UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE
COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

A Natural and Simple Function Which is Hard For
All Evolutionary Algorithms

Stefan Droste Thomas Jansen Ingo Wegener

No. CI-93/00

Technical Report ISSN 1433-3325 August 2000

Secretary of the SFB 531 - University of Dortmund - Dept. of Computer Science/XI
44221 Dortmund - Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

A Natural and Simple Function Which is Hard for All Evolutionary
Algorithms*

Stefan Droste

Thomas Jansen

Ingo Wegener

LS Informatik 2
Univ. Dortmund

44221 Dortmund

Germany

{droste, jansen, wegener}@ls2.cs.uni-dortmund.de

Abstract

Evolutionary algorithms (EAs) are randomized
search strategies which have turned out to be efficient
for optimization problems of quite different kind. In
order to understand the behavior of EAs, one also
is interested in examples where EAs need exponential
time to find an optimal solution. Until now only arti-
ficial examples of this kind were known. Here an ex-
ample with a clear and simple structure is presented.
It can be described by a short formula, it is a poly-
nomial of degree 3, and it is an instance of a well-
known problem, the theoretically and practically im-
portant MAXSAT problem.

1 Introduction

Evolutionary algorithms (EAs) are randomized
search heuristics often used for optimization. There
is not a single EA but a class of search strategies, see
[3], [5], and [12]. A lot of successful experiments with
EAs have been reported and theoretical studies are
gaining more and more attention. Their aim is to de-
termine the behavior of different variants of EAs on
different classes of functions. The behavior of an algo-
rithm on a function is described by the expected time
until an (almost) optimal solution is found and by the
probability of doing so within a given time.

All functions which have been proved to be difficult
for EAs are somehow “artificial”. Hence, it is an inter-
esting problem to present a “non-artificial” or natural
and simple function, which is difficult for EAs. In Sec-
tion 2, we discuss properties of functions which make
them natural and simple. In Section 3, we present such
a function which is claimed to be difficult for EAs.
In order to prove such a claim we have to describe

*This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) as part of the Collaborative Research Center
“Computational Intelligence” (531).

the class of considered EAs (Section 4). In Section 5,
we prove that mutation-based EAs fail on our exam-
ple with overwhelming probability. In Section 6, EAs
based on mutation and crossover are investigated. We
finish with some conclusions.

2 Natural and Simple Functions

We restrict ourselves to functions f,,: {0,1}" — Z
which have to be maximized in a black-box scenario.
It is known [2] that functions f, suitable for black-
box optimization have to fulfill the following condi-
tions: The evaluation of f,, has to be possible in poly-
nomial time (with respect to n). The function f,
has to be representable by polynomial-size hardware.
The function f,, has to have a compact representation,
more precisely small Kolmogoroff complexity (for the
theory of Kolmogoroff complexity see [8]). These all
are necessary conditions. Moreover, we look for func-
tions which are instances of an important, well-known,
and fundamental problem with the additional prop-
erty that the chosen values for the free parameters of
the problem are not artificial. Finally, each function
fn: {0,1}" — Z can be written as a unique polynomial
with respect to the variables x1, ..., x,, whose degree
is bounded by n. Polynomials of small degree may be
called simple. After all, it should be clear that there
is no precise definition of natural and simple functions
but we now have a lot of reasonable criteria to argue
why some functions are natural and simple and others
are not. Obviously, all linear functions, i.e., polyno-
mials of degree 1, are simple and they are natural if
the coefficients are not artificial.

The most famous functions which are hard for EAs
are the functions called needle-in-the-haystack. The
function HAY, », @ € {0,1}", equals 1, if its argu-
ment is a, and 0 otherwise. These functions can be
evaluated in linear-time and have a compact represen-

tation but they are not instances of an important or
fundamental problem. Their degree is n. The func-
tions HAY, ,, can be optimized easily if a is known.
Otherwise, all search strategies have to search more
or less blindly. Either one has found the optimal in-
put a or one has seen some points aq,...,a,, and has
only learned that the optimal point a is not among
ai,...,a,. Hence, all search strategies have to evalu-
ate on average at least 2"~ 4 1/2 points to find the
optimum. This implies that the consideration of the
needle-in-the-haystack functions does not have impli-
cations on the quality of search strategies.

Another well-known example of a function being
hard for EAs is the function TRAP,,, which equals
ONEMAX, () = 21 + -+ 4+ a, for all inputs = €
{0,1}™ except for z = (0, ...,0), where TRAP,, equals
n+1. The function TRAP,, is of degree n, although it
differs only at one point from the trivial linear function
ONEMAX,,(z). Aslong as a search strategy does not
produce the all zero string, by chance, it cannot dis-
tinguish TRAP,, from ONEMAX,,. We expect from
a good search strategy that it quickly finds the all one
string, which is optimal for ONEMAX,, but subop-
timal for TRAP,,. To replace the all one string by
any a € {0,1}", we replace z; by T; for all i where
a; = 0. This variant TRAP, , has similar properties
and its global optimum at a. Each EA has only a
tiny chance to optimize TRAP, ,, in subexponential
time. Again, we conclude that these functions cannot
be called natural.

It would be easy to go on in this way and to present
artificial functions where EAs are not efficient. One
such example is a function called LONGPATH,, [1]
which is unimodal and nevertheless hard for EAs. It
is more interesting to look for a function which fulfills
all our criteria for natural and simple functions and
which nevertheless is hard for EAs.

3 A Special Natural and Simple Func-
tion

The function which we shall investigate intensively
is an instance of one of the best known optimization
problems namely the MAXSAT problem. We define
all necessary notions. A literal is a Boolean variable x;
or a negated Boolean variable ;. A literal x; resp. T;
is satisfied by an input @ = (ay, ..., ay) iff a; = 1 resp.
a; = 0. A clause is a disjunction (Boolean OR) of some
literals, i.e., a clause is satisfied by an input a iff at
least one of its literals is satisfied. An instance of the
MAXSAT problem is a sequence of clauses c1, ..., ¢n,

over the variables z1,...,z, and the task is to find an
input satisfying as many clauses as possible. Hence,
we implicitly also have to decide whether all clauses
can be satisfied simultaneously which is the SAT prob-
lem, the first problem which ever has been proved to
be NP-complete. The SAT problem has a lot of appli-
cations, e.g., the verification problem. A lot of other
problems can be described easily as MAXSAT prob-
lems. It is well-known [4] that MAXSAT is NP-hard
even if we only allow clauses with at most two literals.

Nevertheless, it is still possible that instances of
MAXSAT with a simple structure also can be solved
easily by EAs. The following instance has been pre-
sented by [9]. It consists of the clauses

e r;,1 <i<n,and

o o, VT;VTy, (i,5,k) € {1,...,n}3 i £j#k #1.

This instance has a lot of interesting features. All
clauses are so-called Horn clauses, i.e., they have at
most one positive literal. Such clauses correspond to
typical database queries. Because of its symmetric de-
scription the instance has a simple and clear structure
and, moreover, the reader “sees” the solution within
a second: the all one string satisfies all clauses and it
is the only input with this property. Nevertheless, the
following well-known search strategy which has been
designed especially for the MAXSAT problem takes
expected exponential time on this instance [9].

The search strategy starts with a random input.
If not all clauses are satisfied it chooses randomly an
unsatisfied clause and one of its literals and flips the
value of the corresponding variable. This can be seen
as a specialized strategy based on mutations which
takes care of the problem type. The (with respect
to expected worst case time) best known algorithm
for MAXSAT problems with clauses of at most three
literals is due to [11]. It is a multistart variant of the
above strategy and also takes exponential time for the
above example. The reason is the following. If we
choose the clause z; V T; V Ty, it is more likely to flip
an input bit from 1 to 0 as vice versa. We may expect
that EAs have the same tendency.

For our later discussions of EAs we translate our
MAXSAT instance into a polynomial COUNTSAT,, :
{0,1}" — R where COUNTSAT),,(a) is the number
of clauses satisfied by a. Then COUNTSAT,,(z) is

Dm0 Y (= (1 —m)zmy).

1<i<n 1<i<n 1<j<n 1<k<n

JFE kFLkFE]

Because of the symmetry we obtain a simpler descrip-
tion COUNTSAT?: {0,...,n} — R defined on s =

1+ -+ . Since (1 — (1 —z)zjoy) =1 — zjap +
zizjry, COUNTSAT, (x) can be written as

s+nn—1Mn-2)—2(n-2) Z TjTk

1<j<k<n
+6 Z TiTjTh
1<i<j<k<n
s s
= s+nn—1)n—-2)—2(n-— 2)(2) +6(3)
= COUNTSAT] (s).

COUNTSAT, is a fitness function fulfilling all prop-
erties of a natural and simple function. The evalua-
tion of COUNTSAT,, is possible in polynomial time
(0] (n3) (with the description as COUNTSAT}, even in
linear time O (n)) and the function has a very compact
representation. The function is an instance of the fun-
damental, important, and well-known MAXSAT prob-
lem, the parameters of the function are simple, small
and symmetric with respect to all variables. Finally,
the fitness function is a polynomial of degree 3 only.

64000 ;’," |
62000 | ";’"]
60000 | .
58000 | >, .
56000 - * D
51000 |]

52000 |- %, P 1

50000 : : :
-10 0 10 20 30 40

Fig. 1: The function COUNTSAT},.

The function COUNTSATY}, is shown in Figure 1,

where the range of the function is extended to [—10, 45].

As COUNTSATY (0) = n(n — 1)(n — 2) the all zero
string is a local optimum, while COUNTSAT? (n) =
n(n — 1)(n — 2) + n and the all one string is the
only global optimum for COUNTSAT,,. It is easy
to see that COUNTSAT has its local minimum for
s~ 2(n+1). Random inputs have with overwhelm-
ing probability approximately n/2 ones. Then local
changes decreasing the number of ones lead to bet-
ter inputs while local changes increasing the number
of ones decrease the fitness. Hence, we might expect
that EAs quickly find the all zero string and have dif-
ficulties to find the all one string.

The function COUNTSAT,, can be seen as a non-
artificial variant of TRAP;n» ,,. Both only depend on
s. If s is not too large, inputs with less ones are better
but the global optimum is the all one string. In both
cases EAs should interpret this as a hint to decrease
the number of ones and to find the all zero string.

One may argue that exact optimization is not the
right aim for black box optimization. The local opti-
mum with value n(n — 1)(n — 2) is almost as good
as the global one with value n(n — 1)(n — 2) + n.
Hence, we discuss the variants COUNTSAT,, , and
COUNTSATY, ., r € N. They are based on the same
instance of MAXSAT, but every clause x;, 1 < i <
n, is included r-times. Then COUNTSAT; .(s) =
3 —(n+1)s>+ (n+r7r)s+nn—1)(n —2). The
increase of the parameter r has many effects. The
function COUNTSATY, | has a local maximum and a
local minimum at the positions

Smam(r)} — 1(714‘ 1)\/<n+ 1)2 - n+7’.
Smin(T) 3 + 3 3
EAs get good hints if 8, (r) < n/2 and even if s, (1)
is not sufficiently larger than n/2. Hence, we only con-
sider values of such that sm,n(r) > (1/24 €)n which
means values of r such that r < [(1/4 — ¢)(n? — n)]
for some constant 0 < € < 1/4. Under this restric-
tion we like to maximize the quotient of the fitnesses
of the all one string and of a locally optimal string
(which no longer is the all zero string). Let r = an?.
The fitness of the all one string and a locally opti-
mal string equals ©(n?®). Hence, we only compare the
terms of order n3. The fitness of the all one string
then is (1+«a)n® and the fitness of the locally optimal
string is (1+8—8%+3%)n3 for B =1/3—+/1/9 — /3.
The quotient (14 «)/(1+ 3 — 32 + 3) is optimal for
a = 0.25. Then the global optimum is approximately
by 9,31% “better” than the local one.

4 Evolutionary Algorithms

It would not be convincing to prove that some spe-
cial EA fails on COUNTSAT,,. We try to prove this
property for a class of EAs. An EA is a combina-
tion the modules initialization, selection, mutation,
and crossover. We make no assumption how these
modules are combined. This leads to statements for
a variety of EAs. We assume that EAs are working
in rounds called generations where sets of individuals
called populations are considered.

The population size is assumed to be at most poly-
nomial with respect to the instance size n. During the

initialization the members of the first generation are
chosen uniformly at random. Selection is the possibly
randomized process to determine the members of the
next generation. The selection process is allowed to
depend on the individuals only via their fitness values
and the property whether the individual is a child or a
parent. The chance of individuals to be chosen is pos-
itively correlated with the fitness. More precisely, if
f(z) > f(2') and either x and 2’ are children or x and
7' are parents, the individual x has at least the same
chance as x’ to be chosen. Usually, the same is true
if x is a child and 2’ is a parent. There may be rules
to prevent duplicates. Selection is also the process to
choose individuals for mutation and/or crossover.

Mutation is driven by a probability p. If the in-
dividual = is chosen for mutation, each bit is flipped
independently with probability p. The idea of muta-
tion is to produce randomly small changes. Hence, we
assume that p < 1/2. Of several existing crossover
operators we only investigate uniform crossover, since
for MAXSAT there are no variables which are more
“neighbored” than others. Let x and y be chosen for
uniform crossover and let d be the number of posi-
tions ¢ where x; # y;. Each z, where z; = x; for those
Jj, where z; = y;, has a probability of 274 to be the
result of a uniform crossover between = and y.

5 Mutation-Based EAs

In this section we analyze EAs based on initial-
ization, selection, and mutation only. The aim is to
prove that with overwhelming probability the EA has
not produced an optimal individual within t(n) steps

where t(n) is growing exponentially but not too quickly.

We fix an EA by choosing the population size S =
S(n), the mutation probability p = p(n), and the se-
lection scheme. For a point of time ¢ = ¢(n) we ask
for the success probability p* = p*(n), that the glob-
ally optimal individual has been produced. Since we
are interested in (small) upper bounds on p*, we may
change the Markoff process describing the EA in such
a way that the success probability increases. The idea
is to obtain a Markoff process which is easier to handle.
Because the fitness function is symmetric, we can re-
place each individual with s ones by the string 0" ~°1°
without influencing the success probability.

By Chernoff’s bound [6] the probability that an in-
dividual after the random initialization has at least
(1/2 + £/2)n ones is bounded above by exp(—e*n/6).
Since S(n) is polynomially bounded, the probability
that at least one individual of the first generation
has at least (1/2 + ¢/2)n ones is bounded above by

exp(—Q(e?n)). If some individual with at least (1/2+
£/2)n ones is produced in the initialization, we con-
sider this as success of the EA. Hence, we assume in
the following that no individual of the first generation
has at least (1/2 4 £/2)n ones.

The fitness function COUNTSAT:‘M(a) increases
for s > [Smin(r(€))] > (1/2 + &)n. E.g., the usual
(14+1)-EA with p(n) = 1/n finds the global optimum
quickly if it has found an individual with enough ones.
Therefore, we enlarge the event describing a success.
The EA is called successful if it produces at least one
individual with at least (1/2 + €)n ones. Informally,
we believe that the individual I = 0"~°1° is better for
our optimization task than I’ = 0"~'1%' if s > s
Formally, we prove that for I it is at least as likely to
obtain by mutation a string with at least s” ones as
for I’. For this reason we compare I and I’:

I = [o...oft...1][1... 1]

r [0...0Jo...0|1...1]
—_—— ——— —

n—s s—s’ s’

Mutation works in the same way on the first n — s
bits and the last s’ bits. Independently from this,
mutation flips each of the s —s’ > 0 bits in the middle
part independently with probability p. Since p < 1/2,
the probability of flipping at most d bits is at least as
large as flipping at least (s — s’) — d bits.

For r = 1, the fitness function is decreasing with
the number of ones (as long as this number is smaller
than the local minimum). Then fitness-based selection
only can prefer individuals with less ones. Hence, we
can assume w. l. 0. g. that selection does not depend on
the fitness of the individuals. This is the best selection
scheme (fulfilling the assumptions from Section 4) if
the fitness gives wrong hints. For larger r, the fitness
function is increasing for small values of s. We only
consider parameters r where r < n? /4 which implies
that the fitness function is decreasing, if n/6 < s <
(1/2 + ¢)n. Fitness-based selection can prevent that
individuals with less than n/6 ones survive.

We only increase the success probability by replac-
ing each individual with less than (1/2+4¢/2)n ones by
an individual with exactly (1/2+¢/2)n ones. Then we
either have a success or we consider only individuals
such that the fitness function is decreasing with the
number of ones. Then the arguments for r = 1 work
and we can consider an EA where selection does not
depend on the fitness of the individuals.

In the last step, we consider the situation that the
EA produces an individual I* with at least (1/24¢)n
ones. This individual has a history (such an approach
has been used for the first time in [10]), i.e., there

is a sequence Iy, I1,...,I" of individuals such that Iy
belongs to the initial population and I;4; is produced
from I; by mutation. Hence, ones(Iy) = (1/24¢/2)n,
ones(I;) > (1/2+¢/2)n, and ones(I*) > (1/2 + e)n.
We consider the subsequence starting with the last in-
dividual with exactly (1/24&/2)n ones. This sequence
is denoted (after renumbering) by Iy, I1,...,I;x = I*
where ones(Ip) = (1/24+¢/2)n, ones(I;) > (1/2+¢€/2)n
for i > 0, and ones(Iy=) > (1/2 + €)n. Because of the
second property individual I; is produced by mutation
from I;_; and not by mutation followed by a replace-
ment as described above.

The strings Iy, I1,..., s+ 1 altogether contain at
least (1/2 4+ ¢/2)nt* ones and at most (1/2 — ¢/2)nt*
zeros. We like to estimate the probability that start-
ing with Iy we get an individual Iy« which is a success.
All single bits of all I;, i < t*, have a chance to be
mutated. The mutation probability is p. It is a neces-
sary condition that altogether at least ne/2 more bits
are flipping from 0 to 1 than bits are flipping from 1
to 0. For such a success, it is necessary that at most
nt*p/2 ones flip or that at least nt*p/2 zeros flip. Oth-
erwise, the number of bits flipping from one to zero is
larger than the number of bits flipping from zero to
one. Note, that since ¢ is a positive constant we have
that

nt*p

<(1-461)-(1/2+¢/2)nt*p

for a constant ¢; > 0, where (1/2+¢/2)nt*p is a lower
bound on the expected number of bits flipping from
one to zero, and

nt*p

>(1+d)-(1/2—¢/2)nt"p

for a constant 6o > 0, where (1/2 — £/2)nt*p is an
upper bound on the expected number of bits flipping
from zero to one. Thus, we can estimate the prob-
ability of both events by exp(—Q(nt*p)) (by Cher-
noff’s bounds). If p = Q((t*n'/2)~1), this proba-
bility is exponentially small. If p = O ((t*n!/2)71),
nt*p/2 = O (n1/2). In this case, we use the fact that
at least en/2 zeros have to flip. Again, by Chernoff’s
bound, this probability is bounded by exp(—Q(n'/?)).
If the EA produces exp(o(n'/?)) individuals, the suc-
cess probability still is bounded by exp(—Q(n!/?)).
Hence, we have:

Theorem 1 FEach mutation-based EA (as defined in
Section 4) which produces exp(o(n'/?)) individuals has
a success probability for COUNTSAT,, (and even for
COUNTSAT,, (o), if 0 < € < 1/4 is a constant)
which is bounded by exp(—Q(n'/?)).

6 On the Effect of Uniform Crossover

The usefulness of crossover has been shown by many
experiments. There is also a proof that, for some sim-
ple but not natural function, all EAs without crossover
take superpolynomial time with overwhelming proba-
bility while an EA with crossover only needs poly-
nomial time with overwhelming probability [7]. This
effect is not surprising but it is hard to deal with
crossover which is an operator creating inter-dependent
individuals [10]. Therefore, it is not possible to con-
sider simultaneously a class of different types of EAs
with crossover.

Let x,y € {0,1}™ and let z be the random outcome
of a uniform crossover between x and y. The strings x
and y have a common part and for this part z equals
x and y. For the other bit positions, z is a random
string. This implies that z is a random string if x
and y are random and independent strings. Here we
are interested in the number of ones k, [, and m of
z, y, and z, resp. W.l.o.g. k < [. Let ¢ be the
number of common ones in z and y. Then there are
exactly k + [— 2c positions where x and y differ. The
random number m of ones of z given ¢ equals ¢ +
M where M is binomially distributed with respect to
k+1—2c and 1/2. The expected number of ones
equals (k+1)/2 independently from ¢ but the variance
decreases linearly as c increases. If ¢ = k, m < [
and there is no chance to obtain a string with more
ones than y. If z and y have no bit in common, we
obtain a random string. If k and [are given and x
and y are random under this assumption, the expected
value of ¢ equals lk/n. Hence, uniform crossover has
not the tendency to increase the average number of
ones in the population. If the strings x and y are
positively (negatively) correlated, the variance of the
random number of ones in z is smaller (larger) than
for two independent strings x and y.

After these basic considerations we investigate a
string x which is the outcome of ¢ combined steps
of uniform crossover and mutation. Using a history-
based approach there are 2¢ ancestors from generation
0 which lead to z. If all these 2! ancestors are random
and independent strings, also z is a random string.
Since we altogether do not create more than polyno-
mially many (or exp(o(n))) strings, it is very unlikely
to create a string with at least (1/2+¢)n ones. But an
EA uses fitness based selection and works with pop-
ulations of polynomial size. Hence, among the 2¢ an-
cestors there are a lot which represent the same in-
dividual. This implies that mutation influences this
individual at each stage in the same way. Uniform
crossover for the same pair of individuals leads to the

same outcome. Hence, the variety of produced individ-
uals is much smaller and the probability of producing
an individual with at least (1/2 4 €)n ones seems to
decrease. As we all know, EAs need some fitness based
selection to improve variants of blind random search.
As long as no individual with at least (1/2 + €)n ones
is produced, fitness based selection can only prefer in-
dividuals with less ones (for our COUNTSAT,, func-
tions) and this decreases the probability of creating
many ones in the next step. Both effects, the pos-
itive correlation between the individuals because of
the limited population size and also because of fitness
based selection and the preference of individuals with
less ones because of fitness based selection, have the
local property to decrease the probability of creating
individuals with many ones. These arguments are the
basis for a rigorous proof of the following claim.

Claim 2 Let A be an EA (as defined in Section 4)
working on the fitness function COUNTSAT,, (or
COUNTSAT,, (o), if 0 < € < 1/4 is a constant). The
probability that A produces within t steps an individ-
ual with at least (1/2+e)n ones is not larger than the
probability that a random search algorithm producing
the same number of individuals leads to an individual
with at least (1/2 + €)n ones.

This probability is bounded above by s-exp(—£(n))
if s is the number of produced individuals. Hence, the
claim implies that no EA (as defined in Section 4) has
more than a tiny chance to optimize COUNTSAT,,
or COUNTSAT,, () in a reasonable time.

7 Conclusions

EAs are randomized search strategies which create
new individuals by mutation and/or crossover. The
search is essentially guided by fitness based selection.
Hence, EAs can be successful only for functions where
the fitness values often give good hints where to search
for the optimum. Functions like needle-in-the-haystack
give no hints at all and functions like the trap func-
tion only give wrong hints. These are artificial func-
tions. Here a natural and simple function describ-
ing a symmetric instance of the famous and impor-
tant MAXSAT problem is presented which also has
the property that almost all fitness values give wrong
hints. Hence, it is the first non-artificial example which
is proven to be hard for EAs. The reader should ad-
mit that our results are asymptotic ones. Hence, we
do not claim that EAs fail on COUNTSAT,, e.g.,
for n = 40.

References

[1] S. Droste, T. Jansen, and I. Wegener. On the op-
timization of unimodal functions with the (1+1)
ea. In Parallel Problem Solving from Nature
(PPSN V), pages 13-22. Springer, 1998.

[2] S. Droste, T. Jansen, and I. Wegener. Perhaps
not a free lunch but at least a free appetizer.
In Proc. Genetic and Evolutionary Computation
Conference (GECCO 99), pages 833-839. Morgan
Kaufmann, 1999.

[3] D. B. Fogel. Evolutionary Computation: Toward
a New Philosophy of Machine Intelligence. IEEE
Press, 1995.

[4] M. R. Garey and D. S. Johnson. Computers
and Intractability. A Guide to the Theory of NP-
Completeness. W. H. Freeman Company, 1979.

[5] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addision-
Wesley, 1989.

[6] T. Hagerup and C. R. Riib. A guided tour of
Chernoff bounds. Information Processing Letters,
33:305-308, 1989.

[7] Thomas Jansen and Ingo Wegener. On the anal-
ysis of evolutionary algorithms — a proof that
crossover really can help. In Proc. of the 7th Ann.
European Symposium on Algorithms (ESA ’99),
pages 184-193. Springer, 1999.

[8] M. Li and P. Vitdnyi. An Introduction to
Kolmogorov Complexity and Its Applications.
Springer, 1993.

[9] C. H. Papadimitriou. Computational Complezity.
Addison-Wesley, 1994.

[10] Y. Rabani, Y. Rabinovich, and A. Sinclair. A
computational view of population genetics. Ran-
dom Structures and Algorithms, 12(4):314-334,
1998.

[11] Uwe Schoning. A probabilistic algorithm for k-
SAT and constraint satisfaction problems. In
Proc. of the 40th Ann. IEEE Symposium on
Foundations of Computer Science (FOCS ’99),
pages 410-414. IEEE Press, 1999.

[12] Hans-Paul Schwefel.
Seeking. Wiley, 1995.

Evolution and Optimum

