
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Methods for the Analysis of Evolutionary
Algorithms on Pseudo-Boolean Functions

Ingo Wegener

No. CI-99/00

Technical Report ISSN 1433-3325 September 2000

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

METHODS FOR THE ANALYSIS OF
EVOLUTIONARY ALGORITHMS ON
PSEUDO-BOOLEAN FUNCTIONS∗

Ingo Wegener
FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
wegener@ls2.cs.uni-dortmund.de

Abstract Many experiments have shown that evolutionary algorithms are useful
randomized search heuristics for optimization problems. In order to
learn more about the reasons for their efficiency and in order to obtain
proven results on evolutionary algorithms it is necessary to develop a
theory of evolutionary algorithms. Such a theory is still in its infancy. A
major part of a theory is the analysis of different variants of evolutionary
algorithms on selected functions. Several results of this kind have been
obtained during the last years. Here important analytical tools are
presented, discussed, and applied to well-chosen example functions.

1. INTRODUCTION
Evolutionary algorithms are randomized search heuristics with many

applications, e.g., in optimization, adaptation, classification, control sys-
tems, or learning. Here we focus on optimization (for an overview on
the whole area we refer to Bäck, Fogel, and Michalewicz (1997), Fogel
(1995), Goldberg (1989), Holland (1975), and Schwefel (1995)). De-
spite the many successful experiments with evolutionary algorithms a
theory on evolutionary algorithms is still in its infancy. This holds in
particular if one compares the state of the art with the situation on
problem-specific deterministic exact optimization algorithms (Cormen,
Leiserson, and Rivest (1990)), deterministic approximation algorithms
(Hochbaum (1997)), or randomized optimization and approximation al-
gorithms (Motwani and Raghavan (1995)). One reason is that evolu-
tionary algorithms have been developped by engineers, while the other

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Center “Computational Intelligence” (SFB 531).

1

2

disciplines have been created by theoreticians (leading sometimes to a
lack of experimental knowledge). Moreover, the fundamental idea of
evolutionary algorithms is to obtain robust problem-independent search
heuristics with a good behavior on many problems from a large variety
of problems (this statement remains true, although many evolutionary
algorithms also use problem-specific components). This variety of prob-
lems makes the analysis of evolutionary algorithms much harder than
the analysis of problem-specific algorithms (which often are designed in
order to make an analysis possible). Nevertheless, progress on the de-
sign and the application of evolutionary algorithms will gain a lot from
a theoretical foundation. Nowadays, we are able to analyze evolutionary
algorithms without crossover on many functions and evolutionary algo-
rithms with crossover on some functions. The functions are not examples
from real-world applications but example functions describing some typ-
ical issues of functions (fitness landscapes) or are chosen to show some
extreme behavior of evolutionary algorithms. Also very strange func-
tions can be useful in order to disprove widely accepted conjectures or
to show the differences between different variants of evolutionary algo-
rithms. Altogether, we find a list of interesting theoretical results on
evolutionary algorithms, in particular, during the last years. The pur-
pose of this contribution is to present some of the most important tools
for such results.

In Section 2, we discuss differences between discrete and non-discrete
state spaces and why we investigate the optimization of pseudo-boolean
functions f : {0, 1}n → R. The aim of an analysis of an evolutionary
algorithm is the investigation of certain performance measures. This
paper focusses on expected run times and the success probability within
reasonable time bounds. The reasons for this decision are presented in
Section 3. Since several example functions are used for different purposes
all these functions are defined in Section 4. The following three sections
show how tail inequalities (Section 5), the coupon collector’s theorem
(Section 6), and results on the gambler’s ruin problem (Section 7) can be
applied to the analysis of evolutionary algorithms. Another main idea is
to measure the progress of an evolutionary algorithm not with respect to
the considered fitness function but with some cruder scale. In Section 8
and Section 9, upper and lower bounds on the expected run time of
evolutionary algorithms are proved using levels based on intervals of
fitness values. The method of using so-called potential functions for the
analysis of algorithms is well established. We discuss the first successful
application of this powerful tool for evolutionary algorithm in Section 10.
Finally, in Section 11, we present the method of designing “typical runs”
of an evolutionary algorithm. Then we can bound the time of a typical

Methods for the analysis of EAs on pseudo-boolean functions 3

run and can estimate the failure probability, i.e., the probability that a
run is not typical.

2. OPTIMIZATION OF PSEUDO-BOOLEAN
FUNCTIONS

Although many of our methods and results can be transferred to the
non-discrete case, we focus here on the somehow simpler or clearer case
of discrete functions. We also abstract from possible constraints which
leads to the search space S = {0, 1}n.

Definition 1 Functions f : {0, 1}n → R are called pseudo-boolean.

Without loss of generality we investigate the maximization of pseudo-
boolean fitness functions. While technical systems lead to non-discrete
search spaces, the whole area of combinatorial optimization leads to our
scenario. Pseudo-boolean functions always have optimal search points.
Search heuristics evaluate each point of the search space in expected
finite time implying that expected run times are finite. Moreover, the
search space has some nice features. The minimal Hamming distance
between different points is 1 while the maximal distance is n. Hence,
evolutionary algorithms with fixed mutation probabilities or fixed ex-
pected length of mutation steps can optimize pseudo-boolean functions
efficiently. For fitness functions on R

n and even on some compact sub-
space of R

n it is necessary to decrease the expected length of steps in
order to approximate the optimum. Nevertheless, the chance of meeting
the optimum exactly is often 0.

In order to present the techniques to analyze evolutionary algorithms
for simple examples we often investigate the perhaps simplest random-
ized search heuristic belonging to the class of evolutionary algorithms.

Algorithm 1 (1+1)EA

– Choose x ∈ {0, 1}n randomly.

– Let x′ be the result of mutating x, i.e., the bits of x′i are generated
independently and x′i = xi with the mutation probability 1/n and
x′i = xi otherwise.

– Replace x with x′ iff f(x′) ≥ f(x).

– Repeat the last two steps until a stopping criterion is fulfilled.

Often we consider the Markoff process describing the randomized
search with the (1+1)EA as infinite process without stopping rule. Then

4

we are interested in the first point of time where something nice hap-
pens, e.g., the first point of time where a global optimal search point is
evaluated. The investigation of the (1+1)EA is less limited as one may
believe. We may use the multi-start option, i.e., we consider p indepen-
dent runs of the (1+1)EA. This is often better or at least as good as
the consideration of a population of size p. The independency of runs
ensures the diversity. For larger populations, one has to ensure the diver-
sity by certain tricks. A population size of 1 does not admit crossover.
However, the analysis of evolutionary algorithms without crossover is
difficult enough and we consider evolutionary algorithms with crossover
only in Section 11. The mutation probability of 1/n is the most often rec-
ommended choice (Bäck (1993)). Alternating mutation probabilities by
self-adaptation have been investigated by Beyer (1996) and Bäck (1998)
and a dynamic variant of the (1+1)EA has been analyzed by Jansen and
Wegener (2000a).

3. PERFORMANCE MEASURES
The analysis of an algorithm is the task to describe quantitatively the

behavior of the algorithm. Let Xf be the random variable measuring the
first point of time when some event happens. The most natural choice
of such an event is that an optimal search point is evaluated. However,
one may also consider the case that some search point whose fitness
is sufficiently close to the fitness of an optimal point or the case that
some search point is sufficiently close to an optimal point. The run time
analysis of a randomized algorithm consists of

– the computation or estimation of E(Xf),

– the analysis of the so-called success probability distribution
Pr(Xf ≤ t), and

– the analysis of the best case, worst case, or average case of E(Xf)
and Pr(Xf ≤ t) with respect to functions f from some class F of
functions.

The investigation of the success probability includes the investigation
of multi-start variants. E.g., if Pr(Xf ≤ t) ≥ 1

n , n independent runs
have after t steps a success probability of at least 1 − (1 − 1

n)
n ≥ 1 −

e−1, n log n independent runs improve the success probability to 1−O(1
n)

and n2 runs even to 1− 2−Ω(n). There are examples where E(Xf) grows
exponentially while the success probability after a polynomial number
of steps is bounded below by a positive constant.

Expected run time and success probability are global performance
measures and are those performance measures which typically are used

Methods for the analysis of EAs on pseudo-boolean functions 5

for randomized algorithms (see Motwani and Raghavan (1995)). In the
theory of evolutionary algorithms many other aspects are considered.
These other performance measures are of certain value, but we think
that their analysis finally is only a tool to get results on the global behav-
ior. In order to understand the global behavior it is useful to understand
the local behavior. Quality gain and progress rate (see Bäck, Fogel, and
Michalewicz (1997)) are such local performance measures which describe
the behavior of a single step. The schema theorem also is a result which
guarantees a certain behavior for one step. For Markoff processes (like
evolutionary algorithms) the transition probabilities for one step deter-
mine the global behavior. However, the local performance measures are
so-called “insufficient statistics” implying that in general it is not possi-
ble to deduce statements on the global behavior. Examples where these
local performance measures give “wrong hints” are contained in Jansen
and Wegener (2000b). Our global performance measures describe the
behavior within reasonable time bounds. We think that the limit be-
havior is of much less interest. Even for state spaces like S = R

n we look
for a good behavior within reasonable time bounds and not in the limit.
Finally, interesting results have been obtained by modelling evolutionary
algorithms as dynamical systems. However, this model implicitly works
with infinite populations and one has to carefully investigate the differ-
ence between infinite populations, finite populations, and populations of
reasonable size. Rabani, Rabinovich, and Sinclair (1998) have obtained
first results how to control the difference between these cases.

4. SELECTED FUNCTIONS
Here we give an overview on the functions investigated in this paper

as examples.

Definition 2 A pseudo-boolean function f : {0, 1}n → R is a degree-k
function with N non-vanishing terms if it can be represented as

f(x1, . . . , xn) =
∑

1≤i≤N

wi

∏
j∈Si

xj

where wi ∈ R − {0} and the size of the sets Si ⊆ {1, . . . , n} is bounded
above by k. Degree-1 functions are called linear and degree-2 functions
are called quadratic.

The following two linear functions are of particular interest. They are
the extreme examples of equal and strongly different weights.

6

Definition 3

ONEMAX(x1, . . . , xn) = ||x|| := x1 + · · ·+ xn.

BV(x1, . . . , xn) = 2n−1x1 + 2n−2x2 + · · ·+ 2xn−1 + xn,

where BV stands for binary value.

Unimodal functions are those functions where the global optimum is
unique and can be reached from each point by 1-bit mutations.

Definition 4 A pseudo-boolean function is called unimodal if it has
a unique global optimum and all other search points have a Hamming
neighbor with a larger fitness.

We consider the special unimodal function LO (leading ones) and the
class of path functions.

Definition 5
LO(x1, . . . , xn) = max{i|x1 = · · · = xi = 1 and (i = n or xi+1 = 0)}
measures the length of the longest prefix consisting of ones only.

Definition 6 A path p starting at a ∈ {0, 1}n is defined by a sequence
of points p = (p0, . . . , pl) where p0 = a and H(pi, pi+1) = 1. A function
f : {0, 1}n → R is a path function with respect to the path p if f(pi+1) >
f(pi) for 0 ≤ i ≤ l − 1 and f(b) < f(a) for all b outside the path.

Definition 7 SP (short path) is defined with respect to the path p =
(p0, . . . , pn) where pi = 1i0n−i by

SP(x1, . . . , xn) =

{
n+ i if x = pi

n− ||x|| otherwise.

Long path functions are defined on exponentially long paths. They
were first introduced by Horn, Goldberg, and Deb (1994). Their long
path functions admit the possibility of shortcuts namely a mutation
flipping O(1) bits and replacing pi with pj where j − i is exponentially
large. This can make them easy for evolutionary algorithms as shown
by Rudolph (1997) who also introduced long path functions with the
additional property that for each pi there is at most one successor on the
path with Hamming distance d if d ≤ n1/2. Moreover, he has specified
the fitness values outside the path to obtain a unimodal function which
is difficult for the (1 + 1)EA. The exact definition is not necessary here.
We call this function LP (long path).

Another interesting issue is the investigation of evolutionary algo-
rithms in the presence of plateaus, i.e., connected subsets of the input

Methods for the analysis of EAs on pseudo-boolean functions 7

space with constant fitness and with only few neighbored points with
a better fitness. The following function is a good example for such a
function.

Definition 8 The function SPP (short path as plateau) is defined with
respect to the path p = (p0, . . . , pn) where pi = 1i0n−i by

SPP(x1, . . . , xn) =



2n if x = 1n

n if x = pi, i < n

n− ||x|| otherwise.

Finally, we introduce two special functions where the first one has the
property of giving wrong hints and the second one is a special example
for the investigation of the power of crossover.

Definition 9

TRAP(x1, . . . , xn) =

{
n if x = 1n

n− ||x|| otherwise.

JUMPm(x1, . . . , xn) =

{
||x|| if ||x|| < n−m or ||x|| = n

n− ||x|| otherwise.

5. TAIL INEQUALITIES
Tail inequalities are useful to turn expected run times into upper time

bounds which hold with overwhelming probability. Moreover, for many
intermediate results, expected values sometimes are useless. A mutation
flips on the average one bit, but we are interested in the probability of
flipping more than k bits simultaneously. A random search point con-
tains on the average n/2 ones, but what do we know about the probabil-
ity of less than, e.g., n/3 ones? The simplest tail inequality is Markoff’s
inequality which is the basis of other tail inequalities. We present the
result with its proof to show the underlying ideas.

Theorem 1 (Markoff’s inequality) Let X be a random variable taking
only non-negative values. Then for all t > 0

Pr(X ≥ t) ≤ E(X)/t.

The result follows by estimating all X-values from [0, t) by 0 and all
other X-values by t:

E(X) =
∑

x

x · Pr(X = x) =
∑
x<t

x · Pr(X = x) +
∑
x≥t

x · Pr(X = x)

≥ 0 + t · Pr(X ≥ t).

8

In particular, Pr(X ≥ 2E(X)) ≤ 1/2 or Pr(X < 2E(X)) ≥ 1/2 proving
that with a probability of at least 1 − (1/2)k one out of k independent
trials (or runs) has a value of less than 2E(X).

Other tail inequalities like Tschebyscheff’s inequality and Chernoff’s
inequality are applications of Markoff’s inequality. In the first case the
probability of large deviations from the expected value is bounded, i.e.,
Pr(|X−E(X)| ≥ ε). Before applying Markoff’s inequality the inequality
is replaced with the equivalent inequality |X − E(X)|2 ≥ ε2. E.g., for
ε = 1/2, the estimation of x2 by 0 for x < 1/4 is more precise than
the estimation of x by 0. For x ≥ 1/4, x2 is estimated by 1/16 instead
of estimating x by 1/4. For small x ≥ 1/4 this is a better estimate,
but for larger x it gets worse. Hence, one may hope to get sometimes
better results. Chernoff has used the “even more convex” function etx

and X ≤ t is replaced with e−sX ≥ e−st for an appropriate value of s.
We summarize the results (for the proofs see Motwani and Raghavan
(1995)).

Theorem 2 (Tschebyscheff’s inequality) Let X be a random variable
whose variance V (X) exists. Then for all ε > 0

Pr(|X− E(X)| ≥ ε) ≤ V(X)/ε2.

(Chernoff’s inequality) Let X1, . . . , Xn be independent random variables
taking values in {0, 1} and let pi = Pr(Xi = 1). Then E(X) = p1+ · · ·+
pn for X = X1 + · · ·+Xn and for 0 ≤ δ ≤ 1

Pr(X ≤ (1− δ)E(X)) ≤ e−E(X)δ2/2

and for all δ > 0

Pr(X > (1 + δ)E(X)) ≤
[

eδ

(1 + δ)1+δ

]E(X)

.

If p1 = · · · = pn = p, X is binomially distributed and E(X) = np. The
probability bounds are exponentially small with respect to n if δ is con-
stant. The probability that a random string has less than n/3 ones can
be bounded by e−n/36 (choose δ = 1

3 implying that (1− δ)E(X) = n/3).
The probability that one chosen bit flips in n2 steps less than n/2 times
can be bounded by e−n/8 (E(X) = n, δ = 1/2). Even the probability
that it flips less than n − n3/4 times can be bounded by the asymp-
totically vanishing value of e−n1/2/2 (E(X) = n, δ = n−1/4). Hence,
Chernoff’s inequality gives concrete bounds (not only asymptotic ones)
and it shows that the value of a binomially distributed random variable
is with overwhelming probability very close to its expected value. This

Methods for the analysis of EAs on pseudo-boolean functions 9

implies the following procedure. Produce an estimate by working in
situations where Chernoff’s inequality is applicable with expected val-
ues as “true” values. This leads to conjectures which often (with some
weakening) can be proved rigorously.

6. THE COUPON COLLECTOR’S THEOREM
ONEMAX is perhaps the simplest function essentially depending on

all variables and having a unique global optimum. Already Mühlen-
bein(1992) has proved an O(n logn) bound on the expected run time of
the (1+1)EA on ONEMAX. This bound follows directly from a general
upper bound technique presented in Section 8. What about a lower
bound?

First, we present the coupon collector’s theorem and then we argue
why this result leads to an Ω(n logn) lower bound on the expected run
time of the (1+1)EA on ONEMAX. Consider the following experiment.
There are n bins. Somebody throws randomly and independently balls
into the bins and stops when each bin contains at least one ball. We
are interested in the random number of balls in all bins together. The
problem is equivalent to the problem of collecting coupons (pictures with,
e. g., football players). There are n different types of coupons. We buy
coupons until we have a complete collection of coupons. The expected
time until we obtain a specific coupon equals n. However, we have to
wait for the last coupon.

Theorem 3 (Coupon collector’s theorem)
Let X be the random waiting time in the coupon collector’s scenario.

Then
lim

n→∞Pr(X ≤ n lnn− cn) = e−ec

and
lim

n→∞Pr(X ≥ n lnn+ cn) = 1− e−e−c
.

The proof of this result is contained in Motwani and Raghavan (1995).
The theorem is described as limit behavior. The bounds for not two
small n are close to these bounds in the limit. Such a result is also
called a sharp threshold result, since the constant factor for the leading
term n lnn is given exactly and the probability even of small deviations
is very small.

Now we apply this result to the analysis of the (1+1)EA on ONEMAX
(Droste, Jansen, and Wegener (1998a)). The probability that the first
search point has less than 2n/3 ones is overwhelmingly large (Chernoff’s
bound). It is necessary that each 0-bit flips at least once. We investigate

10

n lnn + cn steps and only n/3 bit positions which are initialized by
0. Again we can apply Chernoff’s bound. With large probability, the
number of flipping bits is bounded above by 1

3n lnn + cn. We consider
the n/3 bit positions as bins and the flipping bits as balls. However,
the balls are not totally independent. If during one step at least two
bits flip, these bits are at different positions. It is possible to bound
the difference between the real situation and the situation of the coupon
collector’s theorem. This also is a general rule. One often can apply
results from probability theory — but not in their pure form.

Theorem 4 The expected run time of the (1+1)EA on ONEMAX is
bounded above by e · n · (lnn + 1). For each constant d > 0 there is a
constant c such that the success probability of the (1+1)EA on a function
with a unique global optimum within n lnn − cn steps is bounded above
by d.

With a more careful analysis one will even get better lower bounds
for ONEMAX. However, the crucial fact is that the coupon collector’s
theorem leads to a lower bound for a large class of functions.

7. THE GAMBLER’S RUIN PROBLEM
The classical gambler’s ruin problem is the following one. Alice owns

a dollars and Bob owns b dollars. They are throwing coins and Alice
pays Bob one dollar if the coin shows head and receives one dollar from
Bob for tails. The game stops if somebody gets ruined. The problem is
to compute the probability that Alice gets ruined and how long it does
take until the game stops.

We may use ideas from the solution of the gambler’s ruin problem in
order to analyze the (1+1)EA on SPP, the short path with n+1 points
where n of them have the same fitness (they belong to the plateau) and
the last point is the global optimum. Since the function is defined as
n−ONEMAX outside the path, it follows from the analysis of ONEMAX
that the (1 + 1)EA needs an expected time of O(n logn) to reach the
plateau. With overwhelming probability, the plateau is reached close to
0n. Hence, we have to analyze the behavior of the (1 + 1)EA on the
plateau. Only other points from the plateau and the global optimum
are accepted. The situation is similar to the gambler’s ruin problem —
with some differences. The probability of accepting a different search
point equals Θ(1

n) (otherwise, no bit is flipped or a search point outside
the path is reached). The conditional probability of an accepted step of
length 1 is 1−Θ(1

n), and, for j ≥ 2, the conditional probability of a step
length of j equals Θ((1

n)
j−1). One has to control with some technical

Methods for the analysis of EAs on pseudo-boolean functions 11

effort the influence of steps of length j ≥ 2. The steps of length 1 from
1i0n−i, 0 < i < n, reach the points 1i−10n−i+1 and 1i+10n−i−1 each with
probability 1/2 – like in the gambler’s ruin problem. Nobody is ruined
at 0n, but all accepted new strings have more ones.

The main part of the analysis is easy. In order to generalize the result,
we consider a plateau length l and a phase of length cnl2, c a large
enough constant. By Chernoff’s bound, the number of accepted steps is
with overwhelming probability at least c′l2 (where c′ can be chosen as
any constant by increasing c). Here we ignore all accepted steps whose
length is at least 2 (for these details see Jansen and Wegener (2000b)).
We want to estimate the probability that the number of “increasing
steps”, i.e., steps of length 1 which increase the number of ones, is at
least c′l2/2+ l/2. Such an event implies that we have reached the global
optimum. By symmetry, the probability of at most c′l2/2 increasing
steps, equals 1/2. The binomial distribution with parameters m and
1/2 has its highest value at �m/2� where the probability is bounded
above by αm−1/2 for some constant α. Hence, the probability of at
least c′l/2 and at most c′l2/2+ l/2 increasing steps is bounded above by
(l/2+ 1) ·α · (c′l2/2)−1/2 which can be bounded by 1/4 for large enough
c′. This implies a success probability of at least 1/4 and the expected
number of phases before a first success is at most 4. Hence, the expected
time to pass a plateau which is a path of length l is bounded above by
O(nl2). If the fitness is increasing along the path, the expected run time
equals Θ(nl) (see Section 8). Obviously, it is easier to follow a path with
increasing fitness, but even a path giving no hints is no real obstacle for
the (1+1)EA. The following theorem describes the result for SPP where
l = n.

Theorem 5 The expected run time of the (1+1)EA on SPP is bounded
above by O(n3). The success probability for n4 steps is bounded below by
1− 2−Ω(n).

8. UPPER BOUNDS BY ARTIFICIAL
FITNESS LEVELS

The following upper bound technique is based on a suitable partition
of the search space according to the fitness function.

Definition 10 For A,B ⊆ {0, 1}n and f : {0, 1}n → R the relation
A <f B holds if f(a) < f(b) for all a ∈ A and b ∈ B. A <f -partition
of {0, 1}n is a partition of {0, 1}n into non-empty sets A1, . . . , Am such
that A1 <f A2 <f · · · <f Am and all a ∈ Am are global optima.

12

Lemma 1 Let A1, . . . , Am be a <f -partition, let p(Ai) be the probabil-
ity that a randomly chosen search point belongs to Ai, let s(a) be the
probability that a mutation of a ∈ Ai belongs to Ai+1 ∪ · · · ∪Am, and let
si = min{s(a)|a ∈ Ai}. Then

E(Xf) ≤
∑

1≤i≤m−1

p(Ai)(s−1
i + · · ·+ s−1

m−1) ≤ s−1
1 + · · ·+ s−1

m−1.

The proof of Lemma 1 is very simple. The second inequality is trivial
and the first inequality is based on the law of total probability. When
starting in Ai, the expected time to leave Ai is bounded above by s−1

i
and we have to leave only some of the sets Ai, . . . , Am−1. Nevertheless,
this result is surprisingly powerful. However, it is crucial to choose an
appropriate <f -partition. We start with simple applications leading to
asymptotically optimal bounds.

For ONEMAX let Ai contain all points with i ones, 0 ≤ i ≤ n. For
x ∈ Ai there are n− i 1-bit mutations leading to Ai+1 (if i < n). Hence,
si ≥ (n− i) 1

n(1− 1
n)

n−1 ≥ e−1 · (n− i) · 1
n and

s−1
0 + · · ·+ s−1

n−1 ≤ e · n
(
1
1
+

1
2
+ · · ·+ 1

n

)
≤ e · n · (lnn+ 1).

This bound can be improved by considering the probabilities p(Ai), but
the improvement saves only a linear additive term. A corresponding
lower bound has been presented in Section 6.

For LO let Ai contain all points with fitness i, i.e., starting with i but
not with i + 1 ones. For x ∈ Ai there is one 1-bit mutation leading to
Ai+1 (if i < n). Hence, si ≥ e−1 · 1

n and we obtain the upper bound e ·n2

where l is the length of the path. A corresponding lower bound will be
presented in Section 9.

For path functions we assume that the values outside the path are
chosen in such a way that the path is reached quickly (e.g., n−ONEMAX
if 0n is the source of the path). The expected run time for the first point
on the path is denoted by t(n). For the rest of the search let Ai contain
the ith point of the path. Since there is by definition a 1-bit mutation
to the successor on the path, we get an upper bound for the expected
run time of size e · n · l + t(n). A corresponding lower bound will be
presented in Section 9.

These considerations can be generalized to all unimodal functions,
since there is always a 1-bit mutation improving the fitness. If the uni-
modal function f takes w(f) different values, the expected run time of
the algorithm can be bounded above by e · n · (w(f)− 1). The function
BV (binary value) is unimodal and takes the maximal number of 2n dif-
ferent values. The upper bound e · n · (2n − 1) on the expected run time

Methods for the analysis of EAs on pseudo-boolean functions 13

is correct. However, this bound seems to be far from optimal. Sitting in
01n−1, it is very likely that the next accepted step improves the fitness
by much more than 1.

We investigate the class of degree-k functions f with N non-vanishing
weights which are all positive (Wegener and Witt (2000)). We number
the N positive weights in non-increasing order: w1 ≥ w2 ≥ · · · ≥ wN >
0. Then we use the following <f -partition A0, . . . , AN where

Ai = {x|w1 + · · ·+ wi ≤ f(x) < w1 + · · ·+ wi+1}
for 0 ≤ i ≤ N − 1 and

AN = {x|f(x) = w1 + · · ·+ wN}.
For x ∈ Ai there is some j ∈ {1, . . . , i + 1} such that the wj-term is
not activated, i.e., not all bits belonging to Sj are equal to 1. The
mutation where all 0-bits belonging to Sj flip activates the wj-term.
This increases the f -value by at least wj . Here it is essential that all
weights are non-negative. By definition of Ai, the resulting search point
belongs to Ai+1 ∪ · · · ∪ AN . Since we consider a mutation of at most
|Sj | ≤ k bits, s−1

i ≤ e ·nk leading to an upper bound on the expected run
time of e · nk ·N . For linear functions, negative weights can be replaced
with positive weights without changing the behavior of the (1+1)EA.
Variables xi with wi < 0 are replaced with xi = 1 − xi. For degree-k
functions, k ≥ 2, such a replacement can create new negative weights.
Since N ≤ n for linear functions, we obtain an e · n2 upper bound
for all linear functions and the upper bound for BV is decreased from
exponential to quadratic. An even better upper bound will be presented
in Section 10. We summarize our results.

Theorem 6 The following upper bounds hold for the expected run times
of the (1+1)EA:

– e · n · (lnn+ 1) for ONEMAX,

– e · n2 for all linear functions,

– e · nk ·N for all degree-k functions with N non-vanishing weights
which all are positive,

– e · n2 for LO,

– e · n · l for path functions on paths of length l if the search starts
on the path,

– e · n ·N for all unimodal functions taking at most N + 1 different
values.

14

9. LOWER BOUNDS BY ARTIFICIAL
FITNESS LEVELS

We look for a lower bound result corresponding to the upper bound of
Lemma 1. We use the notations of Lemma 1. If the initial search point
belongs to Ai, i < m, the search has to leave Ai. Let µi = max{s(a)|a ∈
Ai}. Then the expected time to leave Ai is bounded below by µ−1

i
leading to the following result.

Lemma 2 E(Xf) ≥
∑

1≤i≤m−1
p(Ai)µ−1

i .

Lemma 2 is less powerful than Lemma 1. The reason is that we usually
do not reach a global optimum from Ai. Hence, we should investigate
how many A-levels we usually pass in one step. Such an approach has
been realized for LO and path functions by Droste, Jansen, and Wegener
(1998b).

For LO we investigate the stochastic process behind the (1 + 1)EA
more carefully. If we have produced a string x where LO(x) = i, then
x1 = · · · = xi = 1, xi+1 = 0, and (xi+2, . . . , xn) is a random string.
The last property is easy to prove and essential. If a step increases the
fitness, we know that none of the first i bits is flipping, the (i + 1)st
bit flips and the new suffix (x′i+2, . . . , x

′
n) again is a random string.

We have k “free-riders” if exactly k leading bits of (x′i+2, . . . , x
′
n) are

ones. The production of free-riders can be described by the following
stochastic process. We have a random bit string a = (a1, a2, . . .). The
number of ones between two consecutive zeros describes the number of
free-riders. The probability that we have more than 2n/3 free-riders
during n/3 fitness-increasing steps (including the initialization) is equal
to the probability that a random string from {0, 1}n contains more than
2n/3 ones. By Chernoff’s bound this probability is exponentially small.
Hence, we have to wait with overwhelming probability for at least n/3
fitness-increasing steps. The probability of a fitness-increasing step is
bounded above by 1/n, since one special bit has to flip. Another ap-
plication of Chernoff’s bound shows that with overwhelming probability
n2/6 steps are not enough to have n/3 fitness-increasing steps.

In the following we investigate the long path function LP. It is suffi-
cient to know that the path length is l = Θ(n1/22n1/2

). Each point pi on
the path has for each d ≤ n1/2 at most one successor p′ on the path such
that H(pi, p

′) = d. If i + d ≤ l, H(pi, pi+d) = d. Moreover, the fitness
outside the path is defined in such a way that we can assume that the
path is reached for the first time in its first half. The idea is to estimate
the expected progress along the path during one step.

Methods for the analysis of EAs on pseudo-boolean functions 15

The probability that at least n1/2 bits flip simultaneously, can be
bounded by 2−Ω(n1/2 log n). For such cases we estimate the progress by
the simple upper bound l leading to a contribution of 2−Ω(n1/2 log n) to
the expected progress. If less than n1/2 bits flip simultaneously, only one
special k-bit mutation is accepted and leads to a progress of k on the
path. The probability of a special k-bit mutation is bounded above by
n−k. Hence, the expected progress in one step is bounded above by∑

1≤k<n1/2

k · n−k + 2−Ω(n1/2 log n) ≤ 2
n
+ 2−Ω(n1/2 log n).

The expected progress within l · n/5 steps is bounded above by (2
5 +

o(1))l and we need a progress of l/2.Markoff’s inequality proves a bound
of Ω(l · n) on the expected run time of the (1 + 1)EA on LP.

Theorem 7 The following lower bounds hold on the expected run times
of the (1 + 1)EA:

– n2/6− o(n2) for LO.

– Ω(ln) for long path functions where l = O(n1/22n1/2
) not allowing

short cuts by at most n1/2 flipping bits and the property that the
path is reached with constant positive probability in the first half.

Such a long path function where l = O(n1/22n1/2
) has been defined

proving that unimodal functions can be hard for the (1 + 1)EA.

10. POTENTIAL FUNCTIONS
The general upper bound for unimodal functions leads to a bad upper

bound for BV (binary value). The design of a problem-specific <f -
partition allows a simple proof of a quadratic upper bound. The same
holds for all linear functions. We have a gap between the Ω(n logn)
lower bound from Section 6 and the O(n2) upper bound from Section 8.
Droste, Jansen and Wegener (1998a) have improved the upper bound
to O(n logn). It is difficult to control the Hamming distance to the
global optimum which, under the assumption w1 ≥ · · · ≥ wn > 0, equals
1n. Hence, the idea is to measure the progress with respect to some
well-chosen measure. The idea of <f -partitions is already a step into
this direction. These partitions have the advantage that only strings
from Ai ∪ · · · ∪ Am can be accepted from x ∈ Ai. Hence, the function
g(t) describing the index of the A-set containing the actual search point
after t steps is a non-decreasing function. The asymptotically exact
bound for linear functions has been obtained only by using a so-called

16

potential function where it is quite likely that the value of the potential
decreases in some steps. In particular, these potential functions do not
depend on the special values of the linear function f .

The new method is easier to explain for BV. The potential function
equals ONEMAX, the number of ones in the string. To be precise, the
following is important:

– the (1+1)EA uses the fitness function f in order to decide whether
the old search point is replaced with its mutant,

– the people analyzing the (1+1)EA use the potential function p to
measure the progress.

A step is called successful if the mutant x′ is different from its parent
x and replaces x. The crucial step is to estimate the expected number
of steps until the (1+1)EA produces from x with p(x) = i a search
point x′ with a higher p-value. We distinguish between successful and
unsuccessful steps. Knowing the expected number of successful steps it
is in this special situation not too difficult to bound the expected number
of unsuccessful steps.

BV has the advantage that a successful step has a simple description.
A step is successful iff the leftmost flipping bit is a 0. All other bits
flip with mutation probability 1/n even under the assumption that the
step is successful. Knowing that x contains i ones we do not know how
many are to the right of the leftmost flipping bit which is a zero. Hence,
we pessimistically analyze a provable slower Markoff process assuming
that only the leftmost flipping bit is a flipping 0 and that n − i 1-bit
positions have the chance to flip to 0. Now we run into difficulties.
The expected progress with respect to the potential function can only
be bounded below by 1 − n−i

n = i
n leading to an expected number of

at most n/i successful steps before the p-value has increased. The last
conclusion follows from Wald’s identity. For BV, a simple trick works.
We restrict our attention to the first n/2 partitions. The behavior of the
second half of the n bits has no influence on the decision whether the
actual first half of the string is changed by the (1+1)EA. The expected
progress is now bounded below by 1/2 leading to an expected number
of at most two successful steps before the p-value has increased. This
leads after some calculations on the number of unsuccessful steps to an
O(n logn) bound for the time until the actual search point starts with
n/2 ones. The second half can be treated in the same way. Only the
number of unsuccessful steps has to be multiplied by (1− 1

n)
n/2 ≈ e−1/2,

the probability that no bit of the first half flips. This describes the proof
method for the special case of BV. There are many places where the
very special properties of BV have been used.

Methods for the analysis of EAs on pseudo-boolean functions 17

Surprisingly, there is one special linear function serving as a potential
function for all linear functions. This function is

p(x) = 2 · (x1 + · · ·+ xn/2) + 1 · (xn/2+1 + · · ·+ xn).

This potential function is somehow a compromise between equal weights
(ONEMAX) and very different weights (BV). By an involved and tedious
case inspection, it can be shown that the expected number of successful
steps until the value of the potential function p has increased is bounded
above by a constant (independent from the starting point). Then the
methods discussed for the analysis of the (1+1)EA on BV can be gen-
eralized to lead to the proposed bound.

Theorem 8 The expected run time of the (1+1)EA on an arbitrary
linear function is bounded above by O(n logn).

11. INVESTIGATIONS OF TYPICAL RUNS
The sections on tail inequalities and the coupon collector’s theorem

have shown that stochastic experiments or stochastic processes have a
“typical global behavior”, although the local behavior is unpredictable.
Tossing coins one has no idea about the outcome of a toss. Tossing
independently many coins we also have no idea about a certain coin,
but we have very tight bounds describing the number of heads — if we
allow an exponentially small error probability. The same is true for the
coupon collector. Obtaining the next coupon she or he can only hope for
a coupon which she or he does not hold yet. Obtaining g(n) coupons,
for each value of g(n) outside a small interval one can be almost sure to
obtain all different coupon types or one can be almost sure that some
coupons are missing. The same holds for evolutionary algorithms. The
behavior within one step or a few steps has a large uncertainty, although
one can obtain bounds for the global behavior which have a very small
error probability.

The idea is to investigate search phases of well-chosen lengths. During
each phase we expect a certain behavior of the (1+1)EA. Runs of the
(1+1)EA fulfilling the aims of all phases are called “typical”. We should
choose our definition in a way that the run time of a typical run has
properties we expect to happen with overwhelming probability. The
essential point is to prove an upper bound on the failure probability, i.e.,
the probability of a non-typical run. This can be done by adding the
failure probabilities for the different phases. Sometimes, we get better
results if we ensure that the different failure events are independent.
Otherwise, we can bound the failure probability for the ith phase using
the assumption that the first i− 1 phases were free of failures.

18

A simple application of this method is the analysis of the (1+1)EA
on TRAP. The simple upper bound nn holds for all pseudo-boolean
functions (Droste, Jansen, and Wegener (1998b)). We expect that this
bound is quite tight for TRAP, since TRAP gives everywhere (except at
the global optimum) wrong hints. However, the initial search point has
approximately n/2 ones and the probability that mutation creates the
global optimum is approximately n−n/2. The expected waiting time for
an event with such a success probability is approximately nn/2 – only
the square root of nn.

Now we consider a typical run consisting of three phases:

– the initialization phase, we expect an initial string with less than
(2/3) ones,

– the phase of the first cn2 logn steps, we expect to have 0n as last
actual search point,

– the phase of the remaining steps starting with 0n, the expected
run time equals nn.

Without failures during the first two phases we have 0n as actual point
and accept only 1n as new search point. The probability that mutation
produces 1n from 0n equals n−n leading to an expected waiting time
of nn. The failure probability of the first phase is 2−Ω(n) (Chernoff’s
bound). If there was no failure in the first phase, a failure in the second
phase implies that we either flip at least n/3 steps in one step (failure
type 1) or the optimization of n−ONEMAX takes more than cn2 logn
steps (failure type 2). The probability of a failure of type 1 in one step
is bounded above by 1

(n/3)! = 2−Ω(n log n) leading to an upper bound of

cn2(logn)2−Ω(n log n) = 2−Ω(n log n) for the whole phase. We know that
the expected run time of the (1+1)EA on n − ONEMAX is bounded
above by c′n log n for some constant c′. Let c = 2c′. Then we get n
independent subphases of length 2c′n logn each. The probability that a
subphase is unsuccessful is bounded above by 1/2 (Markoff’s inequality)
leading to a 2−n bound for the probability of type 2 failures. (It is
possible to obtain even better bounds.) Altogether, with probability
1− 2−Ω(n) no failure occurs leading to an expected run time of nn. This
proves the following result.

Theorem 9 The expected run time of the (1+1)EA on TRAP is boun-
ded above by nn and below by (1− 2−Ω(n))nn.

A more sophisticated application of this method has been presented
by Jansen and Wegener (1999). Crossover is known as one of the funda-
mental operators of evolutionary algorithms. Nevertheless, Jansen and

Methods for the analysis of EAs on pseudo-boolean functions 19

Wegener (1999) were the first to prove rigorously for a function, namely
JUMPm for m = �logn�, that the expected run time of evolutionary
algorithms without crossover grows superpolynomially (nΩ(log n)) while
a steady-state genetic algorithm with population size n and the small
crossover probability pc = 1/(n logn) has a polynomial expected run
time.

Theorem 10 Evolutionary algorithms without crossover need for
JUMPm, m = �logn�, with large probability superpolynomial time. A
steady-state genetic algorithm with population size n and probability pc =
1/(n logn) for uniform crossover has an expected run time on JUMPm

which is bounded above by O(n3 logn).

We discuss the problems with the proof of an upper bound for the
steady-state EA. It seems easy to obtain a population consisting only
of individuals with exactly m zeros (or even an optimal individual).
Uniform crossover on two individuals which have m zeros each and the
zeros at different positions has a probability of exactly 2−2m ≥ 1/n2

to produce the global optimum 1n and the probability that mutation
does not destroy 1n is approximately e−1. The expected waiting time
increases to O(n3 logn) because of the small crossover probability. This
small probability simplifies the control of the hitchhiking effect. If we
choose two random strings withm zeros, it is very likely to have the zeros
at different positions. Crossover and selection destroy the independency
of the individuals of the initial population. It gets more likely that
individuals share zeros. The proof of Theorem 10 is possible with the
following definition of a typical run. Since the estimation of the failure
probabilities is too complicated to be presented here in detail, we also
do not present the chosen phase lengths.

We expect that after the first phase either we have found the optimum
or that all individuals have exactly m zeros. The failure probability can
be estimated using a generalization of the coupon collector’s theorem
and Chernoff’s bound. After the second phase we expect that either
we have found the optimum or all individuals still have exactly m zeros
and for each bit position the number of individuals with a zero at this
position is bounded above by n/(4m). We sum the exponentially small
failure probabilities for the n different bit positions. The small crossover
probability makes it possible to consider crossover as a bad event which
increases the number of individuals with a zero at the considered posi-
tion. For the third phase we expect that for no bit position and no point
of time the number of individuals with a zero gets larger than n/(2m).
This implies a probability of at least 1/2 that two individuals have no

20

zero in common and crossover can work. Hence, we expect to find the
optimum during the third phase.

Conclusion
The analysis of evolutionary algorithms can be based on methods

from the analysis of classical deterministic and randomized algorithms.
Some tools which seem to be of large value for evolutionary algorithms
have been presented, discussed, and applied. This has led to a num-
ber of results on the expected run time and the success probability of
evolutionary algorithms.

References
Bäck, T. (1993). Optimal mutation rates in genetic search. Proc. of 5th

ICGA (Int. Conf. on Genetic Algorithms), 2–8.
Bäck, T. (1998). An overview of parameter control methods by self-

adaptation in evolutionary algorithms. Fundamenta Informaticae 35,
51–66.

Bäck, T., Fogel, D. B., and Michalewicz, Z. (Eds). (1997). Handbook of
Evolutionary Computation. Oxford Univ. Press.

Beyer, H.-G. (1996). Toward a theory of evolution strategies: Selfadapta-
tion. Evolutionary Computation 3, 311–347.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction
to Algorithms. MIT Press.

Droste, S., Jansen, T., and Wegener, I. (1998a). A rigorous complexity
analysis of the (1+1) evolutionary algorithm for separable functions
with Boolean inputs. Evolutionary Computation 6, 185–196.

Droste, S., Jansen, T., and Wegener, I. (1998b). On the optimization of
unimodal functions with the (1+1) evolutionary algorithm. Proc. of
PPSN V (Parallel Problem Solving from Nature), LNCS 1498, 13–22.

Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philoso-
phy of Machine Intelligence. IEEE Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison Wesley.

Hochbaum, D. S. (1997). Approximation Algorithms for NP-Hard Prob-
lems. PWS Publ. Co., Boston.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The
University of Michigan Press.

Horn, J., Goldberg, D. E., and Deb, K. (1994). Long path problems.
Proc. of PPSN III (Parallel Problem Solving from Nature), LNCS
866, 149–158.

Methods for the analysis of EAs on pseudo-boolean functions 21

Jansen, T., and Wegener, I. (1999). On the analysis of evolutionary al-
gorithms – a proof that crossover really can help. Proc. of ESA ’99
(European Symp. on Algorithms), LNCS 1643, 184–193.

Jansen, T., and Wegener, I. (2000a). On the choice of the mutation
probability for the (1+1)EA. Proc. of PPSN VI (Parallel Problem
Solving from Nature), LNCS 1917, 89–98.

Jansen, T., and Wegener, I. (2000b). Evolutionary algorithms — how to
cope with plateaus of constant fitness and when to reject strings of
the same fitness. Submitted to IEEE Trans. on Evolutionary Compu-
tation.

Motwani, R., and Raghavan, P. (1995). Randomized Algorithms. Cam-
bridge Univ. Press.

Mühlenbein, H. (1992). How genetic algorithms really work. I. Mutation
and hillclimbing. Proc. of PPSN II (Parallel Problem Solving from
Nature), 15–25.

Rabani, Y., Rabinovich, Y., and Sinclair, A. (1998). A computational
view of population genetics. Random Structures and Algorithms 12,
314–334.

Rudolph, G. (1997). How mutations and selection solve long path prob-
lems in polynomial expected time. Evolutionary Computation 4, 195–
205.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley.
Wegener, I., and Witt, C. (2000). On the behavior of the (1+1) evolu-

tionary algorithm on quadratic pseudo-boolean functions. Submitted
to Evolutionary Computation.

