In case of quaternary tournament selection four individu-
als are drawn at random and the worst of this sample is
replaced by the best of the sample. The transition probabil-
ities are

pi;i+1 = 1�

�
i

n

�4
�

�
1�

i

n

�4

= 2
i

n

�
1�

i

n

� �
2�

i

n

�
1�

i

n

��
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pii = 1 � pi;i+1 for i = 1; : : : ; n � 1 andpnn = 1. As a
consequence,

E[T ] =
1

2

n�1X
i=1

n
4

i (n� i) [ 2n2 � i (n� i)]

=
n

4

n�1X
i=1

�
1

i
+

1

n� i

�
+

1

4

n�1X
i=1

n
2

2n2 � i (n� i)

=
n

2
Hn�1 +

1

4

n�1X
i=1

n
2

2n2 � i (n � i)
: (6)

Since the fraction in the sum of equation (6) is always be-
tween1=2 and4=7 one obtains the bounds

n

2
Hn�1 +

n� 1

8
� E[T ] �

n

2
Hn�1+

n� 1

7

and finally

n

2

�
log(n � 1) +

1

4

�
�

1

8
< E[T ] <

n

2

�
log(n� 1) +

9

7

�
:

3.4 REPLACE WORST SELECTION

This selection method differs from binary tournament se-
lection as follows: Again, two individuals are drawn at ran-
dom. But now the better one of the pair replaces the worst
individual of the entire population. Therefore,N t is incre-
mented if at least one copy of the best individual is drawn.
Since the transition probabilities are

pi;i+1 = 1�

�
1�

i

n

�2

=
i

n

�
2�

i

n

�
;

pii = 1 � pi;i+1 for i = 1; : : : ; n � 1 andpnn = 1, one
obtains

E[T ] = n
2

n�1X
i=1

1

i (2n� i)
=

n

2

n�1X
i=1

�
1

i
+

1

2n� i

�

=
n

2
(Hn�1 +H2n�1 �Hn)

=
n

2

�
H2n�1 �

1

n

�

which is bounded by

n

2

�
log(2n� 1)�

1

n

�
< E[T ] <

n

2
(log(2n� 1) + 1) :

4 TAKEOVER PROBABILITY

If the extinction probability of the best individual is larger
than zero for some selection method, then the concept of

the takeover time is not meaningful because of two absorb-
ing states. The absorption timeT of the associated Markov
chain reflects the following situation: AfterE[T ] iterations
on average the event of complete takeover of the best indi-
vidual has happened with (absorption/takeover) probability
a1n = PfNT = n jN0 = 1g whereas extinction of the
best individual has occurred with (absorption/extinction)
probabilitya10 = 1� a1n.

A first comparison of selection methods witha10 > 0 may
be based on the magnitude of the takeover or extinction
probability, which offers some insight into the reliability of
the selection methods. If the takeover probability can be
controlled by some parameter specified by the user, then
one can compare selection methods with equal takeover
probability by means of their absorption times. Thus, the
first step towards such a comparison requires the determi-
nation of the takeover probability.

4.1 NOISY K-ARY TOURNAMENT SELECTION

Noisy k-ary tournament selection differs from the noise-
free counterpart as follows: Again,k � 2 individuals are
drawn at random and the best as well as worst member of
this sample is identified. But now the worst member re-
places the best one with some replacement error probabil-
ity � 2 (0; 1), whereas the the worst one is replaced by
the best one with probability1 � �. Needless to say, this
selection method looses all copies of the best individuals in
the population with probabilitya 10 > 0. Let

si = 1�

�
i

n

�k

�

�
1�

i

n

�k

be the probability that the sample ofk � 2 individuals con-
tains at least one best as well as one worse individual from a
population withi = 1; : : : ; n�1 copies of the best individ-
ual. Then the transition probabilities arep00 = pnn = 1,
pi;i+1 = si (1 � �), pi;i�1 = si �, andpii = 1 � si for
i = 1; : : : ; n � 1. According to Lemma 1 the absorption
probabilities can be determined by introducing a modified
Markov chain with transition probabilities

qi;i+1 =
pi;i+1

pi;i�1 + pi;i+1
= 1� �

qi;i�1 =
pi;i�1

pi;i�1 + pi;i+1
= �

andqii = 0 for i = 1; : : : ; n� 1. Since the new transition
probabilities are constant, the absorption/takeover proba-
bility can be obtained via equation (3). This leads to

a1n =
r
n
� r

n�1

rn � 1

wherer = (1��)=� 6= 1. If r = 1 thena1n = 1=n. Here,
parameter� may be used to control the takeover probabil-
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ity. If � > 1=2 thenr < 1 anda1n ! 0 exponentially
fast asn ! 1. Therefore, such a choice of� does not
seem reasonable for practical use. If� < 1=2 thenr > 1

anda1n ! (1 � 2�)=(1 � �) monotonically decreasing
asn ! 1. For example, with�n = 1=(n + 1) one gets
a1n � 1� 1=n.

4.2 RANDOM REPLACEMENT SELECTION

This selection methods is a randomized version of “replace
worst selection.” Two individuals are drawn at random
and the better one of the pair replaces a randomly cho-
sen individual from the population. As a consequence, the
transition probabilities of the associated Markov chain are
p00 = pnn = 1, pii = 1� pi;i�1 � pi;i+1 and

pi;i+1 =
i

n

�
2�

i

n

� �
1�

i

n

�

pi;i�1 =

�
1�

i

n

�2
i

n

for i = 1; : : : ; n � 1. Unfortunately, the previously used
method via Lemma 1 does not lead to new transition prob-
abilities that are independent from the statei. Therefore the
more tedious approach via equation (4) has to be followed.
Sincepi = pi;i�1, qi = pi;i+1 and

n�1Y
v=n�k

qv =

n�1Y
v=n�k

v (2n� v) (n� v)

n3

=
�(k + 1)�(n+ k + 1)

n3k+1 �(n � k)
(7)

n�k�1Y
u=1

pu =

n�k�1Y
u=1

u (n� u)2

n3

=
�(n� k) �(n)2

n3 (n�k�1)�(k + 1)2

one obtains
n�1X
k=0

"
n�1Y

v=n�k

qv

#
�

"
n�k�1Y
u=1

pu

#
=

�(n)2

n3n�2

n�1X
k=0

(n+ k)!

k!
=

�(n) �(2n+ 1)

(n+ 1)n3n�2

with the help of Lemma 2. Insertion ofk = n� 1 in equa-
tion (7) leads to

n�1Y
v=1

qv =
�(n) �(2n)

n3n�2

such that

a1n =
�(n) �(2n)

n3n�2

. �(n) �(2n+ 1)

(n + 1)n3n�2

=
(n + 1)�(2n)

�(2n+ 1)
=

n+ 1

2n
:

Thus, the best individual is lost in almost50 % of all runs.
This result reveals that the utility of “random replacement
selection” for practical use is questionable.

4.3 “KILL TOURNAMENT” SELECTION

This selection method proposed in [3] is based on two bi-
nary tournaments: In the first tournament the best individ-
ual is identified. This individual replaces the worst indi-
vidual identified in the second tournament (the “kill tour-
nament”). The transition probabilities arep00 = pnn = 1,

pi;i+1 =
i

n

�
2�

i

n

� "
1�

�
i

n

�2#

pi;i�1 =

�
1�

i

n

�2 �
i

n

�2
andpii = 1� pi;i�1 � pi;i+1 for i = 1; : : : ; n� 1. Again,
the approach via equation (4) must be followed. This yields

n�1Y
v=n�k

qv =

n�1Y
v=n�k

v (2n� v) (n � v) (n + v)

n4

=
�(2n) �(n+ k + 1)�(k + 1)

n4k+1 �(n � k) �(2n� k)
(8)

n�k�1Y
u=1

pu =

n�k�1Y
u=1

u
2 (n� u)2

n4

=
�(n� k)2 �(n)2

n4(n�k�1)�(k + 1)2

and hence

n�1X
k=0

"
n�1Y

v=n�k

qv

#
�

"
n�k�1Y
u=1

pu

#
=

�(2n) �(n)2

n4n�3

n�1X
k=0

�(n+ k + 1)�(n� k)

�(2n� k) �(k + 1)
:

Insertion ofk = n� 1 in equation (8) leads to

n�1Y
v=1

qv =
�(2n)2

n4n�2

such that

1

a1n

= nB(n; n)

n�1X
k=0

�(n+ k + 1)�(n� k)

�(2n� k) �(k + 1)
:

Unfortunately, the sum in the equation above is compli-
cated and the attempt of finding a closed form expression
was unsuccessful. Therefore tight lower and upper bounds
have been developed. Notice that

n�1X
k=0

1

bk

=

n�1X
k=0

bk with bk =
�(2n� k) �(k + 1)

�(n + k + 1)�(n� k)
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andb0 > b1 > : : : > bn�1 = 1=b0 > 0. As a consequence,

b0 + b1 �

n�1X
k=0

bk � b0 + b1 + (n � 2) b2 :

Since

b0 =
1

nB(n; n)
; b1 = b0

n� 1

(2n� 1) (n+ 1)
; and

b2 = b0
n� 2

(2n� 1) (n+ 1) (n + 2)

one immediately obtains

a1n �

b0

b0 + b1 + (n� 2) b2

= 1�
1

n
�

2n2 � 3n+ 2

2n2 + 7n� 2

� 1�
1

n

and

a1n �

b0

b0 + b1

= 1�
n� 1

2 (n2 + n� 1)

� 1�
1

5n

for n � 2.

5 COMPARISON

A comparison of selection methods that is based on take-
over times and probabilities may give some clues regarding
the dynamics and the reliability of the selection methods.
Here, the comparison is set up as follows: All selection
methods that realize (or are adjustable to realize) a specific
takeover probability are put into one group. Since all mem-
bers of a group have the same reliability in preserving the
best solution one may compare the absorption times that
reflect to some extent the speed of loss of diversity within
the population. This set-up leads to three groups here.

1. Takeover probabilitya1n = 1:
k-ary tournament selection, replace worst selection.

2. Takeover probabilitya1n = 1��(1=n):
Kill tournament selection, noisyk-ary tournament se-
lection.

3. Takeover probabilitya1n = (n+ 1)=(2n):
Random replacement selection, noisyk-ary tourna-
ment selection.

Since the takeover probability of noisyk-ary tourna-
ment selection is adjustable by parameter�, this selection
method is member of two groups. The adjustment is done
as follows: For eachn � 2 the takeover probability of
kill tournament selection is calculated exactly as a rational
number. Then a rational number� is chosen such that the
difference between the takeover probability ofk-ary tour-
nament selection (for somek � 2) and the takeover prob-
ability of kill tournament selection is less than10�7. Fi-
nally, the absorption time is determined with infinite pre-
cision (i.e., in IQ) via the formula given in [5]. The same
procedure is used in case of random replacement selection.

Figures 1, 2 and 3 show the expected absorption times of
selection methods contained in group 1, 2 and 3, respec-
tively. The following observations can be made.

Group 1: The takeover time for all members is of order
n log(n). It is clear that(k + 1)-ary tournament selection
leads to quicker absorption thank-ary tournament selection
for k � 2 (this also holds for the noisy counterparts if the
replacement error� is fixed). Replace worst selection is
almost as fast as quaternary tournament selection which in
turn is about as twice as fast as binary tournament selection.

Group 2: Kill tournament selection is almost as fast as
noisy ternary tournament selection. For large population
sizen the absorption times of noisyk-ary tournament se-
lection are approximately equal to the takeover times of
their unperturbed counterparts (since the replacement error
is of order1=n). Therefore, the absorption times are of
ordern log(n).

Group 3: Random replacement selection is almost as fast
as noisy ternary tournament selection. It is clear that the
absorption times obey the asymptotics
(n log(n)), and
numerical investigations lead toO(n log(n) log log(n)).

Thus, the takeover resp. absorption times of all non-
generational selection methods considered here are about
the same order. Since the methods of group 3 loose the
best individual with probability at about1=2 their utility in
practice is questionable. In general, any selection method
that may loose the best individual with some probability
seems questionable. Instead one likes to have a selection
method that preserves the best individual and takes a long
time until complete takeover—this is heuristically justified
by the idea that a slow spread of the best individuals leads
to a slowly decreasing diversity of the population such that
more candidate solutions (different from the best solution
found so far) can be generated and tested until takeover
than in case of a selection method with a shorter takeover
time.

Next it is shown that the takeover time is a poor indicator
for deciding in favor of some selection method under the
scenario above. LetBT =

PT�1
t=0 Nt be the total number

6



Figure 1: Absorption times of selection methods of group 1(a 1n = 1) for population sizesn 2 f2; 3; : : :; 100g.

Figure 2: Absorption times of selection methods of group 1(a 1n = 1��(1=n)) for population sizesn 2 f2; 3; : : : ; 100g.

Figure 3: Absorption times of selection methods of group 1(a 1n = (n+1)=(2n)) for population sizesn 2 f2; 3; : : : ; 100g.

7



of copies of the best individual prior to absorption. Then
� = 1 � E[BT ]=(n � E[T ]) represents the mean fraction
of non-best individuals that were available for the genera-
tion of candidate solutions prior to absorption. SinceE[T ]

is known one only needs to determineE[BT ]. Let Vi be
the number of occurrences of statei = 1; : : : ; n � 1 until
takeover timeT . Then
T�1X
t=0

Nt =

n�1X
i=1

i Vi ) E

"
T�1X
t=0

Nt

#
=

n�1X
i=1

iE[Vi ]

whereE[Vi ] = c1i (see Section 2.1). For all selection
methods of group 1 holdsc1n = E[Ti;i+1 ]. Recall from
equation (1) that

E[T ] =

n�1X
i=1

E[Ti;i+1 ] =
n�1X
i=1

1

pi;i+1
:

Here, we are interested in

E[BT ] =

n�1X
i=1

iE[Ti;i+1 ] =
n�1X
i=1

i

pi;i+1
: (9)

Suppose that the symmetry property

pi;i+1 = pn�i;n�i+1 for i = 1; : : : ; n� 1 (10)

is valid. In this case one obtains
n�1X
i=1

i

pi;i+1
=

n�1X
i=1

n� i

pi;i+1
= n

n�1X
i=1

1

pi;i+1
�

n�1X
i=1

i

pi;i+1

and hence
n�1X
i=1

i

pi;i+1
=

n

2

n�1X
i=1

1

pi;i+1
=

n

2
E[T ] :

Insertion in equation (9) leads toE[BT ] = nE[T ]=2 and
finally to � = 1=2. Sincek-ary tournament selection with

pi;i+1 = 1�

�
i

n

�k

�

�
1�

i

n

�k

fulfills the symmetry condition (10) for everyk � 2, one
may conclude that� = 1=2 regardless of the choice ofk.

In case of replace worst selection one obtainsE[BT ] =

n
2 (H2n�1 �Hn) such that

� = 1� 2
H2n�1 �Hn

H2n�1 � 1=n
� 1�

2 log(2)

log(2n)
! 1

asn ! 1. For example, for population sizesn � 25

one gets� � 70 % in lieu of � = 50 % in case ofk-
ary tournament selection. One is tempted to conclude that
replace worst selection maintains the diversity in the pop-
ulation much better thank-ary tournament selection. But
some caution is advisable here since the term “diversity” is
only vaguely defined in this context. In any case, the clas-
sification number� aggregates more information about the
selection method than the takeover time alone.

6 CONCLUSIONS

The takeover times and probabilities of non-generational
selection rules in evolutionary algorithms can be mod-
eled by simple Markov chains (or random walks) that are
amenable to a theoretical analysis. For all selection meth-
ods considered here the expected absorption times are of
the same order, whereas the takeover probabilities may dif-
fer significantly. Especially the practical utility of random
replacement selection with a takeover probability at about
50 % appears to be questionable. Moreover, it is unclear
which decision in favor or against some selection method
may be made after a comparison of the takeover times.
Therefore a novel classification number has been proposed
which aggregates additional information about the dynam-
ics of a selection method. Although this proposal might be
an improvement, a normative decision procedure in favor
or against some selection method is not in sight unless a
commonly agreed catalog of properties is postulated.
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