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Abstract

The takeover time of some selection method is

the expected number of iterations of this selec-

tion method until the entire population consists of

copies of the best individual under the assumption

that the initial population consists of a single copy

of the best individual. We consider a class of non-

generational selection rules that run the risk of loos-

ing all copies of the best individual with positive

probability. Since the notion of a takeover time is

meaningless in this case these selection rules are

modi�ed in that they undo the last selection opera-

tion if the best individual gets extinct from the pop-

ulation. We derive exact results or upper bounds

for the takeover time for three commonly used se-

lection rules via a random walk or Markov chain

model. The takeover time for each of these three

selection rules is O(n logn) with population size n.

1. Introduction

The notion of the takeover time of selection meth-

ods used in evolutionary algorithms was introduced

by Goldberg and Deb [1]. Suppose that a �nite pop-

ulation of size n consists of a single best individual

and n � 1 worse ones. The takeover time of some

selection method is the expected number of itera-

tions of the selection method until the entire popu-

lation consists of copies of the best individual. Evi-

dently, this de�nition of the takeover time becomes

meaningless if all best individuals may get extinct

with positive probability. Therefore we study a spe-

ci�c modi�cation of those selection rules: If the all

best individual have been erased by erroneous se-

lection then these selection rules undo this extinc-

tion by reversing the last selection operation. Here,

we concentrate on non-generational selection rules.

For such rules Smith and Vavak [2] numerically de-

termined the takeover time or takeover probability

based on a Markovian model whereas Rudolph [3]

o�ered a theoretical analysis via the same Marko-

vian model. This work is an extension of [2, 3] as

the modi�ed selection rules introduced here have

not been considered yet.

Section 2 introduces the particular random walk
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model, which re
ects our assumptions regarding the

selection rules, and our standard machinery for de-

termining the takeover time or bounds thereof. Sec-

tion 3 is of preparatory nature as it contains sev-

eral auxiliary results required in section 4 in which

our standard machinery is engaged to provide the

takeover times for our modi�cations of random re-

placement selection, noisy binary tournament se-

lection, and \kill tournament" selection. Finally,

section 5 relates our �ndings to results previously

obtained for other selection methods.

2. Model

Let Nt denote the number of copies of the best indi-

vidual at step t � 0. The random sequence (Nt)t�0
with values in S = f1; 2; : : : ; ng and N0 = 1 is

termed a Markov chain if

PfNt+1 = j jNt = i; Nt�1 = it�1; : : : ; N0 = i0g =

PfNt+1 = j jNt = ig = pij

for all t � 0 and for all pairs (i; j) 2 S � S. Since

we are only interested in non-generational selection

rules the associated Markov chains reduce to par-

ticular random walks that are amenable to a the-

oretical analysis. These random walks are charac-

terized by the fact that jNt � Nt+1j � 1 for all

t � 0 as a non-generational selection rule chooses|

somehow|an individual from the population and

decides|somehow|which individual should be re-

placed by the previously chosen one.

Two special classes of random walks were consid-

ered in [3] in this context. Here, we need another

class re
ecting our assumption that the selection

rules undo a potential extinction of the best individ-

ual by reversing the last selection operation. This

leads to a random walk with one re
ecting and one

absorbing boundary which is a Markov chain with

state space S = f1; : : : ; ng and transition matrix

P =

0
BBBBBBBBB@

r1 q1 0 � � � 0

p2 r2 q2 0 � � � 0

0 p3 r3 q3 0 � � � 0
...

. . .
. . .

. . .
. . .

. . .
...

0 � � � 0 pn�2 rn�2 qn�2 0

0 � � � 0 pn�1 rn�1 qn�1
0 � � � 0 0 1

1
CCCCCCCCCA

1



with pi; qi > 0, ri � 0, pi + ri + qi = 1 for i =

2; : : : ; n � 1 and r1 = 1 � q1 2 (0; 1). Notice that

state n is the only absorbing state. The expected

absorption time is E[T jN0 = k ] with T = minft �

0 : Nt = ng and it can be determined as follows [4].

Let matrix Q result from matrix P by deleting its

last row and column. If C is the inverse of matrix

A = I�Q with unit matrix I, then E[T jN0 = k ] =

ck1+ck2+� � �+ck;n�1 for 1 � k < n. Since N0 = 1 in

the scenario considered here, we only need the �rst

row of matrix C = A�1 which may be obtained via

the adjugate of matrixA. This avenue was followed

in Rudolph [5] for a more general situation. Using

the result obtained in [5] (by setting p1 = 0) we

immediately get

c1j =

n�j�1X
k=0

0
@ n�k�1Y

u=j+1

pu

1
A
 

n�1Y
v=n�k

qu

!

n�1Y
k=j

qk

(1)

for 1 � j � n � 1. Thus, the plan is as follows:

First, derive the transition probabilities for a non-

generational selection rule that ful�lls our assump-

tions. This is usually easy. Next, these expressions

are fed into equation (1) yielding c1j. The result

may be a complicated formula; in this case it will

be bounded in an appropriate manner. Finally, we

determine the sum

E[T jN0 = 1 ] =

n�1X
j=1

c1j

and we are done. For the sake of notational conve-

nience we shall omit the conditioning fN0 = 1g and

write simply E[T ] for the expected takeover time.

3. Mathematical Prelude

In case of positive integers the Gamma function �(�)

obeys the relationships n�(n) = �(n+1) = n!. For

later purposes we need the following results:

Lemma 1 For n 2 IN,

n�1X
k=0

�(n+ k + 1)

�(k + 1)
=

�(2n+ 1)

(n + 1)�(n)
:

Proof: See [3], p. 905.

Lemma 2 Let n � 2 and 1 � j � n � 1. Then

S(n; j) =
n2 �(n� j) �(n + j)

�(j + 1)�(2n� j + 1)

n�j�1X
k=0

dk �
1

2
+

1

4n

where

dk =
�(n+ k + 1)�(n� k)

�(2n� k) �(k + 1)
:

Proof: Due to lack of space we only o�er a sketch

of the proof. First show that S(n; 0) � S(n; j) for

j = 1; : : : ; n� 1 and n � 2. Since the bound

2S(n; 0) = n
�(n)2

�(2n)

n�1X
k=0

dk � 1 +
1

2n

follows from [3], pp. 907-908, division by 2 yields

the result desired.

Moreover, the nth harmonic number Hn can be

bracketed by

logn < Hn =

nX
i=1

1

i
< logn+ 1

for n � 2 and notice that

nX
i=0

an�i bi =
an+1 � bn+1

a� b

for a 6= b. Finally some notation: The set Inm de-

notes all integers between m and n (inclusive).

4. Analysis

4.1. Random Replacement Selection

Two individuals are drawn at random and the bet-

ter one of the pair replaces a randomly chosen in-

dividual from the population. If the last best indi-

vidual was erased by chance then the last selection

operation is reversed. As a consequence, the tran-

sition probabilities of the associated Markov chain

are pnn = 1, p11 = 1� p12,

8i 2 In�11 : pi;i+1 =
i

n

�
2�

i

n

� �
1�

i

n

�

8i 2 In�12 : pi;i�1 =

�
1�

i

n

�2
i

n

and pii = 1 � pi;i�1 � pi;i+1. Since pi = pi;i�1,

qi = pi;i+1 and

n�1Y
v=n�k

qv =
1

n3k+1
�(n+ k + 1)�(k + 1)

�(n� k)
(2)

n�k�1Y
u=j+1

pu =
1

n3 (n�k�j�1)
�(n � j)2

�(j + 1)

�(n � k)

�(k + 1)2

one obtains

n�j�1X
k=0

0
@ n�k�1Y

u=j+1

pu

1
A
 

n�1Y
v=n�k

qu

!
=

1

n3 (n�j�1)+1
�(n� j)2

�(j + 1)

n�j�1X
k=0

�(n+ k + 1)

�(k + 1)
=

2



1

n3 (n�j�1)+1
�(n� j)

�(j + 1)

�(2n� j + 1)

n + 1
(3)

with the help of Lemma 1. Insertion of k = n � j

in equation (2) leads to

n�1Y
v=j

qv =
�(2n� j + 1)�(n� j + 1)

n3 (n�j)+1 �(j)
: (4)

After insertion of equations (3) and (4) in equation

(1) we have

c1j =
n3

n+ 1
�

1

j
�

1

n� j
=

n2

n+ 1

�
1

j
+

1

n� j

�

and �nally

E[T ] =

n�1X
j=1

c1j =
2n2

n+ 1
Hn�1 :

4.2. Noisy Binary Tournament Selection

Two individuals are drawn at random and the best

as well as worst member of this sample is identi�ed.

The worst member replaces the best one with some

replacement error probability � 2 (0; 1
2
), whereas

the worst one is replaced by the best one with prob-

ability 1� �. Again, if the last best copy has been

discarded then the last selection operation is re-

versed. Therefore the transition probabilities are

as follows: pnn = 1, p12 = s1 (1� �), p11 = 1� p12
and pi;i+1 = si (1 � �), pi;i�1 = si �, pii = 1 � si
for i = 2; : : : ; n� 1. Here, si denotes the probabil-

ity that the sample of two individuals contains at

least one best as well as one worse individual from

a population with i = 1; : : : ; n�1 copies of the best

individual, i.e.,

si = 1�

�
i

n

�2

�

�
1�

i

n

�2

= 2
i

n

�
1�

i

n

�
:

According to equation (1) we need

n�1Y
v=n�k

qv =

�
2 (1� �)

n2

�k
�(n) �(k + 1)

�(n� k)

n�k�1Y
u=j+1

pu =

�
2�

n2

�2(n�j�1�k)
�(n � k)�(n� j)

�(k + 1)�(j + 1)

leading to

n�j�1X
k=0

0
@ n�k�1Y

u=j+1

pu

1
A
 

n�1Y
v=n�k

qu

!
=

2n�j�1

n2 (n�j�1)
�

�(n) �(n� j)

�(j + 1)

n�j�1X
k=0

�n�j�1�k(1��)k =

2n�j�1

n2 (n�j�1)
�

�(n) �(n� j)

�(j + 1)
�

(1� �)n�j � �n�j

1� 2�
: (5)

Since

n�1Y
v=j

qv =

�
2 (1� �)

n2

�n�j

�

�(n) �(n � j + 1)

�(j)
(6)

we get by inserting equations (5) and (6) into equa-

tion (1)

c1j =
n2

2

�(j)

�(j + 1)
�

�(n� j)

�(n� j + 1)
�

(1� �)n�j � �n�j

(1� �)n�j(1� 2�)

=
n2

2
�

1

j
�

1

n� j
�

1

1� 2�
� (1� rn�j)

where r = �=(1� �) and �nally

E[T ] =

n�1X
j=1

c1j =

n2

2
�

1

1� 2�

n�1X
j=1

1

j
�

1

n � j
�

"
1�

�
�

1� �

�n�j
#
=

n

2 (1� 2�)

n�1X
j=1

�
1

j
+

1

n� j

�
�

"
1�

�
�

1� �

�n�j
#
=

n

1� 2�

2
4Hn�1 �

1

2

n�1X
j=1

rn�j

j
�

1

2

n�1X
j=1

rn�j

n� j

3
5 �

n

1� 2�

2
4Hn�1 �

1

n

n�1X
j=1

rj

3
5 =

n

1� 2�

�
Hn�1 �

1

n
�

r � rn

1� r

�
�

nHn�1

1� 2�

where r = �=(1 � �) 2 (0; 1). The above bound

is very accurate if � is not too close to 1=2. For

example, for

� =
1

2
�

1

2nk

this bound yields E[T ] � nk+1Hn�1 for k � 0

whereas the worst case (� = 1=2) reveals1 that

E[T ] � n2Hn�1 for � 2 [0; 1=2]. Moreover, no-

tice that we get E[T ] = nHn�1 in the best case

(� = 0) [3].

4.3. \Kill Tournament" Selection

This selection method proposed in [2] is based on

two binary tournaments: In the �rst tournament

the best individual is identi�ed. This individual re-

places the worst individual identi�ed in the second

tournament (the \kill tournament"). If the last best

copy gets lost then the last selection operation is

1If � = 1=2 then the entire derivation collapses to simple

expressions leading to E[T ] = n
2
Hn�1.
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reversed. The transition probabilities are pnn = 1,

p11 = 1� p12,

8i 2 In�11 : pi;i+1 =
i

n

�
2�

i

n

� "
1�

�
i

n

�2#

8i 2 In�12 : pi;i�1 =

�
1�

i

n

�2 �
i

n

�2

and pii = 1 � pi;i�1 � pi;i+1. As in the previous

cases we require the products

n�1Y
v=n�k

qv =
�(n+ k + 1)�(k + 1)�(2n)

n4k+1�(n � k) �(2n� k)

n�k�1Y
u=j+1

pu =
1

n4 (n�j�1�k)
�(n� k)2 �(n� j)2

�(j + 1)2 �(k + 1)2

to evaluate the sum

n�j�1X
k=0

0
@ n�k�1Y

u=j+1

pu

1
A
 

n�1Y
v=n�k

qu

!
=

�(n � j)2 �(2n)

n4 (n�j�1)+1�(j + 1)2

n�j�1X
k=0

dk (7)

with

dk =
�(n+ k + 1)�(n� k)

�(2n� k) �(k + 1)
:

Since

n�1Y
v=j

qv =
�(2n� j + 1)�(n� j + 1)�(2n)

n4 (n�j)+1 �(j) �(n+ j)
(8)

insertion of (7) and (8) in (1) yields

c1j =
n4

j (n� j)

�(n � j) �(n + j)

�(j + 1)�(2n� j + 1)

n�j�1X
k=0

dk

�

n2

j (n� j)
�

�
1

2
+

1

4n

�
(9)

=

�
1

j
+

1

n� j

� �
n

2
+

1

4

�

and �nally

E[T ] =

n�1X
j=1

c1j �

�
n+

1

2

�
Hn�1 :

Here, the inequality in (9) follows from Lemma 2.

5. Summary

Now we are in the position to compare the takeover

times of the selection methods considered here with

those examined in [3]. Table 1 o�ers an overview of

the takeover times of replace worst selection (RW ),

quaternary (QT ), ternary (TT ) and binary (BT )

selection method takeover time

QT �
1
2
nHn�1

RW �
1
2
nH2n�1

TT 2
3
nHn�1

BT nHn�1

KTu � (n + 1
2
)Hn�1

BTu(
1
4
) � 2nHn�1

RRu
2n2

n+1
Hn�1

BTu(
1
2
) n2Hn�1

Table 1: Survey of takeover times.

tournament selection with � = 0 [3], and kill tour-

nament \with undoing" (KTu), random replace-

ment selection \with undoing" (RRu) and noisy bi-

nary tournament selection \with undoing" and re-

placement error � (BTu(�)). For �xed � < 1=2

the takeover times of all non-generational selec-

tion rules considered here and in [3] are of order

O(n logn). Consequently, it does not matter which

selection rule is used, provided that the takeover

time is actually a key �gure of the selection pres-

sure.
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