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Abstract A library for the design of standard and non-standard EAs
in C++ is described. The simple object-oriented design of the TEA
library allows the fast con�guration of new non-standard evolutionary
algorithms.
In TEA representation independent algorithms can be combined with
non-standard genotypes. Complex genotypes can be build from exist-
ing simple genotypes. Furthermore, non-panmictic parallel population
structures like neighbourhood and multipopulation EAs are supported.
This paper introduces the main concepts of the TEA library. Examples
illustrate how to build standard algorithms and how to design new kinds
of algorithms and representations with TEA.

1 Introduction

Evolutionary Algorithms (EAs) utilize paradigms of biological evolution, like
recombination, mutation and selection mainly for the solution of global op-
timization tasks. As a 
exible and robust search technique, they have been
successfully applied to various real world problems [1].

Some main classes of EAs are evolution strategies (ESs) [7], genetic al-
gorithms (GAs) [1] and evolutionary programming (EP) [1]. Today, EAs
di�er mainly in their search operators, the representation of the search space
and the type of optimization problem they are designed for, their population
model and their generational transition mechanisms. For a broad overview of
current EA concepts the reader is referred to [2] and [1].

The TEA C++ library can be used to build completly new EAs or to
modify and/or apply the existing (standard) EAs.

The following targets have been adressed in the design of TEA:

� Representation-independent algorithm design



� Support of non-standard representations with mixed chromosome types

� Possible interactive exchange of search operators (without re-compila-
tion)

� Pre-de�ned standard EAs and representations

Representation-independent algorithms require only minimal information
about the individuals, which is typically their �tness value and their feasibility.
Implementing algorithms this way, allows the user to apply the same algorithm
with di�erent individual types.

With the support of non-standard representations the con�guration of
complex genotypes is possible. For example in a complex genotype real vec-
tors, bitstrings and integer arrays may be combined. TEA allows to inherit
speci�c operators working on the di�erent parts of the genotype. This allows
the user a fast development of algorithms.

Search Operators like mutation, initialisation and recombination are de-
�ned as class-objects in TEA that communicate with the data objects (popu-
lations, individuals and chromosomes) they modify. Search Operators can be
exchanged during running time and their parameters can easily be modi�ed.
This gives the user the opportunity to implement complex hybrid algorithms.
Moreover, user interactions during the running time of the algorithm are pos-
sible.

Often the intention of the user is just to apply a standard EA for a given
problem or a slightly modi�ed EA. Therefore, TEA includes pre-de�ned con-
�gurations of the most common EAs like GAs and ESs. They can easily be
applied for a given optimization task and as a template for new EA con�gu-
rations.

TEA is an abbreviation that means 'Toolbox for Evolutionary Algorithms'.
The term Toolbox has been chosen to point out that the TEA package contains
some more programs than the C++ library, like tools to build a simple GUI.
Nevertheless, we will focus in this paper on the features of the C++ library.

In the following the architecture of the TEA library will be explained.
An example will be given, that demonstrates how to con�gure an evolution-
ary algorithm. Lateron we discuss some technical details, like the directory
structure and the installation process. The paper continues with an overview
of existing components, i.e. evolutionary algorithms and representations in
TEA. We conclude the paper with a brief summary of features and discussion
of limitations of the library.

2 Components and Structure of the TEA Li-

brary

The TEA library works with three main aggregation levels - the chromo-
some, the individual and the population - as it is depicted in Figure 1. All
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these objects have their speci�c operators, which interface is de�ned in the
virtual abstract classes teaChromosome, teaIndividual and teaPopulation.

Genotypes in TEA are build of one or more chromosomes. Typically chro-
mosomes are sequences of one data-type, like real vectors or bitstrings. For
each chromosome (C) the following operators are speci�ed:

� mutate : Mutates the given chromosome

� recombine : Recombine a set of new chromosomes from a given set of
chromosomes

� init : Initialise the chromosome with a start value

An individual contains all chromosomes of the genotype and may con-
tain further (phenotypic) information, that is needed to calculate the �tness
function. Fitness and constraint evaluations and the management of a set of
chromosomes are typical methods of these objects. For each Individual (I)
these operators are speci�ed:

� mutate : Mutate the chromosomes of the given individual

� recombine : Recombine a set of new individuals from given set of indi-
viduals

� getF itness : Get the individuals �tness object

� checkConstraints : Return the severity of constraints violations

A population comprises one or more sets of individuals. Simple popu-
lations contain only two sets - the parent population and (temporarily) an
o�spring population. The operators of the population control the genera-
tional transitions for these sets of individuals. For each Population (P ) these
operators are speci�ed:

� evolve : Evolve the given Population for a speci�ed number of genera-
tions

� getPartners : Choose mating partners for recombination from the pop-
ulation

� recombine : Generate an o�spring population by drawing individuals
from parent generation and recombine them

� mutate : Mutate all or some selected individuals from the o�spring
population

� replace : Select individuals of parental and o�spring population to gen-
erate a new parent population

� terminate : Checks termination criterion
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getFitness: I -> val   IsWorse: val x val -> bool

n

1
n

 Recombine: I* -> I*   Mutate: I -> I

Individual (I)

Recombine: C* -> C*    Mutate: C -> C

 GetPartners: P-> I*    Replace: P->P

Evolve:Int ->  P   Terminate: P -> bool

Population (P)

Chromosome (C)

1

Figure 1: The aggregation scheme of the TEA library and basic operators for the

objects chromosome, individual and population

There are many standard population models, individuals and chromosomes
that have already been implemented in the TEA library. They all inherit the
basic interface of teaPopulation, teaIndiviual or teaChromosome. Figure
2 gives a schematic overview of these objects and their inheritance scheme.
We give a more detailed description of these objects in section 4.

2.1 Example for the Con�guration of an EA

It is quite easy to con�gure an EA from existing TEA components. The
following source code is an exerpt from the source code of teaPGAExample.

/* C H R O M O S O M E */

teaCBitVector* cbit = new teaCBitVector();

cbit->resize(10); /* Set Dimension of BitVector */
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cbit->createOperators(); /* Create Default Operators */

/* Exchange Mutation-Operator */

teaCBitvectorMutate* SimpleMutator=new teaCBitvectorMutate();

delete cbit->getMutate();

cbit->setMutate(SimpleMutator);

/* Initialise the object- and strategy-parameters */

cbit->init();

/* I N D I V I D U A L */

teaISimple* myISimple = new teaISimple;

myISimple->createOperators();

myISimple->init(cbit); /* Set chromosome prototype */

/* Set the Fitness Function */

teaICFCountOnes *fit_fun = new teaICFCountOnes();

delete myISimple->getCalcFitness();

myISimple->setCalcFitness(fit_fun);

/* P O P U L A T I O N */

/* Construct a GA population object*/

teaPGA *myGAPop = new teaPGA;

myGAPop->createOperators();

/* Set the prototype individual and Population Size (30) */

myGAPop->init(30,myISimple);

/* set Crossover Probability */

teaPGAEvolve* myEvolve = (teaPGAEvolve*)myGAPop->getEvolve();

myEvolve->crossoverProbability=0.5;

/* S T A R T E V O L V E */

myGAPop->view(3);

myGAPop->evolve(100);

myGAPop->view(3);

/* ... delete objects ... */

In Figure 3 a graphical visualization of this procedure is given. We will
now follow this routine step-by-step to give a �rst impression on how EAs are
build in TEA.

First, control parameters from the C++ argument vector or a GUI may
be received. As a simple GUI for for parameter handling on X/UNIX systems
we recommend tkjoe which is part of the TEA software package and can be
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easily integrated into a C++ procedure.
After control parameters are received, a prototype individual has to be de-

signed, which later serves as a template for the individuals in the population.
We begin with the construction of chromosomes for this prototype individ-
ual. To each chromosome genetic operators (mutation and recombinations)
are assigned. These operators are class-objects themselves and need to be
initialized. To simplify this procedure the method createOperators can be
used to set default operators. The speci�cation of chromosomes is completed
by initialising them with start values.

Then, the completed chromosomes with their operators is inserted into a
new individual. After this, the operators of this individual are constructed.
One of these operators is the �tness function object. A �tness function ob-
ject inherits the interface of the class teaICalcFitness, which is speci�ed in
teaOperator.h. This object serves to calculate the �tness value of an individ-
ual and check the constraints. The �tness value is an object with a compari-
son function, named teaValue. It may contain an integer (teaIntValue) or
a double value , or even a vector of numbers. It is very important to choose a
�tness-function which is compatible with the individual and its chromosomes,
e.g. there are �tness functions that expect real vectors as chromosomes and
others that expect binary strings as chromosomes. These informations should
be all contained in their header �le. A collection of di�erent �tness function
objects can be found in the directory fitfun.

The completed individual is now passed to a new population. During the
initialization of the Population the prototype may be copied several times, in
order to build up the �rst parent generation. This is done automatically by the
init()method. The next step is to specify the evolutionary operators for the
population, like the selection or replacement operators and the termination
function.

The completed population can now be evolved step-by-step applying the
evolve operator. As it can be seen in the examples it is possible to access
and view all data of the objects during the evolution. Furthermore strategy
parameters may be modi�ed and even operators may be exchanged during
the evolution loop. This can all be controlled in the main procedure.

Last but not least, the best �tness value that occurred in the evolution
process is presented and all remaining objects are deleted.

3 Installation and Support

The installation of TEA is simple, if the Gnu-C++ compiler is used (e.g. ver-
sion 2.9.5.2, which is downloadable from the location www.gnu.org/software).
The installation process shall be summed up brie
y in this section.
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Figure 2: The inheritance scheme and implemented chromosomes, individuals and

populations of the TEA library.

A. System prerequisites

As system prerequisite a C++ compiler (e.g. Gnu-C++) and the tool 'gmake'
is required.

B. Installation

� The con�guration �le "Make�le.in" must be adapted to the System
Environment (e.g. g++ for Sun Solaris and CC for SGI-IRIX Systems).
The current settings are optimized for SUN Solaris 5.6.

� Set the TEA DIR environment variable. It should contain a path (dir-
name) to the TEA library.

Bourne-Shell : export TEA DIR=dirname
C-Shell : setenv TEA DIR dirname

� cd $TEA DIR

� make
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Figure 3: Data-Flow Diagramm illustrating how to build up an EA in a typical

main procedure as it is described in section 2.1.

Information about TEA and a website can be found at the homepage of
the Chair of Systems Analysis, Computer Science Department, University of
Dortmund.

website: http://ls11-www.cs.uni-dortmund.de

4 Description of components in the TEA Pack-

age

This section informs the reader about the capabilities of the TEA library and
provides important hints on the directory structure.

Experience shows, that it is often much easier to start building a TEA
application, by starting with an example implementation. Therefore we begin
this section with the introduction to some prede�ned examples.

4.1 Examples

An easy way to learn about building algorithms in TEA is to have a close
look at some of the pre-de�ned examples, included in the software package.
These examples consists only of one short main �le, specifying the algorithm
and its settings.
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First make Examples with : make EXAMPLES
You can �nd the examples in: cd $TEA DIR/Examples

4.1.1 teaPESExample:

This is an example for a standard (�; �; �)-ES [7]. Here � denotes the maximal
life-span of each individual, e.g. if � = 1 we get a (�; �)-ES and for � =1 we
get a (�+�)-ES. The ES is applied for the minimisation of the Sphere-Model
(Sum of Squares). It works on a real-valued ES-Vector representation with
adaptive step-sizes for each parameter.

4.1.2 teaPGAExample:

This is an example for a standard GA with �tness-based roulette-wheel se-
lection. The algorithm is applied for the Counting-Ones-Problem and it min-
imises the number of ones in a bitstring.

4.1.3 teaPHypergraphExample:

An example for the application of a structured population [8] model. It il-
lustrates how to de�ne a population structure, i.e. the sets of individuals for
recombination and the sub-populations, and how to apply this in a parallel
EA.

4.1.4 teaIMultiChromoExample:

An example for a non-standard representation with di�erent types of chromo-
somes contained by one individual. Here the individual contains a bitstring
and a real-valued vector. The objective is the minimisation of a mixed-binary
quadratic sum, that is optimised with an Evolution Strategy.

4.1.5 teaCESVectorExample:

In this example the various features of a real valued chromosome and its
speci�c operators are introduced.

4.2 Chromosomes

For Chromosome implementations see $TEA DIR/Chromosomes.

For header �les see $TEA DIR/inc.

The general interface of a chromosome object in TEA is de�ned in
teaChromosome and the de�nition of its operators is found in teaOperator.
There are some methods that can be uni�ed for almost all vector represen-
tations. These are for example the access of values, upper and lower bounds
and step sizes. The uni�ed interface is declared and de�ned in teaCVector.
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Continuous vectors are implemented in the class teaCESVector. It
is possible to limit the domain of these vectors to an interval, specifying
upper and lower bounds for each variable. The mutation operator works with
gaussian distribution and a mutative global or local step-length adaptation [7],
[1]. For the recombination of variables and step-length the user may choose
between discrete and intermediate recombination (global or local) [7].

Sequences and permutation representations are implemented are often
applied for scheduling problems. In TEA, with teaCPermutation a permu-
tation chromosome is pre-de�ned. The PMX and OX crossover operator as
described by Michalewicz [5] are implemented as recombination operators.
The mutation operator is a simple shift operation, moving one entry of the
sequence to a randomly chosen new position.

Integer vectors, that may represent more than two values on each posi-
tions, are implemented in the class teaCIntVector. For each position of the
integer array an upper and lower bound can be de�ned. As a default, opera-
tors are de�ned, that assume that numbers belong to an ordinal scale. This
may be the case, whenever the integer variable decribes the size or position
of some entity. As mutation operator the geometric mutation as described by
Rudolph [6] serves. It is assumed that small variations of the integer numbers
result in small variations of the �tness value.

Tuples of discrete variables [3] taken from a �nite domain are also sup-
ported by TEA. In this case it is assumed that there is no prede�ned order
on the variable's domain. The chromosome teaCIntVector implements these
discrete tuples. By a parameter switch it is de�ned if the integer values be-
tween the lower and upper bound should be treated as an ordered set or as
an discrete variable. In the mode, when integer chromosomes are treated
as discrete tuples, mutation is done by choosing with a certain probability
randomly a new value in the �nite domain de�ned by interval bounds.

4.3 Individuals

For individual implementation see $TEA DIR/Individual.

For header �les see $TEA DIR/inc.

For the implementation of �tness objects see $TEA DIR/src.

The general interface of an individual object in TEA is de�ned in
teaIndividual and the de�nition of its operators is found in teaOperator.
Furthermore, the interface of a �tness object can be found in teaValue.

4.3.1 Simple individual

An individual that contains only one chromosome is implemented with
teaISimple. The function of this object is that it manages one �tness object
and the chromosome. Its search operators pass the tasks to corresponding
search operators of the chromosome, e.g. the mutation operator invokes the
mutation operator of the comprised chromosome.
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4.3.2 Multichromosomal individual

An individual that contains more than one chromosome is implemented with
teaIMultiChromo. The mutation, initialisation and recombination operators
of each chromosome are used, thereby using the general interface of a chro-
mosome class.

4.4 Fitness objects and constraints

For Examples of �tness functions, see cd $TEA DIR/fitfun.

For �tness objects, see $TEA DIR/inc.

For implementation of �tness objects, see $TEA DIR/src.

A very important operator in TEA is the �tness calculation. The oper-
ator teaIndividualCalcFitness is the basic class for all �tness operators
and speci�es the methods getConstraints and calcFitness. In a speci�c
�tness operator, e.g. teaICFSphere, these functions access chromosomes of
the individual to calculate the �tness value. The type of the chromosome has
to correspond to the type, the operator exspects.

The general interface of a �tness value can be found in teaValue. A �tness
value can be compared to other �tness values by the functions isLess() and
isEqual().

Often a �tness object is given by just one real value. In this case
teaDoubleValue should be used. For integer values it is recommended to use
teaIntValue. Both �tness objects o�er the method getScalar. This method
returns the �tness value as an absolute value. This value can be interpreted
as the target function value or as a measure for the constraint violation.

For multicriteria optimization with pareto vectors [4] TEA o�ers a
vector valued �tness object called teaVectorValue. On this object the func-
tions isLess() and isEqual() de�ne a partial order. A �tness object is
smaller than another �tness object only if it is dominated by all positions of
the double vector.

4.4.1 Multi-Chromosomal Individual

For real-world optimization problems we often need to deal with mixed rep-
resentions, e.g. some decision variables are of discrete and some are of integer
type [3].

An individual that contains just more than one chromosome is imple-
mented with teaIMultiChromo. It manages a list of chromosomes and a
�tness function object that evaluates this list. The chromosomes in the list
can be of di�erent types. This enables the user to build mixed representa-
tions, e.g. to combine binary strings with real vectors in one individual. The
search operators of the individuals, delegate the tasks to the search operators
of the speci�c chromosomes.
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4.5 Populations and Algorithms

For population implementations see $TEA DIR/Population.

For header �les see $TEA DIR/inc.

In TEA a population object aggregates individuals and has the ability to
evolve this set of individuals, i.e. it implements the main loop of the evolution-
ary algorithm including the partner selection, termination and replacement
operators.

The general interface of a population object in TEA is de�ned in tea-

Population and the declaration of its operators is found in teaOperator.

4.5.1 Evolution Strategies

Evolution strategies have been originated by Schwefel and Rechenberg in the
early sixties. They have proven to be robust derivative free global optimiza-
tion algorithm for nonlinear functions. Evolution Strategies usually employ
representations like real or integer arrays. They have the feature that they
can self-adapt parameters of the mutation-distribution during the evolution.

The class teaPES implements the common (�+ �)�ES and (�; �)�ES

as described by Schwefel [7]. Here � is the number of parent individuals and �

the number of o�spring individuals in each generation. Standard ES-variants
that work with real vectors and integer arrays can be co�gured using the
chromosomes teaCESVector or teaCIntVector and teaISimple.

4.5.2 Genetic Algorithms

The basic ideas in GAs are quite similar to that in ESs. They mainly di�er
in the chromosome representation and generational transition. The standard
representation for GAs is usually a bitstring. Furthermore a probablilistic
roulette-wheel selection of recombination partners takes place. Standard GA
variants are con�gured in TEA using the population object teaPGA, the chro-
mosome object teaCBitString and the individual object teaISimple.

In the generational loop individuals of the population are selected, recom-
bined and mutated. The result is a number of individuals which represent the
new population. This population is the basis for the next evolution step. De-
pendent on the �tness value, individuals are chosen for producing descendant
individuals. This is done by the probabilistic roulette wheel selection. The
e�ect is, that individuals with a high �tness value are more often chosen than
individuals with a low �tness. Two operators - rank based partner selection
and linear �tness scaling [1] are implemented.

4.5.3 Structured Populations and Parallel EAs

In structured population models [2, 8] like they are found in neighbourhood
and multipopulation EAs, the selection operator works on local subsets of
the entire population. By this measure a higher robustness of algorithms
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on multimodal �tness functions can be achieved and the EAs can aesily be
runned in a parallel mode in multiprocessor environments.

TEA allows the realization of a large number of structured population
models. As a description, the uni�ed hypergraph model by Sprave [8] is used.
The speci�cation of a model can be done in a simple way by de�ning sub-
populations and (time-variable) sets of recombination partners called demes.

All these structured population models are de�ned in the class teaPHyp-
ergraph. The example teaPHypergraphExample illustrates how these objects
can be applied. Furthermore, it is posssible to run all these algorithms as well
in sequential mode as in distributed mode in multiprocessor environments
(using MPI library).

5 Summary and Outlook

The TEA library o�ers a 
exible framework for evolutionary algorithm design.
It is available on di�erent platforms and coded in a simple C++ style. Its
main features are representation-independent algorithms, support of standard
algorithms (mainly ES and GA), support of state-of-the-art parallel models
and distributed evaluations and last but not least some of the most important
representations.

There are also some limitations in the TEA library, so far. As it is not the
intention of TEA, to be a large collection of Evolutionary Algorithms. There-
fore many algorithms that can be found in literature are not implemented in
TEA, but in most cases TEA will provide some of the components that are
needed when designing them.

Furthermore, it is exspected that the user of TEA has already some expe-
riences in C++ programming and is familiar with his/her speci�c graphical
visualisation and data-analysis tools. Therefore the e�ort of the TEA devel-
opment has been put in the library features rather than into the design of
elaborate visualisation tools and graphical user interfaces, so far.

Since statistical benchmark tests may be performed for new EAs with
TEA, an emphasize has been put to a fast and e�cient implementation. Fur-
thermore, it should also be easy to understand the source code. To achieve
this, the design is kept simple and often simple data-types are used instead
of complex data-objects.

The development of new components for the TEA library continues. A
focus of the current work on the library is the control of the components
quality and correctess. e.g. by benchmark comparisons, and the development
of parallel evolutionary algorithms and further representations.
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