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Abstract

Evolutionary algorithms are randomized search heuristics, which are often used
as function optimizers. In this paper the well-known (1+1) Evolutionary Al-
gorithm ((1+1) EA) and its multistart variants are studied. Several results on
the expected runtime of the (1+1) EA on linear or unimodal functions have
already been presented by other authors. This paper is focused on quadratic
pseudo-boolean functions, i. e., functions of degree 2. Whereas quadratic pseudo-
boolean functions without negative coefficients can be optimized efficiently by
the (1+1) EA, there are quadratic functions for which the expected runtime is
exponential. However, multistart variants of the (1+1) EA are very efficient for
many of these functions. This is not the case with a special quadratic function
for which the (1+1) EA requires exponential time with a probability exponen-
tially close to 1. At last, some necessary conditions for exponential runtimes
are examined, and an “easy” subclass within the class of quadratic functions is
presented.

Keywords: Evolutionary algorithms, evolution strategies, quadratic functions,
boolean functions, complexity analysis
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1 Introduction

Evolutionary algorithms are randomized search heuristics which are applied in nu-
merous areas such as function optimization, machine learning etc. Since their origin
in the late 1960s, many flavors of evolutionary algorithms have emerged, amongst
them Evolution Strategies [Sch95], Evolutionary Programming [Fog95], Genetic Algo-
rithms [Hol75, Gol89], and Genetic Programming [Koz92]. Although their seemingly
robust behavior in various optimization tasks was confirmed by many experiments, a
solid and comprehensive theory of evolutionary algorithms is still missing. Therefore,
we concentrate on the simplest variant of evolutionary algorithms, a (1+1) evolution
strategy with Boolean inputs, the so-called (1+1) EA. Our credo is that theoretical
results concerning the efficiency of the (1+1) EA can predict an average behavior of
evolutionary algorithms incorporating larger populations, since we expect that larger
populations can be imitated by parallel executions of the (1+1) EA, i. e., by multistart
strategies. Moreover, thereby we examine an instance of evolution strategies lacking
any crossover operator, which simplifies the analysis involved considerably. We do not
believe that crossover can decrease the runtime of evolutionary algorithms significantly
if we restrict the class of considered functions to pseudo-boolean functions of degree 2.
In general, it is hard to analyze the crossover operator, and—to our knowledge—up
to now only one formal proof demonstrating a helpful influence of crossover is known
(see [JW99]). In all, we expect an exhaustive theory of the (1+1) EA, regarding vary-
ing functions input into the (1+1) EA, to provide insight into many aspects of the
performance of more complicated evolutionary algorithms.

First, we state a formal definition of the (1+1) EA.

Definition 1 The (1+1) EA on pseudo-boolean fitness functions f : {0, 1}n → R is
given by:

1. Set pm := 1/n.

2. Choose randomly an initial bit string x ∈ {0, 1}n.

3. Repeat the following mutation step:

(a) Compute x′ by flipping independently each bit xi with probability pm.

(b) Replace x by x′ iff f(x′) ≥ f(x).

Since we want the (1+1) EA to be an universal optimization strategy regardless of
the fitness function, we omit a stopping criterion and are only interested in the first
point of time Xf at which the (1+1) EA has created an optimal bit string, i. e., an
x ∈ {0, 1}n such that f(x) is maximal1. We denote the expected value of Xf as the
expected runtime of the (1+1) EA. Besides, we often consider the so-called success
probability sf (t), which indicates the probability that the (1+1) EA is able to find the
global optimum of f within t, t ∈ N, steps. If, for small values of t, sf (t) is not too
small (e. g., constant or even bounded below by 1/poly(n)), the expected runtime Xf

1W. l. o. g., we assume f to be maximized, since otherwise we may replace f by −f .

2



may well be exponential, although multistart strategies with an appropriate number
of parallel instances of the (1+1) EA normally behave efficiently.

A common approach in analyzing the behavior of the (1+1) EA is studying its
expected runtimes and its success probabilities on different fitness functions or, more
generally, on different classes of fitness functions. Distinguishing fitness functions
according to their degree seems to be one of the simplest and most natural ways of
classifying them. Formally, we define the degree of a fitness function with respect to
its unique representation as a polynomial.

Definition 2 With a fitness function f : {0, 1}n → R we identify its unique repre-
sentation as a polynomial, i. e.,

f(x1, . . . , xn) =
∑

I⊆{1,...,n}
cf (I) ·

∏
i∈I

xi

with coefficients cf (I) ∈ R.

Definition 3 The degree of f is defined as

deg(f) := max{i ∈ {0, . . . , n} | ∃I with |I| = i and cf (I) 
= 0} .

Functions of degree 0 are constant and thus are optimized trivially. The simplest
and yet interesting class of fitness functions is the class of linear functions, which
already has been subject to intense research by Droste, Jansen, and Wegener. In
[DJW98b] they prove the upper and lower bound Θ(n lnn) on the expected runtime of
the (1+1) EA for all linear functions. Furthermore, they give hints on the optimality
of the choice of the mutation probability p := 1/n at least with respect to linear
functions. On the other hand, they illustrate that already functions of degree 2 as well
as unimodal functions (cf. Definition 8) cause the (1+1) EA to take an exponential
expected number of steps. In this paper, we intend to examine the behavior of the
(1+1) EA on quadratic functions in more detail.

In Section 2, we introduce some basic conventions and techniques which will be
utilized throughout the paper. Especially, a simple method for showing upper bounds
on expected runtimes is presented.

Section 3 deals with a specific subclass of quadratic functions, i. e., quadratic func-
tions having only non-negative coefficients. They are in fact easy for the (1+1) EA in
that the expected runtime is bounded by a polynomial.

As opposed to this result, in Section 4 we depict a simple quadratic function
with negative coefficients which makes the (1+1) EA work for an exponential number
of steps on average. Nonetheless, it does not constitute any problem to multistart
variants of the (1+1) EA.

Thereafter, in Section 5, we undertake some studies on the structure of quadratic
functions. A formal proof demonstrates that quadratic functions which are separable
into linear functions defined on small domains cannot provoke exponential expected
runtimes of the (1+1) EA.

Due to the NP-completeness of maximization of quadratic functions, we do not
expect the (1+1) EA or its multistart variants to operate efficiently on quadratic
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functions in any case. This is dealt with in Section 6. We present a quadratic func-
tion which causes the (1+1) EA to work for an exponential time with a probability
exponentially close to 1.

At last, Section 7 is devoted to another subclass of quadratic functions, i. e., squares
of linear functions. We demonstrate that they are not difficult to optimize at least
with respect to multistart variants of the (1+1) EA.

2 Basic Definitions and Techniques

We start off with some assumptions that we can make without loss of generality in
order to simplify the representation of pseudo-boolean functions of degree 2, i. e.,
quadratic functions.

Definition 4 A pseudo-boolean function f : {0, 1}n → R, given by f(x) = w0 +∑n
i=1 wixi +

∑n
i=1

∑n
j=i+1 wijxixj with wi, wij ∈ Z, is called quadratic.

Remark 1 Since x2 = x for x ∈ {0, 1}, we drop w. l. o. g. any squares in this rep-
resentation. The assumption wi, wij ∈ Z does not constitute any restriction either,
for real-valued coefficients may be approximated by rational ones, which in turn can
be multiplied by their smallest common denominator. As additional constant terms
have no influence on the behavior of the (1+1) EA, we assume w0 to be zero in the
following. Finally, we combine the terms wijxixj and wjixjxi as commutativity holds.

Remark 2 From now on, we shall somewhat informally speak of linear weights when
regarding the coefficients wi in the linear terms wixi, and of quadratic weights when
regarding the coefficients wij in the quadratic terms.

In order to show upper bounds on the expected runtime of the (1+1) EA on pseudo-
boolean fitness functions, we now introduce a simple proof technique which is helpful
in several cases.

Definition 5 Let f : {0, 1}n → R be a pseudo-boolean function. Given two disjoint
subsets A,B ⊆ {0, 1}n with A 
= ∅ 
= B, the relation A <f B holds iff f(a) < f(b) for
all a ∈ A and b ∈ B.

Definition 6 Let A1, . . . , Am be a partition of {0, 1}n, i. e., A1 ∪ · · · ∪Am = {0, 1}n.
(A1, . . . , Am, <f ) is called an f -based partition iff Ai 
= ∅ for all i ∈ {1, . . . ,m},
A1 <f · · · <f Am, and Am merely consists of optimal vectors, i. e., f(a) = max{f(x) |
x ∈ {0, 1}n} for all a ∈ Am.

Definition 7 Let (A1, . . . , Am, <f ) be an f-based partition. For a ∈ Ai, i < m,
let s(a) be the probability that a mutation of the (1+1) EA leads from a to an a′ ∈
Ai+1 ∪ · · · ∪Am. Besides, let si denote the minimum of s(a) for all a ∈ Ai.
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Lemma 1 Given an f-based partition, let p(Ai) be the probability that the initial bit
string of the (1+1) EA belongs to Ai. Then the following upper bound on the expected
runtime E(Xf ) on the corresponding function f holds:

E(Xf ) ≤
m−1∑
i=1

p(Ai)(s−1
i + · · · + s−1

m−1) ≤ s−1
1 + · · · + s−1

m−1 .

Proof: Since Ai will be reached never again once the (1+1) EA has left Ai, si consti-
tutes a lower bound on the probability of leaving Ai. Thus s−1

i yields an upper bound
on the expected number of steps until a string belonging to Ai+1∪· · ·∪Am is created.

✷

Of course, we do not expect the upper bounds gained by this technique to be tight
in general. They particularly depend on a reasonable choice of the f -based partition.
However, it is surprising how many tight or at least almost tight bounds can be
obtained by this simple technique. For instance, we will make use of it in the next
section to show a polynomial upper bound for a specific class of functions.

Concluding this section, we state a formal definition of unimodality, which is con-
sidered to be a property that makes a function easy to optimize. This claim is at least
true with unimodal quadratic functions.

Definition 8 A function f : {0, 1}n → R is called unimodal iff it only has one local
maximum, i. e.,

∀x ∈ {0, 1}n, x suboptimal : ∃x′ ∈ {0, 1}n with H(x, x′) = 1 and f(x′) > f(x) ,

where H(x, x′) :=
∑n

i=1|xi − x′
i| is the Hamming distance of the bit strings x and x′.

3 Quadratic Functions without Negative Weights

As mentioned in the previous section, quadratic functions whose weights are positive
have the property of being unimodal. (For the function to be unimodal, it is even
sufficient that merely the linear weights are positive. An arbitrary number of quadratic
weights may be zero.) In the following section, we consider quadratic functions with
non-negative weights. By allowing arbitrary weights to be zero, the corresponding
functions are not necessarily unimodal any more. However, as long as a global optimum
has not yet been reached, there is a mutation flipping at most two bits which increases
the function value. That guarantees an expected runtime of at most O(n4) steps.

Proposition 1 Let f : {0, 1}n → R be a quadratic pseudo-boolean function having
only non-negative weights. Furthermore, let N denote the number of positive, i. e.,
non-zero, weights. Then it takes the (1+1) EA an expected time of at most O(Nn2)
to optimize f .
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Proof: We sort all N ≤ (
n
2

)
+ n weights differing from zero according to a decreasing

order, represented by the sequence w∗
1 ≥ · · · ≥ w∗

N . By means of this sequence, we
define N sets Ai, i ∈ {0, . . . , N − 1}, partitioning the domain {0, 1}n, according to

Ai := {x | w∗
1 + · · · + w∗

i ≤ f(x) < w∗
1 + · · · + w∗

i+1} .

Besides, set AN := {(1, . . . , 1)}. This is an f -based partition, for all w∗
i are positive.

In order to apply Lemma 1, a lower bound on the corresponding probabilities si,
i ∈ {0, . . . , N − 1}, remains to be proven. Since the w∗

i are decreasing, the following
claim holds for all a ∈ Ai and all i ∈ {0, . . . , N − 1}: There is a mutation flipping at
most two bits simultaneously which creates an a′ ∈ {0, 1}n from a such that a′ belongs
to Ai+1 ∪ · · · ∪ AN . First, we see that at least one of the weights w∗

1 , . . . , w
∗
i+1 is not

“activated”, which means that the variable(s) appearing in the monomial which bears
the weight we consider is/are zero. Otherwise, if all w∗

1 , . . . , w
∗
i+1 were activated, the

bit string a would pertain to Ai+1 ∪ · · · ∪ AN . Secondly, we may activate a weight
by flipping at most two bits from zero to one because f is a quadratic function, i. e.,
all monomials contain at most two variables. Since no weight is negative, thereby the
value of f is increased by at least w∗

i+1. The probability of flipping two specific bits
simultaneously is bounded below by (1 − 1/n)n−2 · n−2 ≥ e−1n−2 = Ω(n−2) and the
probability of flipping exactly one specific bit is even larger. Summing up the expected
times O(n2) for all N sets, the proposition follows. ✷

Remark 3 We may view the index i of the set Ai to which a bit string a belongs as
the minimal number of ones in a bit string which, on the imaginary linear function
g(x) =

∑N
j=1 w∗

jxj , yields a function value of at least w∗
1 +· · ·+w∗

i . As m ones activate
at most

(
m
2

)
+m weights of the quadratic function f , the corresponding bit string must

contain at least
√

i ones. Hence n2 increases of i are sufficient to reach the optimal
bit string.

Remark 4 We do not expect to find a quadratic function with non-negative weights
which takes the (1+1) EA an expected number of Ω(n4) steps to optimize. However,
we believe that a smaller lower bound would require much more effort in order to
be shown. This is due to the following property of our technique from Lemma 1.
By a partition of {0, 1}n, which respects the relation “<f ”, it guarantees a kind of
“progress” which will never be lost once having reached Ai. In contrast, using another
kind of progress measure such as the number of ones in the current bit string might
inevitably result in the analysis of a random walk. (Recall that the number of ones
in a bit string normally does not determine the value of the function.) Although we
suppose that an analysis regarding the number of ones in the current bit string will
provide a better upper bound, we believe that taking into account the number of ones
would lead to a proof being as difficult as the proof of the upper bound for linear
functions by Droste, Jansen and Wegener (cf. [DJW98b]).

Of course, the probability of flipping k possibly selected bits is bounded below by
Ω(n−k). Thus the following corollary for functions of degree k holds.
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Corollary 1 Let f : {0, 1}n → R be a pseudo-boolean function of degree k which only
has non-negative weights. Besides, let N denote the number of positive weights. Then
it takes the (1+1) EA an expected time of at most O(Nnk) to optimize f .

We have seen that quadratic functions without negative weights are optimized by the
(1+1) EA quite efficiently. Clearly, a trivial algorithm always outputting (1, . . . , 1)
would even solve this task in constant time. However, our result holds for all quadratic
functions obtained by replacing some xi by (1 − xi) (implying that each a ∈ {0, 1}n

can be optimal). Moreover, we are considering the scenario of black box optimization
here implying that the specific nature of the fitness function is not known.

Optimization of quadratic pseudo-boolean functions becomes an NP-hard prob-
lem as soon as general negative weights are allowed. The NP-completeness of the
corresponding decision problem can be demonstrated by a simple reduction from the
NP-complete MAX-2-SAT problem (cf. [GJ79]). Thus we are convinced that there
are quadratic functions which cause the simple (1+1) EA to fail, i. e., to take an ex-
ponential expected runtime. In the next sections, we will deal with some functions
which, in this respect, prove to be difficult.

4 A Simple Quadratic Function with Expected Run-
time Ω(nn)
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Figure 1: Plot of Crossing for n = 20

By constructing a quadratic function which is essentially a combination of two
linear functions that are, in a sense, “opposed” to each other, we are able to deceive
the (1+1) EA and to provoke an exponential expected runtime.
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Definition 9 The function Crossing : {0, 1}n → R is defined by

Crossing(x) = (2n− 1)x1 +
n∑

i=2

2xi +
n∑

i=2

(−4)x1xi .

Subject to the assignment of x1, Crossing resolves into two different linear functions
on x2, . . . , xn. If x1 = 0, we obtain

f0(x2, . . . , xn) = 2 · (x2 + · · · + xn) ,

i. e., 2 ·OneMax(x2, . . . , xn). (OneMax was introduced by Mühlenbein [Müh92]. For
an extensive examination cf. [Rud97].) If x1 = 1, we have

f1(x2, . . . , xn) = (2n− 1) − 2 · (x2 + · · · + xn) ,

corresponding with (2n − 1) − 2 · OneMax(x2, . . . , xn). Obviously, Crossing takes
its maximum value 2n − 1 on (1, 0, . . . , 0), but owns a local maximum in (0, 1, . . . , 1)
with the value 2n − 2 (see also Figure 1). Already the probability 2−n of starting in
(0, 1, . . . , 1) suffices to show an exponential runtime of at least (n/2)n. In order to cross
the “Hamming cliff” at (0, 1, . . . , 1), it is necessary to flip all n bits at once, which has
probability n−n. The expected waiting time for this event equals nn. Moreover, we are
able to prove that on the one hand, exponential runtimes occur with high probability,
but on the other hand, polynomial runtimes occur at least as often as exponential
ones.

Proposition 2 With a probability of at least 1/4 − ε, ε > 0 arbitrarily small, the
(1+1) EA requires Ω(nn) steps to optimize Crossing. But the probability of reach-
ing the global optimum within O(n log n) steps is bounded below by 1/4 − ε′, ε′ > 0
arbitrarily small.

Proof: With probability 1/2, the initial bit string x∗ has its bit x∗
1 set to 1. Indepen-

dently thereof, the bits x∗
2, . . . , x

∗
n contain at least (n− 1)/2 + (n− 1)1/4 ones with a

probability of at least 1/2 − o(1). This follows from the fact that the number of ones
is binomially distributed according to n − 1 and 1/2. By Stirling’s formula, we see
that x∗ contains exactly k ones among x∗

2, . . . , x
∗
n with a probability bounded above by

O(n−1/2) for all k ∈ {0, . . . , n − 1}. Therefore, the probability of initializing x∗ with
at least (n− 1)/2 and less than (n− 1)/2 + (n− 1)1/4 ones in the positions x∗

2, . . . , x
∗
n

is bounded above by O(n−1/4).
As different positions in x∗ are initialized independently, both of the events de-

scribed above occur with probability 1/4− o(1). Subsequently, the (1+1) EA behaves
like on the linear function OneMax and takes on average cn lnn steps to reach the
global optimum unless a mutation flipping at least k := 2(n−1)1/4 bits simultaneously
is executed. The latter has a probability of at most

(
n
k

)
(1/n)k ≤ (nk/k!)n−k = 1/k!,

which yields at most 2−Ω(n1/4 log n) according to Stirling’s formula. With a probability
bounded below by 1 − c′cn lnn2−Ω(n1/4 log n) = 1 − o(1) it never happens in c′cn lnn
steps that k bits flip simultaneously. Applying Markov’s inequality, we upper bound
the probability of not reaching the global maximum of OneMax during c′cn lnn steps.
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If we choose c′ large enough, the probabilities 1/c′ + o(1) of these “errors” are at most
ε′, thus proving the second part of the proposition.

The first claim is proven by dual arguments. With a probability of at least 1/4− ε,
the (1+1) EA optimizes towards (0, 1, . . . , 1) and gets caught in the local optimum.
Thereupon it needs at least δnn − δ steps to flip all bits with a probability of at least
(1 − n−n)δ(nn−1) ≥ e−δ, which is greater than 1 − ε if we choose δ small enough. ✷

Remark 5 We even believe that, in Proposition 2, the constant 1/4 may be replaced
with 1/2. We content ourselves with 1/4 in order to keep the proof simple.

Proposition 2 indicates that optimizing Crossing is not really a difficult task if uti-
lizing multistart strategies. By running k independent instances of the (1+1) EA, on
average approximately at least k/4 instances succeed in finding the global maximum
within Θ(n log n) steps. The probability of all instances’ failing is bounded above by
(3/4 + ε)k and hence even gets exponentially small in k.

In Section 6, we present a quadratic function which is “especially difficult” in so
far as the (1+1) EA has to work unsuccessfully for 2Ω(n ln n) steps with a probability
exponentially close to one. With reference to that function, the success probability
sf (t) is still exponentially small after an exponential time.

Beforehand, we depict some necessary conditions for quadratic functions which
make the (1+1) EA need an exponential number of steps on average.

5 On the Influence of Separability on the Expected
Runtime

Taking a closer look at the function Crossing from Definition 9, we realize that its
n−1 quadratic weights “connect” each of the variables x2, . . . , xn with the variable x1.
It seems impossible to separate Crossing into distinct linear functions operating on
disjoint variable sets. In contrast, one may conjecture that quadratic functions whose
variable set is separable in such a way are optimized by the (1+1) EA more efficiently,
particulary since the (1+1) EA finds the optimum of linear (bitwise separable) func-
tions in polynomial time. We will prove this rigorously by means of an equivalence
relation, which reflects the separability of the underlying function.

Definition 10 With respect to a quadratic fitness function f : {0, 1}n → R with
f(x) =

∑n
i=1 wixi +

∑n
i=1

∑n
j=i+1 wijxixj, two indices i, j ∈ {1, . . . , n} are in qua-

dratic relation to each other, denoted by i ≡f j, iff i = j, or there is a sequence of
pairwise different indices i1, . . . , ik with i1 = i and ik = j such that wil,il+1 
= 0 or
wil+1,il


= 0 holds for all l ∈ {1, . . . , k − 1}.

As usual, we use the notation [i] := {j | j ≡f i} to denote the equivalence class of i.

Definition 11 Let f(x) =
∑n

i=1 wixi+
∑n

i=1

∑n
j=i+1 wijxixj be a quadratic function.
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For an index i ∈ {1, . . . , n}, we define the subfunction induced by [i] as

f[i]({xj | j ∈ [i]}) :=
∑
j∈[i]

wjxj +
∑

j,k∈[i]
j<k

wjkxjxk .

As intended, the relation “≡f ” reflects the separability of a function.

Lemma 2 Let f(x) =
∑n

i=1 wixi +
∑n

i=1

∑n
j=i+1 wijxixj be a quadratic function.

Besides, let R ⊆ {1, . . . , n} be a minimal complete system of representatives for the
relation ≡f . Then f can be separated into #R functions according to

f(x1, . . . , xn) =
∑
i∈R

f[i] ({xj |j ∈ [i]}) .

Proof: The identity of the corresponding polynomial representations

S1 :=
n∑

i=1

wixi +
n∑

j=1

n∑
k=j+1

wjkxjxk

S2 :=
∑
i∈R

∑
j∈[i]

wjxj +
∑
i∈R

∑
j,k∈[i]
j<k

wjkxjxk

can be shown easily by verifying that each monomial from S1 that has a non-zero
weight is contained in S2 exactly once, and vice versa. This follows from the fact that
R is a minimal complete system of representatives for the equivalence relation ≡f . ✷

Now we are able to state an upper bound on the expected runtime of the (1+1) EA
which solely depends on the cardinality of the largest equivalence class of ≡f .

Proposition 3 Let f(x) =
∑n

i=1 wixi+
∑n

i=1

∑n
j=i+1 wijxixj be a quadratic function.

Furthermore, let m := max{#[i] | i ∈ {1, . . . , n}} denote the maximal cardinality of all
equivalence classes with respect to ≡f . Then the (1+1) EA optimizes f in an expected
number of O(2mnm+1) steps.

Proof: We intend to apply Lemma 1 and thus need a sensible partition of the domain
{0, 1}n. As f decomposes into at most n−m + 1 subfunctions (see Lemma 2), which
take at most 2m different values each, we define this partition by means of differences
between “consecutive” function values of these subfunctions.

Formally, first we set up a minimal complete system of representatives, de-
noted by R, for the corresponding equivalence relation ≡f . We define l[i] :=
min

{
f[i](x) | x ∈ {0, 1}#[i]

}
as the minimal value of the subfunction f[i], i ∈ R, and

accordingly h[i] as the maximal value of a subfunction. For each subfunction f[i],
i ∈ R, we define the non-negative sequence dj

[i] := vj+1
[i] − vj

[i], j ∈ {
0, . . . , v[i] − 1

}
representing the differences between “consecutive” values vj

[i] and vj+1
[i] of the corre-

sponding subfunction. Here “consecutive” means that there is no value of f[i] which
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is strictly greater than vj
[i] and strictly less than vj+1

[i] ; besides v[i] denotes the number

of different values of f[i]. Clearly,
∑v[i]−1

j=0 dj
[i] = h[i] − l[i] holds, as the vj

[i] telescope.

After that, we sort the sequence obtained by enumerating dj
[i] for all i ∈ R and for all

j ∈ {
0, . . . , v[i] − 1

}
according to a monotonously decreasing sequence, denoted by v∗i ,

with i ∈ {1, . . . , v}, v :=
∑

i∈R v[i]. Finally, we set up v sets which are compliant with
Lemma 1 as

Ai :=
{
x | fmin + v∗1 + · · · + v∗i ≤ f(x) < fmin + v∗1 + · · · + v∗i+1

}
,

where fmin := min{f(x) | x ∈ {0, 1}n} and i ranges from 0 to v − 1.
Due to the separability of f , we have fmin =

∑
i∈R l[i] and fmax =

∑
i∈R h[i]. (fmax

is to denote the maximal value of f .) Moreover, it follows by the definition of v∗i that

v∑
i=1

v∗i + fmin =
#R∑
i=1

v[i]−1∑
j=0

dj
[i] + fmin =

#R∑
i=1

(h[i] − l[i]) + fmin = fmax .

A lower bound on the probability of leaving Ak, k ∈ {0, . . . , v − 1}, remains to be
proven. If the current bit string of the (1+1) EA pertains to Ak, we claim that
there is a subfunction whose value can be increased by at least v∗k+1. Otherwise,
if no subfunction could be increased by v∗k+1, this would imply f[i] ({xj |j ∈ [i]}) >
h[i] − v∗k+1 for all i ∈ R. By summing up over all equivalence classes we would obtain
f(x) ≥ fmax − ∑v

j=k+2 v∗j , for only the variables v∗k+2, . . . , v
∗
v can be less than v∗k+1.

(Remember that the v∗i comprise all differences of consecutive values of subfunctions.)
Since fmax−

∑v
j=k+2 v∗j = fmin+

∑k+1
j=1 v∗j , this would however imply a ∈ Ak+1. Hence,

there is at least one subfunction whose value can be increased by at least v∗k+1. A
sufficient condition is a mutation of at most m selected bits, the probability of which
is bounded below by (1 − 1/n)n−m n−m ≥ e−1n−m = Ω(n−m). As the number of
linear subfunctions is at most n, each of which can take at most 2m different values,
v = O(n2m) holds, i. e., there are at most O(n2m) different sets Ak. This implies the
bound O(n2mnm) = O(2mnm+1) on the expected runtime. ✷

Remark 6 Proposition 3 is even valid for arbitrary pseudo-boolean functions which
decompose into linear functions defined on variable sets comprising at most m vari-
ables.

Corollary 2 Let f be given as in Proposition 3 and be m defined accordingly. If
m = O(1), the (1+1) EA optimizes f in an expected number of at most O(nm+1)
steps.

Now we can draw some conclusions concerning “almost linear” functions, i. e., qua-
dratic pseudo-boolean functions whose number of quadratic weights is bounded above
by a constant. If only k quadratic weights, k ∈ N constant, are allowed, we can set
at most k + 1 indices in relation with each other. Thereby we get the upper bound
O(nk+2) for quadratic functions possessing only k quadratic weights that differ from
zero. Conversely, we can easily depict in how far k quadratic weights suffice to evoke
expected runtimes of Ω(nk+1).
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Definition 12 The function Crossingk : {0, 1}n → R, k ∈ N, is defined by

Crossing(x) = (2n2 − n)x1 +
k+1∑
i=2

2nxi +
k+1∑
i=2

(−4n)x1xi +
n∑

i=k+2

xi .

Restricted to the bits x1, . . . , xk+1, this function resembles Crossing (albeit multi-
plied by n). On the other hand, any subfunction restricted to the variables xk+2, . . . , xn

behaves like OneMax apart from an additional constant. The comparatively large
weights at the first k + 1 positions simplify the following proof.

Proposition 4 On average at least Ω(nk+1) steps are necessary until the (1+1) EA
reaches the global optimum of Crossingk.

Proof: It is easy to verify that the assignment of the first k + 1 bits remains fixed
at x1 = 0, x2 = · · · = xk+1 = 1 irrespective of the assignment of xk+2, . . . , xn unless
all of the first k + 1 bits flip simultaneously. (This is due to the large weights which
result in any change of x1, . . . , xk+1 making the value of Crossingk decrease by at
least n − (n − k − 1) = k + 1, except for the mutation that flips all k + 1 bits in one
step.) Since the probability of initializing x1, . . . , xk+1 corresponding to (0, 1, . . . , 1)
equals 2−k−1 = Ω(1) and the average waiting time until k+ 1 selected bits flip at once
is bounded by Ω(nk+1), this contributes at least Ω(nk+1) to the expected runtime. ✷

In this section we have demonstrated that quadratic functions that are decom-
posable into linear functions are optimized in an expected time which is bounded by
O(2mnm+1), where m denotes the maximum number of variables on which a linear
subfunction depends. If m is a constant, the bound simplifies to O(nm+1). This has
implications on quadratic functions whose number of quadratic weights is bounded
above by a constant k; in that case the expected runtime is bounded by O(nk+2).

6 A Quadratic Function Causing Exponential Run-
times with Overwhelming Probability

As announced in Section 2, due to NP-completeness one may not hope to find a deter-
ministic algorithm which is able to optimize all quadratic functions within polynomial
time. Unless RP=NP, there cannot be a randomized algorithm solving this problem
in polynomial expected time either. Therefore we are convinced that there is at least
one quadratic function which even makes multistart strategies fail. A necessary condi-
tion is that the probability of finding the global optimum of this “especially difficult”
function in polynomial time cannot by bounded below by Ω(n−k) for all k ∈ N. Then
a polynomial number of instances of the (1+1) EA is not sufficent to solve the prob-
lem in polynomial expected overall time implying that a superpolynomial number of
instances and thus superpolynomial expected overall time would be needed.

The “especially difficult” function which we present in this section was constructed
by means of an application of a polynomial reduction originally discoverd by Rosen-
berg [Ros75]. Thereby, he reduces the (decision) problem of maximizing an arbitrary

12



pseudo-boolean function to the one of maximizing a quadratic pseudo-boolean func-
tion. We use Rosenberg’s reduction to transform the function

Trapn(x) = −
n∑

i=1

xi + (n + 1)
n∏

i=1

xi ,

at first considered by Ackley [Ack87] and later on explored in more detail by Droste,
Jansen, and Wegener [DJW98a]2, to the quadratic function

Trap∗
n(x) = −

n∑
i=1

xi + (n + 1)xix2n−2

− (n + 1)
2n−2∑
i=1

(xn−ixn+i−1 + xn+i(3 − 2xn−i − 2xn+i−1)) ,

which is a function defined on 2n − 2 variables. First of all, we consider the so-
called “penalty terms” xn−ixn+i−1 + xn+i(3 − 2xn−i − 2xn+i−1). By checking all 8
assignments to xn−i, xn+i−1 and xn+i we conclude that the penalty term is zero iff
xn−ixn+i−1 = xn+i holds, and becomes either 1 or 3 otherwise. As it is the case
with the original Trap function, the only optimal bit string is '1 = (1, . . . , 1) yielding
a function value of 1. To verify this, we realize that positive values can only be
obtained by setting x1 = x2n−2 = 1 and making sure that no penalty term takes a
value differing from zero. The latter can only be accomplished if xn−1xn = xn+1,
xn−2xn+1 = xn+2, . . . , x3x2n−4 = x2n−3 and x2x2n−3 = x2n−2. As x2n−2 = 1, this
implies x2 = x2n−3 = 1, then x3 = x2n−4 = 1 and so forth. Hence '1 is the only global
optimum.

In terms of suboptimal x ∈ {0, 1}n, the value of Trap∗
n can always be represented

by −j − k(n + 1), where k ∈ {0, . . . , 3(n− 2)} and j :=
∑n

i=1 xi, i. e., j denotes the
number of ones in the first n positions of the string x. This is due to the above-
mentioned properties of the n− 2 penalty terms.

Bearing this in mind, we are now able to prove that Trap∗
n is an especially difficult

function.

Proposition 5 With a probability of 1 − 2−Ω(n), the (1+1) EA requires at least
2Ω(n log n) steps to optimize Trap∗

n.

Proof: Concerning bit strings x ∈ {0, 1}n, we distinguish their “left” parts x1, . . . , xn

and their “right” parts xn+1, . . . , x2n−2, corresponding to the original n variables
and the additional variables introduced by the reduction. It follows by Chernoff’s
inequality (see [MR95]) that the initial bit string of the (1+1) EA contains at least
(2/5)n ones in its left part with a probability of at least 1 − 2−Ω(n). For the right
part, we apply the “Principle of Deferred Decisions” (cf. [MR95]) pretending that
all n bits of x are initialized after each other. (Due to independency of the bits,
this constitutes a permissible assumption.) Regarded like that, xn+i “hits” the fixed

2In that paper they prove that the (1+1) EA requires Ω(nn) steps to optimize Trapn with a
probability exponentially close to 1.
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value of xn−ixn+i−1 with a probability of 1/2 for all i ∈ {1, . . . , n− 2} implying that
(n− 2)/2 penalty terms are zero on average. Again Chernoff’s bound can be applied
such that, with a probability of 1 − 2−Ω(n), at least (2/5)(n − 2) penalty terms are
zero after initialization. In the following, we assume both events considered above to
have occured. As long as the (1+1) EA has not yet reached the optimum, the value of
Trap∗

n is given by −j−k(n+1), where k ≤ (9/5)(n−2), and j denotes the number of
ones in the left part. A necessary condition for the value of j to decrease (as a result of
a successful mutation) is a decrease of k due to the same mutation. Obviously, k can
decrease at most (9/5)(n− 2) times. We want to estimate the probability that during
at most (9/5)(n − 2) mutations decreasing k many zeros in the left part flip to one.
Pessimistically, we assume that the left part contains (3/5)n ones after initialization
and that none of these ones ever flips to zero. For the remaining (2/5)n zeros in the
first part the overall number of bits flipped during at most (9/5)(n−2) mutations has
an expected value of at most (2/5)n · (9/5)(n−2)/(2n−2) ≤ (9/25)n, since each bit is
flipped with probability 1/(2n−2) per step. As (2/5−9/25)n = (1/25)n, we conclude
that an expected value of at least (1/25)n zeros remains in the left part even if k has
fallen to its minimal value. Bounding this by another application of Chernoff’s bound,
we obtain that at least (1/30)n zeros remain with a probability of at least 1 − 2−Ω(n)

even if k has decreased to zero. Afterwards, the number of zeros in the first part can
only grow unless all zeros flip to one simultaneously. The latter has a probability of
at most (1/(2n− 2))n/30 = 2−Ω(n log n). By utilizing an estimation like in the proof of
Proposition 2, we can upper bound the probability of such a success during 2εn log n

steps by 2−Ω(n) if ε is small enough. This completes the proof. ✷

Remark 7 The proof of Proposition 5 includes several unrealistically optimistic as-
sumptions about the number of bits which have to flip simultaneously in order to reach
the global optimum of Trap∗

n. In nearly all cases we expect the number of ones in
the current bit string of the (1+1) EA to decrease towards zero such that a mutation
flipping all bits simultaneously is required. We presume that even an expected wait-
ing time Ω(2n log n) (i. e., the constant in the exponent equals 1) is necessary with a
probability exponentially close to 1, as it is the case with the original Trap function.

Supporting the common assumptions of Complexity Theory, we have proven that mul-
tistart variants of the (1+1) EA fail on certain quadratic functions. Even if employing
a polynomial number of parallel instances of the (1+1) EA, the expected number of
instances that are successful within polynomial time converges exponentially towards
zero.

7 Squares of Linear Functions

Naturally, quadratic pseudo-boolean functions arise by taking linear functions to the
power of two.

Definition 13 Let f : {0, 1}n → R with f(x) = w0 +
∑n

i=1 wixi be a linear function.
By f2(x) := (w0 +

∑n
i=1 wixi)

2 we denote the square of the linear function f .
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W. l. o. g., we now may assume all weights of the linear function to be positive integers
and to be sorted, i. e., w1 ≥ · · · ≥ wn > 0, wi ∈ N. (If wi < 0, we replace xi by 1−xi,
which has no influence on the behavior of the (1+1) EA.) However, we may not rely on
w0 = 0. Imagine that f(x) = w0 +

∑n
i=1 wixi is a linear function with w0 ≥ 0. Then

the (1+1) EA behaves on f2 like on f , for x �→ x2 is a strictly increasing mapping
on R+

0 . A similar situation arises if w0 ≤ −∑n
i=1 wi. In that case f(x) ≤ 0 holds

for all x ∈ {0, 1}n such that the (1+1) EA behaves on f2 like on −f due to x �→ x2

being a strictly decreasing mapping on R−
0 . If a linear function takes both positive and

negative values, its square gets interesting properties and does not appear “linear” to
the (1+1) EA any more.

Definition 14 Let f : {0, 1}n → R with f(x) = w0 +
∑n

i=1 wixi be a linear function.
With respect to f , we partition {0, 1}n = N(f) ∪ P (f) according to

N(f) := {x ∈ {0, 1}n | f(x) < 0} and P (f) := {x ∈ {0, 1}n | f(x) ≥ 0} .

We have just seen that the square of a linear function can only be interesting if
N(f) 
= ∅ 
= P (f). Restricted to either P (f) or N(f), both the linear function and
its square are unimodal with the maximum lying in '0 = (0, . . . , 0) and '1 = (1, . . . , 1),
respectively. Thus f2 may have two local maxima, namely one in '0 and one in '1. (The
function f2 does not necessarily possess two local maxima since “Hamming neighbors”
of '0 may belong to P (f), and vice versa for '1.) Again we may exchange the meaning
of xi and 1 − xi for i ∈ {1, . . . , n} if needed in order to ensure that w. l. o. g., '1 is the
global maximum of f2.

We can easily construct linear functions, where w0 is “close” to −w/2, w :=∑n
i=1 wi, such that in terms of f2 merely the global maximum in '1 yields a bet-

ter value than the local maximum in '0. Consider, e. g., the function f(x) =
OneMax(x) − n/2 + 1/3. For its square f2 (introduced in [DJW98a] and called
Distance there), we have f2('0) = (n/2 − 1/3)2 and f2('1) = (n/2 + 1/3)2 as well as
f2(x) ≤ (n/2 − 2/3)2 for all x ∈ {0, 1}n \ {'0,'1}. Therefore, the (1+1) EA can get
stuck in the local maximum in '0, which results in an average waiting time nn until a
mutation flipping all bits occurs. Yet it is probable that the (1+1) EA only creates bit
strings from P (f) where it behaves like on OneMax and is able to reach the string '1
within O(n logn) steps. The situation is similar to the one in Proposition 2; we assume
that the (1+1) EA is able to reach the global optimum of f2 with a probability of
about 1/2 but likewise has to wait Ω(nn) steps with a probability of approximately
1/2.

In the following, we want to prove that the (1+1) EA is able quickly to encounter
a local maximum on the square of an arbitrary linear function. In addition, we intend
to demonstrate that it finds the global maximum '1 within polynomial time with a
probability bounded below by a constant, irrespective of the weights of the underlying
linear function.

Lemma 3 On the square f2 of a linear function f , the expected time until the
(1+1) EA reaches either the string '0 or the string '1 is O(n2).
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Proof: Anew we make use of Lemma 1. However, we define two partitions according
to the linear functions f and −f , namely an f -based partition

Aj = {x | w0 + w1 + · · · + wj ≤ f(x) < w0 + w1 + · · · + wj+1}
and a −f -based partition

Bj = {x | −w0 − wn−j+1 − · · · − wn ≥ −f(x) > −w0 − wn−j − · · · − wn}
with j ∈ {0, . . . , n − 1}. Moreover, set An = '1 and Bn = '0. For all x ∈ Aj , all
x′ ∈ P (f) with f(x′) ≥ f(x) have at least j ones. Analogously, for x ∈ Bj , all
x′ ∈ N(f) with −f(x′) ≥ −f(x) contain at least j zeros. If a ∈ Aj ∩ P (f), all strings
x′ ∈ P (f) which the (1+1) EA is able to reach belong to Aj+1∪· · ·∪An; an analogous
statement holds for Bj ∩N(f). Obviously, all a ∈ Aj ∩P (f) contain at least one zero
amongst the first j + 1 positions; thus there is a mutation flipping a possibly specific
bit which leads from a to a′ ∈ (Aj+1 ∪ · · · ∪ An) ∩ P (f). By analogy, we obtain that
an arbitrary x ∈ Bj ∩ N(f) can be mutated to a′ ∈ (Bj+1 ∪ · · · ∪ Bn) ∩ N(f) by a
mutation flipping a one bit to zero.

During the algorithm, we evaluate bit strings by means of triples (i, j, a) ∈
{0, . . . , n} × {0, . . . , n} × {0, 1}. If the initial bit string of the (1+1) EA belongs
to Aj ∩ P (f), we assign the value (j, 0, 0) to it; if it comes from Bj ∩ P (f), we assign
(0, j, 1). In general, the value (i, j, a) assigned to a bit string x ∈ {0, 1}n indicates that
x belongs to Ai ∩ P (f) or to Bj ∩ N(f), which is dependent on a. If a = 0, the bit
string x is in Ai ∩ P (f), while the last string from N(f) was belonging to Bj ∩N(f).
(In case that there never was a string from N(f), we set j = 0). If a = 1, the roles of
Ai ∩ P (f) and Bj ∩N(f) are exchanged.

The first two components of an assignment (i, j, a) can never decrease since Aj

and Bj are f -based and −f -based partitions, respectively. As soon as a component
has increased to n, the (1+1) EA has created '0 or '1. As that is the case after at
most 2n − 1 increases of i or j, O(n) mutations which flip a (selected) bit in order
to increase the value of the current component suffice. It is already known that the
expected waiting time for such a mutation is O(n). Putting this together yields the
upper bound O(n2). ✷

Up to now, we only have an upper bound on the time until reaching one of the local
optima. In order to prove a lower bound on the probability of reaching the global
optimum '1 within polynomial time, some prerequisites are necessary.

We want to find out some more details on the distribution of the initial value of
the function to be optimized. That is obviously influenced by the random assignment
of the initial bit string.

Definition 15 By x∗ we denote a random variable obeying the distribution of the
inititial bit string of the (1+1) EA. The variable x∗ is the n-ary cartesian product of
independent random variables Xi, i ∈ {1, . . . , n}, where Xi is 0 or 1 with probability
1/2 each.

With respect to a linear function f(x) = w0 +
∑n

i=1 wixi, henceforth we use the
abbreviation w :=

∑n
i=1 wi.
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Lemma 4 Let f : {0, 1}n → R with f(x) = w0 +
∑n

i=1 wixi be a linear function.
For the random variable V := f(x∗) yielding the random initial value of f we obtain
E(V ) = w0 + w/2.

Proof: The claim follows immediately from the linearity of expectation. ✷

Lemma 5 Let f : {0, 1}n → R with f(x) = w0 +
∑n

i=1 wixi be a linear function. For
the random variable V := f(x∗) yielding the random initial value of f the following
claim regarding its distribution holds: Prob(V ≥ w0 + w/2) ≥ 1/2.

Proof: W. l. o. g., we assume w0 = 0. By enumerating all 2n−1 pairs (x, x̄), consisting
of x ∈ {0, 1}n and its bitwise complement, we obtain

n∑
i=1

wixi < w/2 ⇒
n∑

i=1

wi(1 − xi) > w − w/2 = w/2

for each pair. In order words, at least one half of all bit strings x ∈ {0, 1}n yield at
least w/2. ✷

If a bit string x ∈ {0, 1}n consists of k ones, its complement has n− k ones. Thus the
following corollary holds.

Corollary 3 Let f : {0, 1}n → R with f(x) = w0 +
∑n

i=1 wixi be a linear function.
Besides, let qk denote the probability that a bit string x ∈ {0, 1}n which has exactly k
ones yields an f-value bounded below by w0 + w/2. Then qk + qn−k ≥ 1 holds for all
k ∈ {0, . . . , n}.
We mentioned above that, regarding the square of a linear function f(x) = w0 +∑n

i=1 wixi, we may w. l. o. g. assume that w0 ≥ −w/2. In connection with Lemma 5 we
conclude that, initially, the (1+1) EA creates a bit string from P (f) with a probability
of at least 1/2. For the proof of the main proposition, we even need more. The
following lemma states a lower bound on the probability that the random variable
f(x∗) deviates from its expected value w0 + w/2 towards “more positive” bit strings.

Lemma 6 Let f : {0, 1}n → R with f(x) = w0 +
∑n

i=1 wixi be a linear function.
Besides, let w∗

d :=
∑d−1

i=0 wn−i denote the sum of the d smallest weights. For the
random variable V := f(x∗) yielding the random initial value of f the relationship
Prob(V ≥ w0 + w/2 + w∗

d) ≥ 1/2 − 2d/n1/2 holds.

Proof: If all weights are identical, the claim follows immediately from properties of
the binomial distribution. Similar to the proof of Proposition 2 we conclude that there
are at most (d/n1/2) ·2n bit strings containing at least n/2 and less than n/2+d ones.
In general, this argument can easily be used to show a probability of least 1/4−d/n1/2

for the event mentioned above. Obviously, d ones yield a function value of at least w∗
d.

With a probability of at least 1/2 − d/n1/2, the initial bit string has at least n/2 + d
ones. With a probability bounded below by 1/2, its “remaining” n/2 ones together
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have a weight which is at least as large as the weight of the remaining at most n/2
zeros. To show the lower bound 1/2 − 2d/n1/2, we have to be more careful.

Again we may assume w0 to be zero. At first, consider an urn containing n balls
with the corresponding weights w1, . . . , wn. For k ≥ d, let q∗k be the probability
that after having drawn k balls we attain an overall weight of at least w/2 + w∗

d.
The probability that after having drawn k − d balls the overall weight amounts to at
least w/2 was already denoted by qk−d. As d balls weigh at least w∗

d, we obtain the
relationship q∗k ≥ qk−d. Since by assumption w0 = 0, we have to consider the event
V ≥ w/2+w∗

d and we estimate the number of vectors where the event holds according
to

n∑
k=0

q∗k

(
n

k

)
≥

n∑
k=d

qk−d

(
n

k

)
≥

n/2∑
k=2d

qk−d

(
n

k

)
+

n∑
k=n/2+2d

qk−d

(
n

k

)

≥
n/2∑

k=2d

qk−d

(
n

k − 2d

)
+

n−2d∑
k=n/2

qk+d

(
n

k + 2d

)
(increasing

(
n
k

)
for k ≤ n/2)

≥
n/2∑

k=2d

qk−d

(
n

k − 2d

)
+

n−2d∑
k=n/2

(1 − qn−k−d)
(

n

k + 2d

)
(as qk+d ≥ 1 − qn−k−d)

=
n/2∑

k=2d

qk−d

(
n

k − 2d

)
+

n/2∑
k=2d

(1 − qk−d)
(

n

n− k + 2d

)

=
n/2∑

k=2d

qk−d

(
n

k − 2d

)
+

n/2∑
k=2d

(1 − qk−d)
(

n

k − 2d

)
(symmetry of

(
n
k

)
)

=
n/2∑

k=2d

(
n

k − 2d

)
=

n/2−2d∑
k=0

(
n

k

)
,

where we made use of the equivalence k ≤ k′ ⇔ (
n
k

) ≤ (
n
k′

)
as well as the identity(

n
k

)
=

(
n

n−k

)
for k, k′ ∈ {0, . . . , n/2}.

Essentially, we are confronted with the sum
∑n/2

k=0

(
n
k

) ≥ 1
22n, where the last 2d

terms are missing. We already know that the missing terms sum up to at most
(2d/n1/2)2n such that the claim follows. ✷

By setting, for example, d := n1/3, Lemma 6 states that the probability that an
initial bit string yielding a function value of at least w0 + w/2 +

∑d−1
i=0 wi is created

still converges towards 1/2. This signifies that the probability of creating an initial bit
string with the “surplus”

∑d−1
i=0 wi above its expected value w0 +w/2 is still 1/2−o(1).

If this surplus has occurred, from the initial bit string (which then belongs to P (f))
merely bit strings from N(f) having a value of at most w0 + w/2 − ∑d−1

i=0 wi can be
reached (due to w0 > −w/2). In other words only a mutation that would decrease the
value of f by at least twice the surplus could be accepted during the optimization of
f2. That phenomenon constitutes the main idea of the following proof.
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Proposition 6 Let f : {0, 1}n → R with f(x) = w0 +
∑n

i=1 wixi be a linear function.
With a probability of at least 1/8 − ε, ε > 0 arbitrarily small, the (1+1) EA optimizes
the square f2 within O(n logn) steps.

Proof: Recall that we assume the weights wi to be sorted according to w1 ≥ · · · ≥
wn > 0, and that the global maximum of f2 is located in '1, i. e., w0 ≥ −w/2. We
examine the probability that the initial bit string x∗ yields a value of at least f(x∗) ≥
w0 + w/2 + s, where s is a “surplus” to its expected value w0 + w/2. Under the
assumption that the surplus has occurred, we analyze the probability that within
O(n log n) steps a mutation decreasing the value of the linear function f by at least 2s
(hereinafter called bad mutation) occurs at least once. Otherwise, the (1+1) EA will
never “notice” that it runs on f2 instead of f during these O(n logn) steps. Our goal
is to prove that with a probability bounded below by 1/8 − o(1), the surplus is large
enough for the probability of performing a bad mutation to converge towards zero.

To accomplish this, we divide bit strings x ∈ {0, 1}n into three parts. With k being
set to k := n1/3 + 1, we consider the first part consisting only of x1, the second part
ranging from x2 to xk, and the third part which comprises the bits xk+1 to xn. Clearly,
with probability 1/2, the event x∗

1 = 1 occurs. In addition, according to Lemma 6, we
have

k∑
i=2

wix
∗
i ≥ 1

2

k∑
i=2

wi +
(k−1)1/3−1∑

i=0

wk−i

with a probability of at least 1/2 − 2(k − 1)1/3(k − 1)−1/2 = 1/2 − o(1). Thirdly, we
use Lemma 6 once more to show that

∑n
i=k+1 wix

∗
i ≥ (∑n

i=k+1 wi

)
/2 occurs with a

probability of at least 1/2 (simply set d := 0). Since these events concern disjoint
positions, which are initialized independently, we conclude that

n∑
i=1

wix
∗
i ≥ w

2
+

w1

2
+

(k−1)1/3−1∑
i=0

wk−i

occurs with a probability of at least 1/8 − o(1). Then the surplus amounts to at

least s := w1/2 +
∑(k−1)1/3−1

i=0 wk−i. To overcome this surplus, i. e., to reach a bit
string from N(f), a mutation decreasing the value of f by at least 2s would have
to be executed. Due to the choice of k and the decreasing order of the weights, we
have 2s ≥ w1 + n1/9wk. It remains to estimate how likely the event of at least one
bad mutation during c′cn log n steps, c, c′ ∈ R, is. As we make no further assumptions
about the weights of the linear function, two cases must be distinguished. Note that the
distinction holds for all n ∈ N, i. e., our asymptotic statement is valid independently
of the magnitude of the weights.
Case 1: wk ≥ w1/n

1/18.
This implies n1/9wk ≥ w1n

1/18 ⇒ 2s ≥ w1n
1/18. Since no weight is larger than

w1, at least n1/18 bits would have to flip simultaneously in order to execute a bad
mutation. The latter has a probability of at most 1/(n1/18)! = 2−Ω(n1/18 log n), which
converges towards zero even after having been multiplied by an arbitrary polynomial
in n. This means that especially the probability of a bad mutation within c′cn log n
steps converges towards zero.
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Case 2: wk < w1/n
1/18.

Once again consider the amount 2s ≥ w1 +n1/9wk by which the value of f would have
to be decreased at least. We want to verify that the probability of flipping two bits
from the first or second part of a bit string simultaneously is so small that this event
even does not normally occur in c′cn log n steps. Obviously, the probability in one
step is bounded above by

(
k
2

)
1

n2 ≤ n2/3/n2 = n−4/3. Therefore the probability of at
least one mutation flipping two bits from x1, . . . , xk simultaneously is bounded above
by (c′cn log n)n−4/3 = o(1). Another event that could represent a bad mutation would
be a mutation flipping one bit from the first or second part of the string and some
bits from the third part. But in that case, at least n1/9 bits from the third part would
have to flip simultaneously to decrease the value of f by at least n1/9wk in addition to
w1. Of course the probability of flipping at least n1/9 bits at once converges towards
zero even in c′cn log n steps.

Having verified that the probability of at least one bad mutation in c′cn log n
steps converges towards zero, we restrict the probability of not reaching the global
optimum of f within c′cn log n steps by 1/c′ using Markov’s inequality. If c′ is large
enough, the probabilities of the errors “insufficient surplus”, “at least one bad mutation
in O(n logn) steps” and “time to optimize f larger than c′cn log n” in common are
bounded above by ε provided n is large enough. ✷

Despite the quite lenghty proof, the conclusions to be drawn from this result are easy.
We have seen that squares of linear functions are easy if employing multistart variants
of the (1+1) EA. Moreover, the result is valid for all even powers of linear functions
fk, k ∈ N even, which, for the (1+1) EA, are indistinguishable from the corresponding
square. Marginally, we remark that odd powers fk, k ∈ N even, of linear functions
f are not distinguished from the linear functions themselves and thus are optimized
within O(n lnn) steps.

8 Conclusion

This paper highlights some techniques to analyze the (1+1) EA and especially stresses
the significance of the measures “expected runtime” and “success probability”. As
opposed to linear functions, which the (1+1) EA optimizes within Θ(n log n) expected
steps, already quadratic pseudo-boolean functions are an interesting class of functions
which may pose severe problems to the (1+1) EA. Quadratic functions with non-
negative weights are optimized within polynomial expected time, but as soon as general
negative weights are allowed, the optimization problem becomes NP-hard. So it is not
astonishing that we were able to find quadratic functions which provoke exponential
expected runtimes of the (1+1) EA. But in many cases (e. g., concerning squares of
linear functions) the success probability after a polynomial number of steps is so large
that multistart variants of the (1+1) EA are very efficient. On the other hand, we
created an “especially difficult” function called Trap∗ which makes the (1+1) EA
work an exponential time with a probability exponentially close to one. Here we
cannot resort to multistart variants of the (1+1) EA. In fact, we even believe that
more sophisticated evolutionary algorithms incorporating crossover operations will
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not succeed in optimizing Trap∗ within polynomial expected time. Anyway, it serves
as an argument against the hypothesis that evolutionary algorithms could easily cope
with pseudo-boolean functions of a small degree.
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