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Abstract

The presence of noise in real-world optimization problems poses difficulties to optimization
strategies. It is frequently observed that evolutionary algorithms are quite capable of succeeding
in noisy environments. Intuitively, the use of a population of candidate solutions alongside with
some implicit or explicit form of averaging inherent in the algorithms is considered responsible.
However, so as to arrive at a deeper understanding of the reasons for the capabilities of evolution-
ary algorithms, mathematical analyses of their performance in select environments are necessary.
Such analyses can reveal how the performance of the algorithms scales with parameters of the
problem — such as the dimensionality of the search space or the noise strength — or of the algo-
rithms — such as population size or mutation strength. Recommendations regarding the optimal
sizing of such parameters can then be derived.

The present paper derives an asymptotically exact approximation to the progress rate of the
(µ=µI;λ)-Evolution Strategy (ES) on a finite-dimensional noisy sphere. It is shown that, in con-
trast to results obtained in the limit of infinite search space dimensionality, there is a finite optimal
population size above which the efficiency of the strategy declines, and that therefore it is not
possible to attain the efficiency that can be achieved in the absence of noise by increasing the
population size. It is also shown that nonetheless, the benefits of genetic repair and an increased
mutation strength make it possible for the multi-parent (µ=µ I;λ)-ES to far outperform simple
one-parent strategies.

Keywords: (µ=µI ;λ)-Evolution Strategies, Darwinian evolution, noise,
optimization, performance

1 Introduction

Evolutionary algorithms (EAs) are optimization strategies based on evolutionary principles. Starting
from an initial population of candidate solutions, increasingly better candidate solutions are developed
by means of selection and variation of existing candidate solutions. Industrial applications date back
at least until the 1960s and today range from routing optimization in telecommunications networks to
airline crew scheduling problems. In many instances, EAs have turned out to be robust and applicable
to challenging problems where traditional methods are prone to failure, such as optimization problems
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with highly discontinuous objective functions or where only unreliable data is available. Major rea-
sons for the widespread use of EAs are their universal applicability and their ease of implementation
that often outweighs possible performance deficits as compared to specialized algorithms that require
long times of development. The 1990s have seen not only a sharp increase in applications of EAs, but
the field has received considerable attention also from a theoretical point of view, as witnessed by a
special issue of Theoretical Computer Science on evolutionary computation. The article by Eiben and
Rudolph [10] therein can serve as a starting point with references to a long list of theoretical work on
EAs.

Alongside with genetic algorithms (GAs), evolutionary programming (EP), and genetic program-
ming (GP), evolution strategies (ES) are one kind of EA that is both in widespread practical use and
relatively amenable to theoretical investigations. In particular, the field of order statistics has proven to
be a useful mathematical tool for the analysis of ES in real-valued search spaces. The goal of research
such as that presented here is to understand how the performance of ES scales with parameters of the
problem – such as the dimensionality of the search space or the noise strength – and of the optimiza-
tion strategy – such as the population size or the mutation strength of the strategy. At the focus of
interest are local performance measures, i.e. performance measures that describe the expected change
of quantities such as objective function values from one time step to the next. Note that this differs
from more traditional approaches in theoretical computer science that usually focus on run time com-
plexities or proofs of convergence. Such studies do exist (see for example [9, 20]), and we believe that
the different approaches each have their own merits and should be pursued in parallel. The insights
gained from the approach taken here include a quantitative understanding of the performance of ES
that is of immediate usefulness to practitioners that are facing the problem of choosing appropriate
values for the external parameters of their strategies.

The present paper focuses on the behavior of ES in noisy environments. Noise is a common phe-
nomenon in many real-world optimization problems. It can stem from a variety of sources, including
measurement limitations, the use of randomized algorithms, incomplete sampling of large spaces,
and human-computer interaction. Reduced convergence velocity or even inability to approach the
optimum are commonly observed consequences of the presence of noise on optimization strategies.
EAs are frequently reported to be comparatively robust with regard to the effects of noise. In fact,
noisy environments are considered a prime application domain for EAs. Empirical support for this
contention has been provided by Nissen and Propach [15] who have presented an empirical compari-
son of population-based and point-based optimization strategies. They contend that population-based
strategies generally outperform point-based strategies in noisy environments.

The effects of noise on the performance of GAs have been investigated by, among others, Fitz-
patrick and Grefenstette [11], Miller and Goldberg [14], and Rattray and Shapiro [17]. Their work
has led to recommendations regarding population sizing and the use of resampling. Theoretical stud-
ies of the effects of noise on ES date back to early work of Rechenberg [18] who has analyzed the
performance of a (1+ 1)-ES in a noisy corridor. An analysis of the performance of the (1+; λ)-ES
on a noisy sphere by Beyer [5] sparked empirical research by Hammel and Bäck [13] who concluded
that the findings made for GAs do not always easily translate to ES. Arnold and Beyer [2] have ad-
dressed the effects of overvaluation of the parental fitness using a (1+ 1)-ES on a noisy sphere. For
an overview of the status quo of ES research concerned with noisy environments see [1, 7].

The performance of the (µ=µI ;λ)-ES on a noisy sphere in the limit of infinite parameter space
dimension has been analyzed in a recent paper [3]. The analysis has led to concise laws for fitness
gain and progress rate of the strategy that have attractive implications. It has been demonstrated that
for large populations noise is all but removed. Genetic repair has been shown to be the source of the
improved performance. In addition to its beneficial effect of statistical error correction first described
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by Beyer [6], in noisy environments it has the additional effect of favorably influencing the signal-to-
noise ratio by allowing for the use of higher mutation strengths. A comparison with the (1+ 1)-ES,
which is the most efficient ES on the sphere in the absence of noise, has revealed that already for
relatively moderate noise strengths the simple strategy is outperformed by the multi-parent strategy
even for small population sizes. Moreover, based on these results, in [4] it has been shown that
increasing the population size is always preferable to averaging over a number of independent fitness
function evaluations. This is an encouraging result as it shows that ES are indeed able to cope with
noise in that it is better to let them deal with it than to explicitly remove it.

Unfortunately, as will be seen in Section 4.1, for finite parameter space dimension the accuracy of
predictions afforded by the progress rate law obtained in [3] turns out to be not very good. Substantial
deviations of experimental data obtained in ES runs from predictions made under the assumption of
infinite parameter space dimension can be observed for all but the smallest population sizes. Thus it is
not clear whether the implications of the results from [3] hold in practical situations. Clearly, there is a
need for a parameter space dimension dependent progress rate formula that provides a better approx-
imation to the local performance of the (µ=µI ;λ)-ES for large but finite-dimensional search spaces.
In the present paper we derive such an approximation and discuss its implications. In particular, it is
examined whether the results obtained in the limit of infinite parameter space dimension qualitatively
hold for finite dimensional search spaces.

In Section 2 of this paper we give a brief description of the (µ=µI ;λ)-ES algorithm and outline
the fitness environment for which its performance is analyzed. Local performance measures are dis-
cussed. In Section 3 an approximation to the progress rate is developed. In the course of the derivation,
a number of simplifications need to be introduced to arrive at analytically solvable expressions. Sec-
tion 4 provides experimental evidence that the accuracy of the result is satisfactory by comparing its
predictions with data generated in real ES runs. Then we discuss results from numerical evaluations
of the approximation to the progress rate. In particular, the residual location error and the performance
of the strategy in case of optimally adapted strategy parameters are investigated. It is shown that the
superiority of recombinative strategies as opposed to single-parent strategies observed in the limit of
infinite parameter space dimension also holds in finite-dimensional search spaces, but that in contrast
to infinite-dimensional search spaces it is not possible to obtain the same efficiency as in the absence
of noise by increasing the population size. Section 5 concludes with a brief summary.

2 Algorithm, Fitness Environment, and Performance Evaluation

Section 2.1 describes (µ=µI ;λ)-ES with isotropic normal mutations applied to optimization problems
with an objective function of the form f : IRN ! IR. Adopting EA terminology, we also refer to the
objective function as fitness function. Without loss of generality, it can be assumed that the task at hand
is minimization, i.e. that high values of f correspond to low fitness and vice versa. Section 2.2 outlines
the fitness environment for which the performance of the algorithm is analyzed in the succeeding
sections, and in Section 2.3 local performance measures are discussed.

2.1 The(µ=µI;λ)-ES

As an evolutionary algorithm, the (µ=µI ;λ)-ES strives to drive a population of candidate solutions to
an optimization problem towards increasingly better regions of the search space by means of variation
and selection. Figure 1 illustrates the evolution loop that is cycled through repeatedly. The parame-
ters λ and µ refer to the number of candidate solutions generated per time step and the number of those
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Figure 1: The evolution loop. From a population
of µ candidate solutions, λ > µ descendants are
generated by means of recombination and subse-
quently subjected to mutation. Then, µ of the de-
scendants are selected to form the parental popu-
lation of the succeeding time step.

retained after selection, respectively. Obviously, λ is also the number of fitness function evaluations
required per time step. We do not bother writing down initialization schemes and termination criteria
as they are irrelevant for the analysis presented here.

Selection simply consists in retaining the µ best of the candidate solutions and discarding the
remaining ones. The comma in (µ=µ;λ) indicates that the set of candidate solutions to choose from
consists only of the λ offspring, whereas a plus would indicate that selection is from the union of the
set of offspring and the parental population. As shown in [3], plus-selection in noisy environments
introduces overvaluation as an additional factor to consider, thus rendering the analysis considerably
more complicated. Moreover, as detailed by Schwefel [21, 22], comma-selection is known to be
preferable if the strategy employs mutative self-adaptation of the mutation strength, making it the
more interesting variant to consider.

Variation is accomplished by means of recombination and mutation. As indicated by the second µ
and the subscript I in (µ=µI ;λ), recombination is global intermediate. Mutations are isotropically
normal. More specifically, let x(i) 2 IRN , i = 1; : : : ;µ, be the parameter space locations of the parent
individuals. Recombination consists in computing the centroid

hxi= 1
µ

µ

∑
i=1

x(i)

of the parental population. For every descendant y( j) 2 IRN, j = 1; : : : ;λ, a mutation vector z( j),
j = 1; : : : ;λ, which consists of N independent, normally distributed components with mean 0 and
variance σ2, is generated and added to the centroid of the parental population. That is,

y( j) = hxi+z( j):

The standard deviation σ of the components of the mutation vectors is referred to as the mutation
strength.

2.2 The Fitness Environment

Finding analytical solutions describing the performance of ES is a hopeless task for all but the most
simple fitness functions. In ES theory, a repertoire of fitness functions simple enough to be amenable
to mathematical analysis while at the same time interesting enough to yield non-trivial results and
insights has been established. The most commonplace of these fitness functions is the quadratic
sphere

f (x) =
N

∑
i=1

(x̂i� xi)
2;
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which maps vectors x = (x1; : : : ;xN)
T 2 IRN to the square of their Euclidean distance to the optimum

at parameter space location x̂ = (x̂1; : : : ; x̂N)
T. The sphere frequently serves as a model for fitness

landscapes at a stage when the population of candidate solutions is already in close vicinity to the
optimum. Other fitness landscapes such as the ridge analyzed by Oyman, Beyer, and Schwefel [16]
attempt to model features of fitness landscapes father away from the optimum. Moreover, we contend
that the fact that the sphere scales uniformly in all directions in parameter space does not severely
limit the value of the results derived below. According to results of Hansen and Ostermeier [12],
an ES with non-isotropic mutations in combination with an advanced mutation strength adaptation
algorithm such as the completely derandomized covariance matrix adaptation can transform arbitrary
convex-quadratic functions into the sphere.

While finding the optimum of a convex quadratic function such as the sphere is about the most
easy task an optimization algorithm can face, this is no longer true if there is noise involved. In what
follows it is assumed that evaluating the fitness of a candidate solution at parameter space location x is
noisy in that its perceived fitness differs from its ideal fitness f (x). This form of noise has been termed
fitness noise. It deceives the selection mechanism as it can lead to inferior candidate solutions being
selected based on their perceived fitness while superior ones are discarded. Fitness noise is commonly
modeled by means of an additive, normally distributed random term with mean zero. That is, in a
noisy environment, evaluation of the fitness function at parameter space location x yields perceived
fitness f (x)+σεzε, where zε is a standard normally distributed random variate. Quite naturally, σε is
referred to as the noise strength.

2.3 Measuring Performance

The local performance of the (µ=µI ;λ)-ES can be measured either in parameter space or in fitness
space. The corresponding performance measures are the progress rate and the expected fitness gain,
sometimes referred to as quality gain, respectively. Let (k;λ) denote the index of the offspring indi-
vidual with the kth highest perceived fitness, and define the progress vector as

hzi= 1
µ

µ

∑
k=1

z(k;λ):

Then, the centroid of the selected offspring and therefore of the parental population of the following
time step is hxi+ hzi. The expected fitness gain is the expected difference in fitness between the
centroids of the population at consecutive time steps and therefore the expected value of

∆ f

�
z(1); : : : ;z(λ)

�
= f (hxi)� f (hxi+ hzi):

The progress rate, denoted by ϕ, is the expected distance in direction of the location of the optimum
traveled in parameter space by the population’s centroid from one generation to the next and therefore
the expected value of

∆x

�
z(1); : : : ;z(λ)

�
= khxi� x̂k�khxi+ hzi� x̂k:

As detailed in [3], for the sphere the two performance measures can be made to agree in the limit N !
∞ by introducing appropriate normalizations and can be computed exactly. For finite parameter space
dimension N, the two performance measures differ and approximations need to be made to arrive at
concise results. In what follows, only the progress rate is considered as it is the more commonly
considered quantity in previous studies of ES performance.
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Figure 2: Decomposition of a muta-
tion vector z into two components zA

and zB. Vector zA is parallel to x̂�x,
vector zB is in the hyper-plane per-
pendicular to that. The starting and
end points, x and y, of the mutation
are at distances R and r, respectively,
from the location of the optimum.

While local performance measures such as the expected fitness gain and the progress rate only
describe expected rates of change from one generation to the next, under certain circumstances infor-
mation regarding longer time spans can be derived. Assuming a mechanism for the adaptation of the
mutation strength that assures a constant progress rate, Beyer [8] gives the law

R(g) = R(0) exp

�
�ϕ�

N
g

�
;

where g is the generation number, R(g) denotes the expected distance to the location of the optimum of
the centroid of the population at generation g, and ϕ� is the normalized progress rate to be computed
below, for the sphere.

3 Performance

To obtain an approximation to the progress rate of the (µ=µI ;λ)-ES on the noisy sphere, we proceed
in three steps. In Section 3.1, we introduce a decomposition of mutation vectors that has proven
useful in previous analyses. In Section 3.2, an approximation to the expected progress vector is
computed. Finally, in Section 3.3, the approximation to the expected progress vector is used to obtain
an approximation to the progress rate.

3.1 Decomposition of Mutation Vectors

The approximation to the progress rate of the (µ=µI ;λ)-ES to be derived relies on a decomposition
of mutation vectors suggested in both [5] and [19] and illustrated in Figure 2. A mutation vector z
originating at parameter space location x can be written as the sum of two vectors zA and zB, where zA

is parallel to x̂�x and zB is in the plane normal to that. In what follows, zA and zB are referred to as the
A- and B-components of vector z, respectively. Due to the isotropy of mutations, it can without loss of
generality be assumed that zA = σ(z1;0; : : : ;0)T and zB = σ(0;z2; : : : ;zN)

T, where the zi, i = 1; : : : ;N,
are independent, standard normally distributed random variates. Using elementary geometry and
denoting the respective distances of x and x+ z to the location of the optimum by R and r, it can be
seen from Figure 2 that

r2 = (R�σz1)
2 +kzBk2

= R2�2Rσz1 +σ2z2
1 +σ2

N

∑
i=2

z2
i : (1)

At this point, let us make the following two assumptions:
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1. The summand σ2z2
1 on the right hand side of Equation (1) can be neglected for performance

calculations.

2. The summand kzBk2 on the right hand side of Equation (1) can be modeled by a normal variate
with mean Nσ2 and variance 2Nσ4.

A few comments are in order to explain why these assumptions can be considered plausible. Let us
take a look at the second assumption first. The summand kzBk2 is the product of σ2 and a sum that can
for large N according to the Central Limit Theorem of Statistics be approximated by a normal variate.
We choose to model the sum by means of a normal variate with mean N and variance 2N rather than
with mean N� 1 and variance 2(N� 1) as assuming N rather than N� 1 degrees of freedom is of
little influence for large N and compensates for part of the error resulting from the first assumption.
Note that taking the variance of kzBk2 into account is what distinguishes the analysis below from the
infinite-dimensional case considered in [3]. The accuracy of the predictions for finite-dimensional
search spaces turns out to be greatly increased by this measure.

As for the first assumption, by neglecting the term quadratic in z1 we overestimate the fitness of
an individual as the term linear in z1 favors individuals with a large positive z1-component while the
term quadratic in z1 favors those individuals with a small absolute z1-component. For small mutation
strengths (σ� R), the linear term outweighs the quadratic one and the error introduced by the as-
sumption is minor. For large mutation strengths (σ� R) this is not true. However, note that the mean
of the first order statistic of λ independent realizations of a standard normal random variate grows no
faster than the square root of the logarithm of λ. Therefore, the overall influence of the z1-component
on the fitness advantage associated with mutation vector z is rather minor for high mutation strengths
and grows only slowly with λ. Therefore, the assumption can be expected not to introduce too large
an error. We feel justified in making the assumptions by the good agreement of results obtained on
the basis of the assumptions and data generated in ES runs detailed below.

Under the two assumptions, the square of the distance to the location of the optimum of point x+z
can be written as

r2 ' R2�2Rσz1 +Nσ2�
p

2Nσ2zB; (2)

where

zB '
N�kzBk2=σ2

p
2N

(3)

is standard normally distributed and the relation is asymptotically exact in the limit N ! ∞ as proven
in [3]. Let the fitness advantage associated with vector z be the difference in fitness

q(z) = f (x)� f (x+z) = R2� r2:

Then, introducing normalizations

q�(z) = q(z)
N

2R2 and σ� = σ
N
R
;

the normalized fitness advantage associated with vector z can be written as

q�(z)' σ�z1 +
σ�2

p
2N

zB�
σ�2

2
: (4)
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That is, the normalized fitness advantage is for large N approximately normally distributed with
mean �σ�2=2 and variance σ�2(1 +σ�2=2N). Note that the distribution of the normalized fitness
advantage is independent of the location in parameter space.

Selection is performed on the basis of perceived fitness rather than ideal fitness. With the definition
of fitness noise from Section 2.2 and normalization

σ�ε = σε
N

2R2 ; (5)

the perceived normalized fitness advantage associated with mutation vector z is

q�ε(z) = q�(z)+σ�εzε ' σ�z1 +
σ�2

p
2N

zB�
σ�2

2
+σ�εzε; (6)

where zε is a standard normal random variate.

3.2 Computing the Expected Progress Vector

The progress vector hzi can be written as the sum of two vectors hzAi and hzBi in very much the
same manner as shown above and as illustrated in Figure 2 for mutation vectors. The A-component
of the progress vector is the average of the A-components of the selected mutation vectors, and the
B-component is the average of the B-components of the selected mutation vectors. The expected
progress vector can be computed using a result derived in [3] that is quoted here for reference:

Theorem: Let xi, i = 1; : : : ;λ, be independent realizations of a standard normally dis-
tributed random variable, and let yi, i = 1; : : : ;λ, be independent realizations of a normal
random variable with mean zero and with variance θ2. Then, letting pk;λ denote the prob-
ability density function of the xi with the kth largest value of xi + yi, the mean of the
average of those µ of the xi with the largest values of xi + yi is

hxi= 1
µ

µ

∑
k=1

Z ∞

�∞
xpk;λ(x)dx =

cµ=µ;λp
1+θ2

;

where

cµ=µ;λ =
λ�µ

2π

�
λ
µ

�Z ∞

�∞
e�x2

[Φ(x)]λ�µ�1 [1�Φ(x)]µ�1 dx (7)

is the (µ=µ;λ)-progress coefficient known from Beyer [6].

For the sake of completeness, a proof of this theorem can be found in the appendix to this paper. Here
as in what follows, overlined quantities indicate expected values.

To compute the expected length of the A-component of the progress vector, clearly, the perceived
normalized fitness advantage from Equation (6) can be written as

q�ε(z)' σ�
�

z1 +
σ�p
2N

zB +ϑzε

�
� σ�2

2

where ϑ = σ�ε=σ� denotes the noise-to-signal ratio. As the selection mechanism is indifferent to
the linear transformation, and as σ�zB=

p
2N + ϑzε is normally distributed with mean zero and vari-

ance σ�2=2N + ϑ2, it follows from the theorem quoted above that the expected average of the z1-
components of the selected offspring and therefore the expected length of the A-component of the
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progress vector is

khzAik= hz1i=
1
µ

µ

∑
k=1

Z ∞

�∞
xp(k;λ)

1 (x)dx '
cµ=µ;λp

1+ϑ2 +σ�2=2N
; (8)

where p(k;λ)
1 denotes the probability density function of the z1 with the kth largest value of z1 +

σ�zB=
p

2N +ϑzε. Compared with the result obtained in [3] in the limit N ! ∞, the expected average
of the z1-components of the selected offspring is reduced by the additional third summand under the
square root that can be traced back to the variance of kzBk2.

For symmetry reasons, the orientation of the B-component of the progress vector is random in
the plane with normal vector (1;0; : : : ;0)T. To compute its expected squared length, the perceived
normalized fitness advantage from Equation (6) can be written as

q�ε(z)'
σ�2

p
2N

 
zB +

p
2N

σ�
(z1 +ϑzε)

!
� σ�2

2
:

As
p

2N(z1+ϑzε)=σ� is normally distributed with mean zero and variance 2N(1+ϑ2)=σ�2, it follows
from the theorem quoted above that the expected average of the zB values of the selected offspring is

hzBi=
1
µ

µ

∑
k=1

Z ∞

�∞
xp(k;λ)

B (x)dx '
cµ=µ;λp

1+2N=σ�2 +2Nϑ2=σ�2

=
σ�p
2N

cµ=µ;λp
1+ϑ2 +σ�2=2N

;

where p(k;λ)
B is the probability density function of the zB with the kth largest value of zB +

p
2N(z1 +

ϑzε)=σ�. Therefore, according to Equation (3), the average accepted zB vector has an expected squared
length of

hkzBk2i= 1
µ

µ

∑
k=1

z(k;λ)
B

2
' σ2

 
N�

cµ=µ;λσ�p
1+ϑ2 +σ�2=2N

!
:

The B-component of the progress vector is the average of the B-components of the selected offspring
individuals. Its expected squared length is

khzBik2 =
1
µ2

N

∑
i=2

 
µ

∑
k=1

z(k;λ)
i

!2

=
1
µ2

N

∑
i=2

µ

∑
k=1

�
z(k;λ)

i

�2
+

1
µ2

N

∑
i=2

∑
j 6=k

z( j;λ)
i z(k;λ)

i| {z }
=0

=
1
µ2

µ

∑
k=1

z(k;λ)
B

2

=
1
µ
hkzBk2i:
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All summands in the second sum in the second line are zero as the B-components of the selected
offspring individuals are independent. Thus, the expected squared length of the B-component of the
progress vector is

khzBik2 ' σ2

µ

 
N�

cµ=µ;λσ�p
1+ϑ2 +σ�2=2N

!
: (9)

Compared to the result obtained in the limit N ! ∞, it is reduced by the second term by taking the
variance of kzBk2 into account. However, it will be seen that this is more than offset by the reduction
of the expected length of the A-component outlined above.

The expected squared length of the B-component of the progress vector is reduced by a factor
of µ as compared to the expected squared lengths of the B-components of the selected offspring.
Beyer [6] has coined the term genetic repair for this phenomenon. Global intermediate recombination
acts to dampen the “harmful” B-component of mutation vectors with increasing µ while leaving the
“beneficial” A-component virtually unchanged. As a result, the strategy can be run at much higher
mutation strengths. The present analysis in combination with the discussion below shows that this is
still true in the presence of noise.

3.3 Approximating the Progress Rate

The progress rate is the expected distance covered by the centroid of the population towards the
location of the optimum in parameter space within a generation. That is, the progress rate ϕ is the
expected value of R� r, where R and r are the distances to the location of the optimum of the centroid
of the parental population and the centroid of the selected offspring, respectively. Let us introduce
normalization

ϕ� = ϕ
N
R
:

To obtain an approximation to the normalized progress rate, we make one more assumption:

3. The progress rate can be approximated as the progress associated with the expected progress
vector.

That is, we assume that fluctuations of the progress vector are of little importance for the result or
even out. Under this assumption, using Equation (1) for computing r and Equations (8) and (9) for
the expected length of the A-component and the expected squared length of the B-component therein,
and by making use of the simplifications provided by Assumptions 1 and 2, the normalized progress
rate is

ϕ�µ=µ;λ ' N

2
41�

s
1� 2σ

R
hz1i+

khzBik2

R2

3
5

' N

"
1�
s

1+
σ�2

µN
�

2cµ=µ;λσ�(1+σ�2=2µN)

N
p

1+ϑ2 +σ�2=2N

#
(10)

= N

2
41�

s
1+

σ�2

µN

s
1�

2cµ=µ;λσ�(1+σ�2=2µN)

N(1+σ�2=µN)
p

1+ϑ2 +σ�2=2N

3
5 :
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Figure 3: Normalized progress rate ϕ� as a function of normalized mutation strength σ� for a
(8=8I ;32)-ES on a 40-dimensional noisy sphere. The noise strength is σ�ε = 0:0 in the left hand
graph and σ�ε = 8:0 in the right hand graph. The solid lines display the result from Equation (11), the
crosses mark data generated in ES runs. The dashed lines represent the result for N ! ∞ obtained
in [3].

Linearizing the second square root yields

ϕ�µ=µ;λ ' N

2
41�

s
1+

σ�2

µN

 
1�

cµ=µ;λσ�(1+σ�2=2µN)

N(1+σ�2=µN)
p

1+ϑ2 +σ�2=2N

!35 ;

and after rearranging terms, we obtain

ϕ�µ=µ;λ '
cµ=µ;λσ�

�
1+σ�2=2µN

�
p

1+σ�2=µN
p

1+ϑ2 +σ�2=2N
�N

2
4
s

1+
σ�2

µN
�1

3
5 (11)

as an approximation to the progress rate of the (µ=µI ;λ)-ES on the noisy sphere. Note the formal
agreement of the result for ϑ = 0 with the result obtained by Beyer [6] for the noise-free case.

4 Discussion

In Section 4.1 the accuracy of the result obtained in the previous section is tested by comparing with
measured data from real ES runs. In Section 4.2 the conditions on noise strength and mutation strength
under which positive progress can be expected are examined and the residual location error resulting
from a fixed noise strength is discussed. Finally, in Section 4.3 the efficiency of the strategy in case of
optimally adapted parameters is investigated.

4.1 Experimental Verification

A number of assumptions and approximations that may cause doubts regarding the accuracy of the
result have been made in the derivation of Equation (11). In particular, Assumptions 1 through 3 in
Sections 3.1 and 3.3 and the linearization of the square root in Section 3.3 have introduced errors.
It is therefore necessary to evaluate the quality of the approximation by comparing with empirical
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σ�ε = 0:0 σ�ε = 2:0 σ�ε = 4:0 σ�ε = 8:0 σ�ε = 16:0

σ� = 4:0 0.039 0.001 0.035 0.008 0.027 0.017 0.040 0.018 0.032 0.007
0.003 0.000 0.009 0.001 0.014 0.002 0.005 0.000 0.002 0.004

σ� = 8:0 0.046 0.008 0.037 0.011 0.021 0.017 0.013 0.033 0.010 0.040
0.015 0.000 0.002 0.000 0.004 0.002 0.001 0.004 0.000 0.004

σ� = 12:0 0.019 0.018 0.020 0.020 0.015 0.023 0.011 0.034 0.006 0.052
0.003 0.001 0.005 0.000 0.005 0.001 0.000 0.002 0.000 0.008

σ� = 16:0 0.014 0.033 0.013 0.033 0.012 0.033 0.013 0.038 0.008 0.064
0.002 0.000 0.002 0.001 0.003 0.001 0.001 0.005 0.001 0.010

Table 1: Absolute values of the relative error of Equation (11). The four entries in each field of the
table correspond to parameter space dimensions N = 40 (upper row) and N = 400 (lower row) and
(3=3I ;10)-ES (left column) and (30=30I ;100)-ES (right column). The values have been obtained by
averaging over 200;000 steps each.
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(8=8I;32)-ES Figure 4: Normalized mutation strength σ� up to
which the expected progress is positive as a func-
tion of normalized noise strength σ�ε . The curves
correspond to a (2=2I ;8)-ES, a (4=4I ;16)-ES, and
a (8=8I ;32)-ES for parameter space dimensions
N = 40 (dotted lines), N = 400 (dashed lines),
and N ! ∞ (solid lines). The expected progress
is positive for (σ�ε;σ�) combinations below the
respective curves and negative for combinations
above.

measurements. Figure 3 compares the results obtained from Equation (11) with measurements of a
(8=8I ;32)-ES at parameter space dimension N = 40 for normalized noise strengths σ�ε = 0:0 and σ�ε =
8:0. All results have been obtained by averaging over 40;000 generations. The deviations between
empirically observed values and computed values are minor. Note that as mentioned in the onset
the agreement with results that have been obtained in the limit N ! ∞ in [3] is bad in the range of
mutation strengths in which the performance is optimal.

Table 1 lists absolute values of the relative error of Equation (11) for a number of parameter
instances that are taken from across the spectrum of values that will be found to be of interest in the
following section. It can be seen that errors of no more than 6:4% have been observed, and that in
most instances the relative error is below 2%. Therefore, we do not expect qualitative differences
between results derived on the basis of Equation (11) and the behavior of the actual strategy.
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4.2 Convergence Properties

Positive progress towards the optimum can be expected only if the radicand in Equation (10) is less
than one. Straightforward calculation shows that this is the case if and only if

�
2µcµ=µ;λ

�2
>

σ�ε
2 +σ�2(1+σ�2=2N)

(1+σ�2=2µN)2
: (12)

Figure 4 shows the maximal normalized mutation strength up to which positive progress can be ex-
pected as a function of normalized noise strength for a number of strategies and parameter space
dimensionalities. In that figure, the expected progress is positive below the respective curves and
negative above. It can be observed how increasing the population size increases the size of the region
of positive expected progress. It can also be seen that the approximation obtained in [4] in the limit
of infinite parameter space dimensionality becomes increasingly inaccurate with growing population
size.

An interesting quantity to consider is the residual location error R∞. It is the steady state value of
the distance to the optimum approached by the ES after an infinite number of generations provided
that the noise strength σε is constant. It can be obtained by replacing the inequality operator in
Equation (12) by an equality, using Equation (5), and solving for R, resulting in

R∞ '

vuut Nσε

4µcµ=µ;λ

"�
1+

σ�2

2µN

�2

�
�

σ�

2µcµ=µ;λ

�2�
1+

σ�2

2N

�#�1=2

:

For vanishing normalized mutation strength, it follows

R∞ '
s

Nσε

4µcµ=µ;λ
;

showing how the residual location error can be reduced by increasing the population size.

4.3 Optimizing the Efficiency

Let ϕ̂ denote the progress rate in case of optimally adapted mutation strength. Taking the number of
fitness function evaluations as a measure for the computational costs of an optimization algorithm,
the efficiency of the (µ=µI ;λ)-ES is defined as the maximal expected progress per fitness function
evaluation

η =
ϕ̂�

λ
:

Increasing the number of offspring λ per generation is useful only if increased efficiency is a conse-
quence. In what follows, the efficiency for an optimally chosen number of parents µ given a number
of offspring λ is denoted by η̂. Both µ and λ are treated as real-valued parameters where numeri-
cal optimization methods are used to find optimal values. Naturally, rounding to integer numbers is
necessary to arrive at real strategies.

Figure 5 shows the dependency of the optimal efficiency η̂ on the number of offspring per genera-
tion λ. It has been obtained by numerically solving Equation (11) for optimal values of the normalized
mutation strength σ� and of the size of the parental population µ. It can be seen that in contrast to the
results obtained for N ! ∞ in [3], for finite parameter space dimension there is an optimal number
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Figure 5: Maximal efficiency η̂ as a function of the number of offspring per generation λ for, from
top to bottom, normalized noise strengths σ�ε = 0:0, 1:0, 2:0, 4:0, 8:0, and 16:0. The solid curves
display results for parameter space dimension N = 40, the dashed curves are the corresponding results
obtained for N ! ∞ in [3].

of offspring above which the efficiency of the strategy declines. The choice of the parameter λ of
the strategy becomes less critical with increasing noise strength as the maximum becomes less pro-
nounced. It can also be seen from Figure 5 that for finite N, in contrast to the infinite-dimensional
case, the efficiency cannot be increased to the maximal value that can be achieved in the absence of
noise by increasing the population size.

In Figure 6, the optimal number of offspring per generation λ̂ is shown a function of the nor-
malized noise strength σ�ε and as a function of the search space dimension N. The values have been
obtained by numerical optimization of Equation (11). The curves show that the optimal number of
offspring increases with increasing noise strength and with increasing search space dimension and
demonstrate that overall, optimal values of λ are relatively small compared to the search space dimen-
sion N. Note that in the limit N ! ∞, increasing λ is always beneficial. An interesting aspect not
shown in the figure is that for all search space dimensions and all noise strengths examined, the opti-
mal truncation ratio µ=λ in case of optimally chosen λ is very close to 0:27, the value that is known to
be optimal in the absence of noise in the limit N ! ∞.

In Figure 7, the maximal efficiency η̂ is shown as a function of normalized noise strength σ�ε . The
curves show a clear decline of the maximal efficiency with increasing noise strength if the parameter
space dimensionality is finite. However, except for very low noise strength, the maximal efficiency
of the (1+ 1)-ES that has been derived in [2] and that is included in the graph for reference is far
exceeded. The reason for this gain in efficiency is the presence of genetic repair in the multi-parent
strategy. In the noisy environment it not only results in statistical error correction but also affords
the additional benefit of an increased signal-to-noise ratio by means of increased mutation strengths.
The strong preference for recombinative multi-parent strategies over point-based strategies in noisy
environments that has been found in [3] in the limit of an infinite-dimensional search space thus holds
in finite-dimensional search spaces as well.
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5 Conclusion

An asymptotically exact approximation to the progress rate of the (µ=µI ;λ)-ES on a noisy sphere has
been developed for large but finite parameter space dimensionality. The accuracy of the approximation
has been verified numerically. It has been shown that the progress rate law derived in [3] in the limit
of infinite parameter space dimensionality is insufficient to characterize the behavior of the strategy
in finite-dimensional search spaces. While it has been demonstrated that in contrast to the infinite-
dimensional case the efficiency attainable in the absence of noise cannot be achieved by increasing
the population size if the parameter space dimensionality is finite, the superiority of recombinative
multi-parent strategies over point-based strategies in noisy environments has been confirmed. It has
been demonstrated that there is an optimal population size above which the efficiency of the algorithm
declines, and that with increasing noise strength, the optimal population size increases while its choice
becomes less critical.

Future work includes analyzing the effects of noise on self-adaptive mechanisms. Adaptation of
the mutation strength is crucial for the performance of the ES, and the influence of noise on self-
adaptive mechanisms is largely ununderstood. It is expected that the ground work laid in this article
forms a corner stone in the analysis of self-adaptive ES in noisy environments.

Appendix

Let the conditions stated in the theorem in Section 3.2 hold, and let

hxi= 1
µ

µ

∑
k=1

Z ∞

�∞
xpk;λ(x)dx (13)

denote the mean of the average of those µ of the xi with the largest values of xi + yi. Determining
the density pk;λ of the xi with the kth largest value of xi + yi requires the use of order statistics. The
terms xi + yi are independently normally distributed with mean 0 and variance 1 + θ2. The value
of xi + yi is for given xi = x normally distributed with mean x and variance θ2. For an index to have
the kth largest value of xi + yi, k� 1 of the indices must have larger values of xi + yi, and λ� k must
have smaller values of xi + yi. As there are λ times k�1 out of λ�1 different such cases, it follows

pk;λ(x) =
1

2πθ
λ!

(λ� k)!(k�1)!
e�

1
2 x2

Z ∞

�∞
exp

 
�1

2

�
y� x

θ

�2
!

�
Φ
�

yp
1+θ2

��λ�k �
1�Φ

�
yp

1+θ2

��k�1

dy (14)

for the density of the xi with the kth largest value of xi + yi.
Inserting Equation (14) into Equation (13) and swapping the order of integration and summation

it follows

hxi= 1
2πµθ

Z ∞

�∞
xe�

1
2 x2

Z ∞

�∞
exp

 
�1

2

�
y� x

θ

�2
!

µ

∑
k=1

λ!
(λ� k)!(k�1)!

�
Φ
�

yp
1+θ2

��λ�k �
1�Φ

�
yp

1+θ2

��k�1

dydx:
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Using the identity (compare [8], Equation (5.14))

µ

∑
k=1

λ!
(λ� k)!(k�1)!

Pλ�k [1�P]k�1 =
λ!

(λ�µ�1)!(µ�1)!

Z P

0
zλ�µ�1[1� z]µ�1dz

it follows

hxi= λ�µ
2πθ

�
λ
µ

�Z ∞

�∞
xe�

1
2 x2

Z ∞

�∞
exp

 
�1

2

�
y� x

θ

�2
!

Z Φ(y=
p

1+θ2)

0
zλ�µ�1[1� z]µ�1dzdydx:

Substituting z = Φ(u=
p

1+θ2) yields

hxi= λ�µ
p

2π3θ
p

1+θ2

�
λ
µ

�Z ∞

�∞
xe�

1
2 x2

Z ∞

�∞
exp

 
�1

2

�
y� x

θ

�2
!

Z y

�∞
exp

�
�1

2
u2

1+θ2

��
Φ
�

up
1+θ2

��λ�µ�1�
1�Φ

�
up

1+θ2

��µ�1

dudydx;

and changing the order of the integrations results in

hxi= λ�µ
p

2π3θ
p

1+θ2

�
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µ

�Z ∞
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2
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dydxdu:

The inner integrals can easily be solved. It is readily verified that

1p
2πθ

Z ∞

�∞
xe�

1
2 x2

Z ∞

u
exp
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2

�
y� x

θ

�2
!

dydx =
1p
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exp
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2

�
up

1+θ2

�2
!
:

Therefore,

hxi= λ�µ
2π(1+θ2)

�
λ
µ

�Z ∞

�∞
exp

�
� u2

1+θ2

�
�
Φ
�

up
1+θ2

��λ�µ�1�
1�Φ

�
up

1+θ2

��µ�1

du:

Using substitution x = u=
p

1+θ2 it follows

hxi= λ�µ

2π
p

1+θ2

�
λ
µ

�Z ∞

�∞
e�x2

[Φ(x)]λ�µ�1 [1�Φ(x)]µ�1 dx

=
cµ=µ;λp
1+θ2

;

where cµ=µ;λ denotes the (µ=µ;λ)-progress coefficient defined in Equation (7). q.e.d.
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