
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

On the Choice of the Mutation Probability for the
(1+1) EA

Thomas Jansen Ingo Wegener

No. CI-92/00

Technical Report ISSN 1433-3325 August 2000
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

On the Choice of the Mutation Probability for
the (1+1) EA�

Thomas Jansen and Ingo Wegener

FB 4, LS 2, Univ. Dortmund, 44221 Dortmund, Germany
{jansen, wegener}@ls2.cs.uni-dortmund.de

Abstract. When evolutionary algorithms are used for function opti-
mization, they perform a heuristic search that is influenced by many pa-
rameters. Here, the choice of the mutation probability is investigated. It
is shown for a non-trivial example function that the most recommended
choice for the mutation probability 1/n is by far not optimal, i. e., it leads
to a superpolynomial running time while another choice of the mutation
probability leads to a search algorithm with expected polynomial running
time. Furthermore, a simple evolutionary algorithm with an extremely
simple dynamic mutation probability scheme is suggested to overcome
the difficulty of finding a proper setting for the mutation probability.

1 Introduction

Evolutionary algorithms (EAs) are randomized search heuristics that are often
applied to the task of function optimization. They are influenced by many pa-
rameters. Though EAs are in general assumed to be robust and more or less
insensitive to the setting of the parameters, it is a well-known fact that the
choice of the parameter settings has great impact on the success and efficiency
of the search. We consider optimization by means of EAs and look for parameter
settings that allow an efficient exact optimization of a given objective function
that we consider to be unknown to the algorithm.

We concentrate on maximization of discrete functions and assume that the
objective function is some function f : {0, 1}n → IR. We consider the (1 + 1)
evolutionary algorithm ((1+1) EA). It is a very simple EA using only mutation
and selection. In the next section, we give a formal definition of the (1+1) EA and
discuss known examples that demonstrate that the most recommended choice
for the mutation probability is by far not optimal. These examples are not of
practical relevance, since also the best mutation probability leads to an algorithm
with an expected exponential running time. In Section 3, we present a function
with the following properties. The (1+1) EA with a mutation probability which
is substantially larger or smaller than (log n)/n needs superpolynomial time with
overwhelming probability while mutation probabilities growing as (logn)/n lead
to a (1+1) EA which finds the optimum in an expected polynomial number of
� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
the Collaborative Research Center “Computational Intelligence” (531).

steps and even in a polynomial number of steps with overwhelming probability.
In Section 4, we introduce a variant of the (1+1) EA that employs an extremely
simple dynamic variation scheme for the mutation probability. We prove that
this dynamic EA optimizes the example function efficiently. We finish with some
concluding remarks.

2 The (1+1) EA

As already mentioned we concentrate on the maximization of functions
f : {0, 1}n → IR by the (1+1) EA. This algorithm is often subject to theoret-
ical studies [3, 5, 9, 11]. We present results using the common notions O, Ω, and
Θ, where for two function s, t: IN → IR we say that s(n) = O(t(n)), if there
exist constants n0 ∈ IN and c ∈ IR+, such that for all n ≥ n0 we have that
s(n) ≤ c · t(n) holds. We say that s(n) = Ω(t(n)), if t(n) = O(s(n)). Finally, we
say s(n) = Θ(t(n)) if both, s(n) = O(t(n)) and s(n) = Ω(t(n)) hold.

Algorithm 1 (The (1+1) EA).

1. Choose x ∈ {0, 1}n uniformly at random.
2. Fix p(n) ∈ (0, 1/2].
3. y := x
4. Flip each bit in y independently with probability p(n).
5. If f(y) ≥ f(x), set x := y.
6. Continue at 3.

It is a common experience that simple hill-climbers are often able to find
solutions that are at least comparable to those of more sophisticated evolution-
ary algorithms [8]. Setting p(n) = 1/n implies that during one mutation step on
average one bit flips. Thus, the (1+1) EA may be regarded as a kind of random-
ized hill-climber. In fact, the most recommended fixed choice for the mutation
probability p(n) is 1/n [1, 9]. For linear functions choosing p(n) = Θ(1/n) can
be proven to be optimal [3]. Sometimes it is conjectured that p(n) = Θ(1/n)
may be optimal for all functions.

First of all, we present known examples where the choice p(n) = 1/n for
the mutation probability is much worse than the choice p(n) = 1/2. The choice
p(n) = 1/2 changes the (1+1) EA into a random search. We only consider func-
tions with a unique global maximum. Then the probability of choosing xopt

equals 2−n for each step independently of the history. Hence, the expected run-
ning time equals 2n.

The first example is the well-known “needle in a haystack” function, that
yields the function value 0 for all x ∈ {0, 1}n \ {(1, . . . , 1)} and 1 else. A search
algorithm gets no information until it finds the global optimum by chance. The
mutation probability p(n) = 1/n is worse than p(n) = 1/2, since it increases
the probability to investigate the same strings again and again. Indeed, Garnier,
Kallel, and Schoenauer [5] have shown that the expected running time of the
(1+1) EA with p(n) = 1/n equals 2n/(1− e−1) ≈ 1.582 · 2n and is by a constant
factor larger than the expected running time of random search.

2

The second example is the “trap” function with Trap(x) = OneMax(x) =
x1 + · · · + xn for all x ∈ {0, 1}n \ {(0, . . . , 0)} and Trap((0, . . . , 0)) = n + 1.
Hence, Trap differs from the linear function OneMax only for the all zero
string which is optimal. A search strategy for OneMax should find the all one
string quickly. As long as the all zero string is not found by chance, the (1+1) EA
works on Trap as on OneMax and, therefore, gets hints in the wrong direction.
For this reason, Trap is called a strongly deceptive function. Droste, Jansen,
and Wegener [4] have proved that the expected number of steps of the (1+1) EA
with p(n) = 1/n on Trap is Θ(nn) which is by the exponential factor Θ((n/2)n)
larger than the expected time of random search. Random search is impractical
even for rather small n. Hence, if random search beats an evolutionary algorithm
for some function, both algorithms are too bad for this function. The algorithms
will be stopped in applications before the global optimum is found.

We are looking for examples where the running time of the (1+1) EA can
be drastically reduced to some polynomial number of steps when setting the
mutation probability p(n) to some other value than 1/n. Such an example is
given in the following section.

3 A Non-Trivial Example Function

Here, we introduce an objective function with the following properties. Setting
p(n) = 1/n implies that the (1+1) EA will almost surely need a superpolynomial
number of steps to find a global maximum If p(n) is set to another value, a global
maximum is found within a polynomially bounded number of steps with high
probability. The objective function we discuss combines some ideas that can
partly be identified in other functions that were already subject of theoretical
investigations. The first basic idea is that the need for a large “jump”, i.e.,
the mutation of several bits simultaneously, causes difficulties for standard 1/n-
mutations. This is the key property of Jump used by Jansen and Wegener [7] to
provide an example where crossover is helpful. The second observation is, that
analyzing the behavior of an EA may become substantially easier, if the function
enforces that certain paths are followed almost surely. An example for that are
ridge functions introduced (in a different context and for different reasons) by
Quick, Rayward-Smith, and Smith [10].

For the sake of simplicity, we assume that n = 2k > 32 implying that
n/4 ≥ 2 logn. Otherwise, appropriate rounding leads to substantially the same
definitions and results. Throughout this paper by logn we denote the logarithm
to the base 2, i. e. log2 n. In order to be able to present a well-structured and
understandable definition we partition the search space {0, 1}n into five disjoint
sets, namely

A := {x ∈ {0, 1}n | n/4 < ||x||1 < 3n/4} ,
B := {x ∈ {0, 1}n | ||x||1 = n/4} ,
C :=

{
x ∈ {0, 1}n | ∃i ∈ {0, 1, . . . , (n/4)− 1} : x = 1i0n−i

}

3

D :=

{
x ∈ {0, 1}n | (||x||1 = logn) ∧

(
2 log n∑
i=1

xi = 0

)}
, and

E := {0, 1}n − (A ∪B ∪ C ∪D),

where ||x||1 denotes the number of ones in x and 1i0n−i denotes the string with
i consecutive ones followed by n − i consecutive zeros. Now, we can define the
objective function that serves as our example.

Definition 1. The function PathToJump: {0, 1}n → IR is defined by

PathToJump(x) :=




n− ||x||1 if x ∈ A,

(3/4)n+
n/4∑
i=1

xi if x ∈ B,

2n− i if x ∈ C and x = 1i0n−i,
2n+ 1 if x ∈ D,
min{||x||1, n− ||x||1} if x ∈ E.

All strings in D are globally optimal. In the rest of the paper we use the
notationX ′ < X ′′ (X ′′ has a higher rank thanX ′) to indicate that f(x′) < f(x′′)
for all x′ ∈ X ′ and x′′ ∈ X ′′. The setX ′′ is globally better thanX ′. By definition,
we obtain

E < A < B < C < D.

A typical run of the (1+1) EA whose mutation probability is not too large looks
as follows. We start in A and, therefore, never reach E. The (1+1) EA almost
works like on simple linear functions and has a good chance to reach B. Then it
is unlikely to jump to C ∪D. Hence, improvements are made in B until the best
string 1n/403n/4 is reached there. Here we are close to C and follow the “path”
given by the strings of C to the string 0n. Finally, a jump to D is necessary.
Here we need a mutation probability which is essentially larger than 1/n.

First, we prove that with mutation probability p(n) = 1/n with a probability
close to 1 the (1+1) EA will not find a global optimum within a polynomial
number of steps. In fact, we prove something stronger. We show that if the
mutation probability p(n) substantially differs from logn/n, then the (1+1) EA
needs a superpolynomial number of steps for optimizing PathToJump almost
surely.

Theorem 1. Let α(n) := p(n)·n/ logn. If α(n) → 0 as n → ∞ or α(n) → ∞ as
n → ∞, the probability that the (1+1) EA with mutation probability p(n) needs
a superpolynomial number of steps to find a global optimum of PathToJump
converges to 1.

Proof. By Chernoff’s bounds (Hagerup and Rüb [6]), the probability that the
initial string belongs to A equals 1 − e−Ω(n). Hence, we can assume that the
(1+1) EA starts in A ∪B ∪ C ∪D and never reaches strings in E.

Case 1: α(n) → ∞ as n → ∞ We only investigate the last step where a
string x ∈ A∪B∪C is changed by mutation into a string y ∈ D and estimate the

4

probability of such a mutation. We know be definition that x contains at least n/4
zeros and in order to reach some y ∈ D it is necessary that at most logn of these
bits flip. The expected number of flipping bits among the chosen positions equals
(n/4)·p(n) = (1/4)α(n) logn. By Chernoff’s bounds, the probability that at most
logn of these bits flip is bounded above by e−Ω(α(n) log n) = n−Ω(α(n)) ≤ n−cα(n)

for some c > 0. Hence, the expected running time of the (1+1) EA is at least
ncα(n) which grows superpolynomially in this case. Also the probability that
ncα(n)/2 steps are sufficient is bounded above by n−cα(n)/2 which is superpoly-
nomially small.

Case 2: α(n) → 0 as n → ∞ Again we estimate the probability to ob-
tain y ∈ D by a mutation step from x ∈ A ∪ B ∪ C. By case inspection, we
conclude that the Hamming distance between x and y is at least logn. Here the
assumption that y1 + · · ·+ y2 log n = 0 for y ∈ D is essential. Hence, it is neces-
sary that at least logn bits flip simultaneously. The expected number of flipping
bits equals α(n) log n. By Chernoff’s bounds, the probability that the number
of successes is by a factor of α(n)−1 larger than the expected value is bounded
above by α(n)Ω(log n) = nΩ(log α(n) ≤ nc log α(n) for some c <∞. Remember that
α(n) → 0 as n → ∞. Hence, the expected running time of the (1+1) EA is
at least n−c log α(n) which is superpolynomially increasing. Also, the probability
that n−(c/2) log α(n) steps are sufficient is bounded above by n(c/2) log α(n) which
is superpolynomially small. ��

We remark that these lower bounds also hold for the (µ + λ) EA and the
(µ, λ) EA. As long as µ = eo(n), in particular, for populations of polynomial
size, all initial strings belong to A with overwhelming probability and at least
one string has to mutate in the way described in the two cases of the proof of
Theorem 1.

In the following we investigate the case that α(n) is a constant. In order to
simplify some calculations we switch from logn to lnn and assume that p(n) =
(c lnn)/n. We analyze the random number of steps of the (1+1) EA until an
optimal string y ∈ D is found and then we look for that constant c leading to
the best result.

Theorem 2. Let p(n) = (c lnn)/n. The expected number of steps until the
(1+1) EA with mutation probability p(n) finds a global optimum of the func-
tion PathToJump is bounded above by O(n2+c ln−1 n + nc−log c−log ln 2). For
c = 1/(4 ln2) ≤ 0.361 the expected running time is bounded by O(n2.361).

Proof. In the following we work with the following partitions of A, B, C, and E.

– Ai = {x ∈ A | ||x||1 = i}, n/4 < i < 3n/4
– Bi =

{
x ∈ B | x1 + · · ·+ xn/4 = i

}
, 0 ≤ i ≤ n/4

– Ci =
{
1i0n−i

}
, 0 ≤ i < n/4

– Ei = {x ∈ E | ||x||1 = i or n− ||x||1 = i}, 0 ≤ i < n/4

Then we have

E0 < E1 · · · < E(n/4)−1 < A(3n/4)−1 < · · · < A(n/4)+2 < A(n/4)+1 < B0

5

< B1 < · · · < B(n/4)−1 < Bn/4 < C(n/4)−1 < C(n/4)−2 < · · · < C1 < C0 < D.

Our aim is to derive lower bounds αi, βi, γi, and εi for the probabilities that
we reach within one step from X ∈ Ai, Bi, Ci, and Ei resp. a string y which is
element of a set with a higher rank. These probabilities may be called success
probabilities, since they measure the probability of increasing the fitness of the
current string.

Claim 1: αi = Ω((lnn)/nc), εi = Ω((lnn)/nc)

Proof. If x ∈ Ai, we have a success if exactly one of the i > n/4 1-bits and none
of the 0-bits flip. Hence,

αi ≥ i
c lnn
n

(
1− c lnn

n

)n−1

>
1
4
c lnn

(
1− c lnn

n

)n−1

= Ω
(
lnne−c ln n

)
= Ω

(
lnn
nc

)
.

If x ∈ Ei, even at least (3n/4) 1-bit mutations lead to a success.

Claim 2: βi = Ω(((n/4)− i)2(ln2 n)/n2+c), if i < n/4

Proof. If x ∈ Bi, i < n/4, x contains (n/4) − i 0-bits among the first n/4
positions and (n/4)− i 1-bits among the last 3n/4 positions. We have a success
if exactly one of these 0-bits and one of these 1-bits flip. Hence,

βi ≥
(n
4
− i
)2
(
c lnn
n

)2(
1− c lnn

n

)n−2

= Ω

((n
4
− i
) ln2 n

n2
e−c ln n

)
= Ω

((n
4
− i
)2 ln2 n

n2+c

)
.

Claim 3: βn/4 = Ω((lnn)/n1+c), γi = Ω((lnn)/n1+c), if i > 0

Proof. If x ∈ Bn/4, x = 1n/403n/4 and, if x ∈ Ci, x = 1i0n−i. We have a success
if exactly the last 1-bit flips. Hence

c lnn
n

(
1− c lnn

n

)n−1

= Ω

(
lnn
n1+c

)

is a lower bound for βn/4 and γi.

Claim 4: γ0 = Ω(nlog c+log ln 2−c)

Proof. If x ∈ C0, x = 0n. Hence, the success event contains exactly all events
where exactly logn of the last n− 2 logn bits flip. Hence

γ0 =
(
n− 2 logn

log n

)
·
(
c lnn
n

)log n

·
(
1− c lnn

n

)n−log n

≥
(
n− 2 logn

log n

)log n

·
(
c lnn
n

)log n

·
(
1− c lnn

n

)n

·
(
1− c lnn

n

)− log n

6

=
(
1− 2 logn

n

)log n

·
(
c lnn
logn

)log n

·Ω
(
1
nc

)
·Ω(1)

= Ω(1) · (c ln 2)log n ·Ω
(
1
nc

)
·Ω(1) = Ω

(
nlog c+log ln 2−c

)
.

If the success probability of some event equals q, the expected waiting time
for a success equals q−1. In the worst case we start in E0 and each success leads
to a string of the next rank class. Hence, the expected running time E (T (c)) can
be estimated above by

E (T (c)) ≤
(n/4)−1∑

i=0

ε−1
i +

(3n/4)−1∑
i=(n/4)+1

α−1
i +

(n/4)−1∑
i=0

β−1
i + βn/4 +

(n/4)−1∑
i=1

γ−1
i + γ−1

0

= O
(
n1+c ln−1 n

)
+O


n2+c


(n/4)−1∑

i=1

1
i2


 ln−2 n


+O

(
n1+c ln−1 n

)
+O

(
n2+c ln−1 n

)
+O

(
nc−log c−log ln 2

)
= O

(
n2+c ln−1 +nc−log c−log ln 2

)
,

since the series
∑
(1/i2) is converging.

In order to choose the best value for c we set

2 + c = c− log c− log ln 2

which is equivalent to
log c = −2− log ln 2

or
c =

1
4 ln 2

≤ 0.361.

��
Theorem 2 shows that the appropriate mutation probability leads to an ex-

pected running time which is a polynomial of reasonable degree.

Theorem 3. Let p(n) = (c lnn)/n. The probability that the (1+1) EA with mu-
tation probability p(n) finds a global maximum of PathToJump within
O(n3+c ln−1 n + n1+c−log c−log ln 2) steps (O(n3.361) if c = 1/(4 ln 2)) is bounded
below by 1− e−Ω(n).

Proof. If the success probability of some event equals q, the probability of having
no success within

⌈
q−1n

⌉
steps, equals

(1− q)�q−1n� ≤ (1− q)qn = e−Ω(n).

Here we have to wait for at most (5/4)n successes with different success probabili-
ties. The probability that we have to wait for at least one of these successes longer
then n times the expected waiting time can be bounded by (5/4)ne−Ω(n) =
e−Ω(n). ��

7

Our results show that we can gain a lot by choosing the appropriate muta-
tion probability. The running time (the expected one and even a bound for the
running time which holds with the overwhelming probability 1 − e−Ω(n)) can
decrease from superpolynomial to polynomial (with reasonable degree). But our
results do not answer the question how to choose the right mutation probability.
In black-box scenarios we do not know enough about the objective function to
start any analysis and even in other scenarios the analysis is much too difficult
to be carried out before starting the evolutionary algorithm.

4 The Dynamic (1+1) EA

We have seen that the choice of an appropriate mutation probability is advan-
tageous and that we have in general no idea to compute or to estimate the
appropriate mutation probability. Moreover, it can be even better to have dif-
ferent mutation probabilities in different phases of the algorithm. Hence, the
algorithm has to “try” different mutation probabilities. Bäck [2] distinguishes
a static parameter setting from three types of dynamic parameter settings. We
choose the simplest one namely dynamic parameter control where the mutation
probability only depends on the number of steps performed before. The more
general schemes are adaptive parameter control which is guided by the success
during the optimization process and self-adaptive parameter control where the
change of the mutation probability is guided by an evolutionary algorithm.

Dynamic parameter control is easy to describe and implement. We choose 1/n
as lower bound on the mutation probability since otherwise the expected number
of flipping bits is less than one. We choose 1/2 as upper bound since otherwise we
flip on average more than half of the bits and do not search in the neighborhood
of the current string. A phase consists of �logn� steps t, 1 ≤ t ≤ �logn�. The
mutation probability in the t-th step of a phase equals 2t−1/n.

Algorithm 2 (The dynamic (1+1) EA). The algorithm works as Algorithm
1 but the mutation probability in step s where s = r �logn�+ t, 1 ≤ t ≤ �logn�,
equals pt(n) = 2t−1/n.

Theorem 4. The expected number of steps until the dynamic (1+1) EA finds a
global optimum of the function PathToJump is bounded above by O(n2 logn).

Proof. We use an approach similar to that of the proof of Theorem 2. By α′
i, β

′
i,

γ′i, and ε′i we denote the corresponding success probabilities for a whole phase
of �logn� steps of the dynamic (1+1) EA.

Claim 1: α′
i = Ω(1), ε′i = Ω(1)

Proof. We only consider the step with mutation probability 1/n. Hence (compare
the proof of Theorem 2),

α′
i ≥ i

1
n

(
1− 1

n

)n−1

>
1
4

(
1− 1

n

)n−1

= Ω(1).

The result on ε′i follows in a similar way.

8

Claim 2: β′
i = Ω(((n/4)− i)2/n2), if i < n/4

Proof. As in the proof of Theorem 2, we have ((n/4) − i)2 pairs such that the
event that exactly the bits of a pair flip is a success. Hence, using the mutation
probability 1/n

β′
i ≥

(n
4
− i
)2
(
1
n

)2(
1− 1

n

)n−2

= Ω

((n
4
− i
)2 1

n2

)
.

Claim 3: β′
n/4 = Ω(1/n), γi = Ω(1/n), if i > 0

Proof. There is a 1-bit mutation leading to a success. The claim follows for the
mutation probability 1/n.

Claim 4: γ′0 = Ω(nlog ln 2−1) = Ω(1/n1.53)

Proof. The success event contains exactly all events where exactly log n of the
last n − 2 logn bits flip. Hence, mutation probabilities of the order (log n)/n
are most promising. In the proof of Theorem 2 we have proved the bound
Ω(nlog c+log ln 2−c) for the mutation probability (c lnn)/n. This bound is max-
imal, if c = 1/ ln 2 ≤ 1.45. Then log c = − log ln 2 and the bound equals
Ω(n−1.45). But the dynamic (1+1) EA does not necessarily use exactly this muta-
tion probability. We only now that we have for each interval
[(c lnn)/n; (2c lnn)/n] one mutation probability falling into this interval. Here it
is optimal to choose c = 1 leading to a lower bound of Ω(nlog ln 2−1) = Ω(n−1.53).

These claims lead to the following upper bound on the expected number
E (P) of phases

E (P) = O (n) +O


n2

(n/4)−1∑
i=1

1
i2


+O

(
n2
)
+ O

(
n1.53

)
= O

(
n2
)
.

The run time is bounded above by �logn� · P which proves the claim. ��
In the same way as we have obtained Theorem 3 from Theorem 2 we get the

following result.

Theorem 5. The probability that the dynamic (1+1) EA finds a global optimum
of PathToJump within O(n3 logn) steps is bounded below by 1− e−Ω(n).

The upper bounds of Theorem 4 and Theorem 5 are better than the corre-
sponding bounds of Theorem 2 and Theorem 3. The dynamic (1+1) EA wastes
some steps by using inappropriate mutation probabilities. But this only leads to
an additional factor O(log n). The dynamic (1+1) EA does not always choose
the optimal mutation probability (see the proof of Claim 4 in the proof of Theo-
rem 4). This is not essential for PathToJump. But the dynamic (1+1) EA tries
different mutation probabilities while the “optimal” static mutation probability
is a compromise between optimal mutation probabilities for the Path-phase and

9

the Jump-phase. In order to rigorously prove that the dynamic (1+1) EA is bet-
ter than each static (1+1) EA on PathToJump we need lower bounds for the
static (1+1) EA. This implies bounds for the probability of jumping to strings
whose rank is much larger than the current string. Such calculations are possible
with our methods but we have not performed them yet.

5 Conclusions

We have presented the function PathToJump which has some interesting prop-
erties. The static (1+1) EA with mutation probabilities whose growth order is
larger or smaller than (log n)/n needs superpolynomial time with overwhelm-
ing probability. But there are mutation probabilities such that the static (1+1)
EA finds an optimum within an expected number of only O(n2.361) steps. Since
in general there is no idea how to compute an optimal or good value for the
mutation probability, we have presented a dynamic (1+1) EA with a simple dy-
namic control of the mutation probability. This variant of the (1+1) EA finds
an optimum of PathToJump within an expected number of O(n2 logn) steps.

References

1. Bäck, T. (1993). Optimal mutation rates in genetic search. In Forrest, S. (Ed.):
Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA
’93), 2–8. Morgan Kaufmann.

2. Bäck, T. (1998). An overview of parameter control methods by self-adaptation in
evolutionary algorithms. Fundamenta Informaticae 34, 1–15.

3. Droste, S., Jansen, T., and Wegener, I. (1998). A rigorous complexity analysis
of the (1+1) evolutionary algorithm for separable functions with Boolean inputs.
Evolutionary Computation 6(2), 185–196.

4. Droste, S., Jansen, T., and Wegener, I. (1998). On the analysis of the (1+1) evo-
lutionary algorithm. Tech. Report CI-21/98, Univ. Dortmund, Germany.

5. Garnier, J. Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary
mutations. Evolutionary Computation 7(2), 173–203.

6. Hagerup, T., and Rüb, C. (1989). A guided tour of Chernoff bounds. Information
Processing Letters 33, 305–308.

7. Jansen, T. and Wegener, I. (1999). On the analysis of evolutionary algorithms —
A proof that crossover really can help. In Nešetřil, J. (Ed.): Proceedings of the 7th
Annual European Symposium on Algorithms (ESA ’99), 184–193. Springer.

8. Juels, A. and Wattenberg, M. (1994). Stochastic hillclimbing as a baseline method
for evaluating genetic algorithms. Tech. Report CSD-94-834 Univ. of California.

9. Mühlenbein, H. (1992). How Genetic Algorithms Really Work. I. Mutation and
Hillclimbing. In Männer, R. and Manderik, R. (Eds.): Parallel Problem Solving
From Nature (PPSN II), 15–25. North-Holland.

10. Quick, R. J., Rayward-Smith, V. J., and Smith, G.D. (1998). Fitness distance cor-
relation and ridge functions. In Eiben, A.E. Bäck, T., and Schwefel, H.-P. (Eds.):
Parallel Problem Solving from Nature (PPSN V), 77–86. Springer.

11. Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Verlag
Dr. Kovač.

10

