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Abstract

Presently, the limit theory of evolutionaryalgorithms (EA) for mono-criterion optimiza-
tion under certainty is well developed. The situation is different for the fields of evolution-
ary optimization under complete or partial uncertainty, multiple criteria and so forth. Since
these problem classes may be seen as special cases of the task of finding the set of minimal
(or maximal) elements in partially ordered sets, a limit theory for EAs that can cope with
this kind of problem passes all properties and results on its special cases mentioned above.

1 Introduction

The theory of evolutionary algorithms (EAs) in the framework of stochastic processes is best
developed currently for the field of optimization of a single deterministic objective function
(see e.g. [7] for a survey). There is also a steadily growing theory for EAs facing a (single)
stochastically perturbed objective function as can be learned from the overview presented in
[1]. In case of multiple objective functions, however, the theory is still in its infancy: Only few
results are known [8, 4]. The situation is even worse for other problem classes since theoretical
results concerning EAs are unknown apparently.

This situation may change by the approach initiated in [6]. Instead of developing an own
theory for each problem class, it suffices to develop a theory for EAs that can cope with partially
ordered fitness values since many problems may be seen as special cases of the problem of
finding the set of minimal (or maximal) elements in a partially ordered set. This approach
was pushed on in [11, 10]. Here, we present the main results of the general theory and its
application to specialized problem classes like multi-criteria optimization, noisy and interval-
valued objective functions.

2 General Case: Partially Ordered Fitness Sets

2.1 Basic Definitions

LetF be a set. A reflexive, antisymmetric, and transitive relation “�” on F is termed apartial
order relationwhereas astrict partial order relation“�” must be antireflexive, asymmetric,
and transitive. The latter relation may be obtained by the former relation by settingu � v :=

(u � v) ^ (u 6= v). If the partial order relation “�” is valid onF then the pair(F ;�) is called
a partially ordered set(or short:poset). If u � v for someu; v 2 F thenu is said todominate
v. Distinct pointsu; v 2 F are said to becomparablewhen eitheru � v or v � u. Otherwise,
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u andv areincomparablewhich is denoted byu k v. If each pair of distinct points of a poset
(F ;�) is comparable then(F ;�) is called atotally ordered setor achain. Dually, if each pair
of distinct points of a poset(F ;�) are incomparable then(F ;�) is termed anantichain. An
elementu� 2 F is called aminimal elementof the poset(F ;�) if there is nou 2 F such that
u � u

�. The set of all minimal elements, denotedM(F ;�) or F �, is said to becompleteif
for eachu 2 F there is at least oneu� 2 M(F ;�) such thatu� � u. In case of finitely large
posets the completeness ofM(F ;�) is guaranteed. See e.g. [12] for additional information.

Let f : X ! F be a mapping from some setX to the poset(F;�). For someA � X
the setMf (A;�) = fa 2 A : f(a) 2 M(f(A);�)g contains those elements fromA whose
images are minimal elements in the image spacef(A) = ff(a) : a 2 Ag � F .

In order to clarify the notion of “stochastic convergence to the set of minimal elements”
we need measures on the distances between finite point sets. The first measure used here is
characterized as follows: IfA andB are subsets of a finite ground setX then d(A;B) =

jA [ Bj � jA \ Bj is a metric on the power set ofX. The second measure uses the quantity
�B(A) = jAj � jA\Bj counting the number of elements that are in setA but not in setB. This
leads to the definition given next:

Let At be the population of some evolutionary algorithm at iterationt � 0 andF t = f(At)

its associated image set. The evolutionary algorithm is said toconverge with probability 1 to
the entire set of minimal elementsif

d(Ft;F
�)! 0 with probability 1 ast!1

whereas it is said toconverge with probability 1 to the set of minimal elementsif

�F�(Ft)! 0 with probability 1 ast!1

Needless to say,d(Ft;F
�)! 0 implies�F�(Ft)! 0.

2.2 Main Results

The results presented here are based on the following assumptions: The search setX is finite
and the fitness functionf : X ! F maps each individualx 2 X to a member of the fitness set
F which is partially ordered and not necessarily a numerical one.

THEOREM 1
Let G be the homogeneous stochastic ma-
trix describing the transition behavior from
A(t) to B(t+ 1) in the evolutionary algo-
rithm to the right. If matrixG is positive
then d(f(At);F

�) ! 0 with probability
one and in mean ast!1.
PROOF: See [6, p. 351].

B(0) is drawn at random fromX n

A(0) =Mf (B(0);�)

t = 0

repeat
B(t+ 1) = generate(A(t))
A(t+ 1) =Mf (A(t) [B(t+ 1);�)

t t+ 1

until stopping criterion fulfilled

Two points deserve special mention: First, the size of the setsA(�)will grow to jF �j limiting
the practical use of this algorithm in general (especially ifjF �j is large). Second, if matrixG
is an irreducible (or primitive) butnon-positivetransition matrix then convergence cannot be
guaranteed in general.
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In order to keep the population at a man-
ageable size one has to modify the selec-
tion procedure considerably. Letn = jBtj

andm � n wherem denotes the max-
imum size of the setsAt. The function
draw(k;C) returns a set of at mostk dis-
tinct elements from setC drawn by an ar-
bitrary method. Ifk = 0 then an empty set
is returned.

THEOREM 2
Let G be the homogeneous stochastic
matrix describing the transition behav-
ior from A(t) to B(t + 1) of the EA
given to the right. If matrixG is posi-
tive then �F�(f(At)) ! 0 and jAtj !

minfm; jF�jg with probability one and in
mean ast!1.
PROOF: See [11, p. 1013f.].

B(0) is drawn at random fromX n

A(0) =Mf(B(0);�)

t = 1

repeat
B(t) = generate(A(t� 1))

B
�(t) =Mf (B(t);�)

C(t) = ;

foreach b 2 B�(t) do
Db = fa 2 A(t) : f(b) � f(a)g

if Db 6= ; then
A(t) (A(t) nDb) [ fbg

elseif 8a 2 A(t) : f(a) k f(b) then
C(t) C(t) [ fbg endif

endfor
k = minfm� jA(t)j; jC(t)jg

A(t+ 1) = A(t)[ draw(k;C(t))

t t+ 1

until stopping criterion fulfilled

If F is totally ordered then the EAs of The-
orems 1 and 2 are identical and they reduce
to an EA with so-called(1 + n)-selection
scheme. Notice that the population size of
the second EA may vary during the search;
but finally the size will be exactly equal to
minfm; jF�jg.
Since varying population sizes are uncom-
mon in the field of evolutionary compu-
tation we have also offered an EA whose
population size is kept constant. But notice
that the populationA(�) may contain indi-
viduals that are dominated by some other
individuals. This is in contrast to the pre-
vious version where we have the invariant
property that the population is an antichain,
i.e., all individuals are mutually incompa-
rable.

THEOREM 3
Let G be the homogeneous stochastic ma-
trix describing the transition behavior from
A(t) to B(t + 1) of the EA given to the
right. If matrixG is positive andjF �j � n

then �F�(f(At)) ! 0 (while the popula-
tion sizen remains constant) with proba-
bility one and in mean ast!1.
PROOF: See [10].

B(0) is drawn at random fromX n

A(0) =Mf (B(0);�)

t = 1

repeat
B(t) = generate(A(t� 1))

B
�(t) =Mf(B(t);�)

B(t) B(t) nB�(t)

C(t) = ;

foreach b 2 B�(t) do
Db = fa 2 A(t) : f(b) � f(a)g

if Db 6= ; then
A(t) (A(t) nDb) [ fbg

B
�(t) B

�(t) n fbg

elseif 8a 2 A(t) : f(b) k f(a) then
C(t) C(t) [ fbg

B
�(t) B

�(t) n fbg

endif
endfor
k = minfm� jA(t)j; jC(t)jg

A(t+ 1) = A(t)[ draw(k;C(t))

k = minfm� jA(t+ 1)j; jB�(t)jg

A(t+ 1) A(t+ 1)[ draw(k;B�(t))

k = minfm� jA(t+ 1)j; jB(t)jg

A(t+ 1) A(t+ 1)[ draw(k;B(t))

t t+ 1

until stopping criterion fulfilled
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3 Special Cases

3.1 Multi-Criteria Optimization

The main difference between single– and multi–objective optimization rests on the fact that two
elements are not guaranteed to be comparable in the latter case. To understand the problem to
full extent it is important to keep in mind that the valuesf1(x); : : : ; fd(x) of thed � 2 objec-
tive functions representincommensurablequantities that cannot be minimized simultaneously:
While f1 may measure costs,f2 may measure the level of pollution,f3 the pressure of some
boiler, and so forth. As a consequence, the notion of the “optimality” of some solution needs a
more general formulation as in the single–criterion case. It seems reasonable to regard those el-
ements as being optimal which cannot be improved with respect to one criterion without getting
a worse value in another criterion. Elements with this property are said to bePareto–optimalin
this context. This yields a natural partial order

u � v () u 6= v ^ 8i = 1; : : : ; d : ui � vi (1)

in the objective spaceF with u; v 2 F � IRd and fitness functionf : X ! F with u = f(x),
v = f(y) for x; y 2 X . Evidently, the Pareto-optimal solutions in objective space are exactly
the minimal elements of the partially ordered set(F ;�) with F = IRd and preference relation
� as given in equation (1). This observation immediately leads to the following results:

COROLLARY 1 (to Theorem 2)
Let f : X ! F � IRd be the vector-valued objective function of a multi-criteria optimization
problem. The population of an evolutionary algorithm associated with Theorem 2 with positive
transition matrixG for generating new candidate solutions and preference relation as given
in equation (1) converges with probability1 to the Pareto set. Moreover, the population size
converges tominfm; jF�jg wherem is a preselected upper limit.

COROLLARY 2 (to Theorem 3)
Let f : X ! F � IRd be the vector-valued objective function of a multi-criteria optimization
problem withjF �j � n. The population of sizen of an evolutionary algorithm associated with
Theorem 3 with positive transition matrixG for generating new candidate solutions and prefer-
ence relation as given in equation (1) converges with probability1 to the Pareto set. Moreover,
the population sizen remains constant.

3.2 Interval-valued Fitness Functions

If the evaluation of the fitness function involves a potential numerically instable process the
use of interval arithmetic [5] is advisable because it enables an assessment of the numerical
reliability of the fitness evaluation. In this case we obtain fitnessintervals in lieu of fitness
values. As a consequence, the selection procedures of evolutionary algorithms have to cope
with an interval order [2]. Since interval orders are partial orders we can deploy our EAs
designed for partially ordered fitness sets. Here, the strict partial order is defined as follows:
Suppose w.l.o.g. thatu1 � v2. Then

[u1; u2] � [v1; v2] () [u1; u2] \ [v1; v2] = ; (2)

otherwise the fitness intervals are incomparable unless they are identical. With the preference
relation given above the set of closed intervalsII = f[x1; x2] � IR : x1 � x2g is a partially
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ordered set. Similarly, the infinitely large but countable set(II";�) with II" = f[x� "; x+ "] �

IR : x 2 IN0gwith " > 1=2 is a poset with incomparable elements whereas(II";�) with " < 1=2

is totally ordered and therefore a chain.
As a matter of course we have to make sure that the targets of the evolutionary search,

namely the minimal elements of the set of fitness intervals, represent “reasonable” solutions. For
example, the set of minimal elements of(II";�) with " = 2=3 isM(II";�) = f[�

2

3
;
2

3
]; [1

3
;
5

3
]g.

Evidently, the set of minimal elements of the set of fitness intervals (which we call hereinafter
set of optimal fitness intervals) consists of all intervals containing the globally optimal solution
(solution setF�

1
) and additionally all those fitness intervals that do not contain the globally

optimal solution but do have a nonempty intersection with an interval containing the globally
optimal solution (solution setF �

2
). The second set of solutionsF�

2
is unwelcome and later we

shall consider a scenario and a method how to get rid of these unwanted solutions. Afore we
state our results:

COROLLARY 3 (to Theorem 2)
Let f : X ! F � II be the interval-valued objective function of a single-criterion optimization
problem. The population of an evolutionary algorithm associated with Theorem 2 with positive
transition matrixG for generating new candidate solutions and preference relation as given in
equation (2) converges with probability1 to the set of optimal fitness intervals. Moreover, the
population size converges tominfm; jF�jg wherem is a preselected upper limit.

COROLLARY 4 (to Theorem 3)
Let f : X ! F � II be the interval-valued objective function of a single-criterion optimization
problem withjF �j � n. The population of sizen of an evolutionary algorithm associated
with Theorem 3 with positive transition matrixG for generating new candidate solutions and
preference relation as given in equation (2) converges with probability1 to the set of optimal
fitness intervals. Moreover, the population sizen remains constant.

Next we consider the following scenario: The interval-valued objective function does not stem
from interval arithmetic in the calculations but from a untimely stopped run of a simulator which
can therefore only offer a lower and an upper limit of the costs of some, say, chemical plant.
If the simulator would run until normal termination the cost interval would reduce to a single
value (i.e.,[v; v]). In general we can tacitly assume that

f(x; t+�t) � f(x; t) for all �t > 0

wheret � 0 denotes the amount of time that may be used to evaluate solutionx 2 X . The
main idea for eliminating the unwanted solutions inF �

2
is as follows: If the EA approaches

the set of optimal fitness intervals the number of incomparable individuals increase rapidly (as
long as we are far away from the optimum the individuals are more likely to be comparable than
close to the optimum). This observation then triggers the event of increasing the amount of time
being spent at evaluating the fitness function (i.e., the time until the simulator is stopped). This
would decrease the width of the fitness intervals and the unwanted solutions can be eliminated.
Unfortunately, the proofs of Theorems 1-3 are not designed for such a scenario. Thus, we
would need a proof for EAs on partially ordered sets where the partial order gets “more totally
ordered” during the search. This is subject to future work.
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3.3 Fitness Functions with Bounded Additive Noise

Next we describe an application to stochastically perturbed fitness functions as elaborated in
[9]. LetX be the finite search set and assume that the deterministic fitness functionf : X ! IR

is perturbed by additive noiseZ, i.e., ~f(x) = f(x) + Z for x 2 X . Here we insist that random
variableZ has bounded andknownsupport in form of a closed interval ofIR. For example,Z
may have a uniform or symmetric beta distribution on its support[�a; a] with a > 0.

When an individualx 2 X is evaluated via~f (x) = f(x) + Z then the noisy fitness value
is an element of the interval[f(x) � a; f(x) + a]. Since the EA only has knowledge of the
support bounda > 0 and in no case of the true fitness valuef(x), the noisy evaluation of
x 2 X only leads to the information that the true fitness valuef(x) must be in the interval
[ ~f(x)� a; ~f(x)+ a]. Thus, each point or individual is associated with a realization of a random
interval.

Next we declare a strict partial order on these intervals and thereby also a strict partial order
on the individuals. Letx; y 2 S and w.l.o.g.~f (x) < ~f(y). If

~f (x) + a < ~f(y)� a (3)

then we define~f(x) � ~f(y) and therebyx � y. This choice is reasonable because we can
immediately infer fromx � y thatf(x) < f(y) with probability1. One should mention that
this partial order is a special case of a partial order introduced in [3], p. 29. Moreover, notice
that the connection to interval orders gets evident by the equivalence between equation (3) and

[ ~f(x)� a; ~f(x) + a] \ [ ~f(y)� a; ~f(y) + a] = ; : (4)

Thus, whenever two intervals as those above have a nonvoid intersection then the noisy fitness
values and therefore also the individuals are incomparable, in symbols:~f (x) k ~f(y) resp.x k y.

It remains to examine whether the set of minimal elements of such posets represents a
reasonable and useful set of candidate solutions. For this purpose define

f
� = minff 2 Fg with F = ff(x) : x 2 Xg and
~f� = minf ~f 2 eFg with eF = f ~f (x) : x 2 Xg :

In general,~f� and eF are random objects. But since it is assumed that each elementx 2 X is
evaluated only once, one can hold the view thateachelement ofX has been evaluated already
beforethe EA is run such that the seteF and the quantity~f� are deterministic during the run of
the EA. In this manner one obtains a unique partial order oneF and onX for each run. The set
of minimal elements is then given byeF� = f ~f 2 eF j 69 ~f 0 2 eF : ~f 0 � ~fg = f ~f 2 eF j ~f � ~f� + 2 ag :

Needless to say, it is reasonable to postulate that the noisy image~f(x�) of an unperturbed
optimal pointx� 2 X is contained in the set of minimal elements. It can be shown [9] that this
requirement (and even more) is fulfilled.

THEOREM 4
For allx� 2 X with f(x�) = f

� holds ~f (x�) 2 eF� regardless of the value ofa > 0. Moreover,
maxf ~f 2 eF�g � f

� + 3 a.

Thus, the set of minimal elements are"-optimal solutions with" = 3 a, i.e., minimal elements
are at most3 a apart from the globally optimal solution. Ifa is large then the set of minimal
elements is too large for being useful. Again, one needs some mechanism to reduce the width of
the uncertainty interval. We shall offer such a method after presenting the customized versions
of Theorems 2 & 3.
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COROLLARY 5 (to Theorem 2)
Let f : X ! F � IR be the real-valued objective function with additive noise of bounded
support[�a; a] of a single-criterion optimization problem. The population of an evolutionary
algorithm associated with Theorem 2 with positive transition matrixG for generating new can-
didate solutions and preference relation as given in equation (4) converges with probability1

to the set of"-optimal solutions with" = 3 a. Moreover, the population size converges to
minfm; jF�jg wherem is a preselected upper limit.

COROLLARY 6 (to Theorem 3)
Let f : X ! F � IR be the real-valued objective function with additive noise of bounded
support[�a; a]of a single-criterion optimization problem withjF �j � n. The population of size
n of an evolutionary algorithm associated with Theorem 3 with positive transition matrixG for
generating new candidate solutions and preference relation as given in equation (4) converges
with probability1 to the set of"-optimal solutions with" = 3 a. Moreover, the population size
n remains constant.

Next it is shown how the uncertainty interval can be reduced. Let~fn = f + Zn denote the
nth sample of the noisy fitness function at a certain point in the search space. The first sample
~f1 = f + Z1 leads to the initial confidence interval[ ~f1 � a; ~f1 + a] for the true valuef . Since
each sample leads to a different confidence interval in general andf must be contained in each
of these intervals we immediately obtain

f 2
n\

k=1

[ ~fk � a; ~fk + a ] =

�
max
k�n
f ~fkg � a;min

k�n
f ~fkg+ a

�

=

�
f +max

k�n
fZkg � a; f +min

k�n
fZkg+ a

�
= [f; f ] + [Zn:n � a; Z1:n + a ] (5)

whereZk:n denotes thekth smallest outcome ofn samples in total. Thus, aftern samples one
knows for sure that the true valuef is somewhere in the interval given in equation (5). The
uncertainty interval[Zn:n � a; Z1:n + a ] shrinks to[0; 0] for n ! 1. The speed of narrowing
can be determined as follows: LetLn = Zn:n � a andRn = Z1:n + a. Thenj[Ln; Rn]j=(2 a) is
the relative size of the uncertainty or incomparability interval[Ln; Rn] aftern samples and the
probability that it is then still larger than100 " percent of its initial size is given by

P

(
j[Ln; Rn]j

2 a
> "

)
= n (1 � ")n�1 � (n� 1) (1 � ")n

if Z is the uniform distribution on[�a; a]. In this case the relative size of the uncertainty interval
aftern samples has the mean2=(n+ 1) and a variance� 2=n2. Again, the proofs of Theorems
1-3 are not designed for such a scenario. As in the previous subsection we need proofs where
the partial order gets “more totally ordered” during the search.

4 Conclusions

The limit theory for EAs under partially ordered fitness sets immediately delivers a limit the-
ory for EAs tackling problems with multiple objectives, noisy fitness functions, interval-valued
fitness functions, and others for free. Moreover, an evolutionary algorithm that can cope with
posets also works on the special cases mentioned above and every other derived problem class.
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In an object-oriented implementation of this EA we only need to add another method for com-
paring two elements in order to get the EA working on a new problem class involving special
kinds of posets.

Finally, it may be worth mentioning that we experience an exceptional case here: Theory
precedes practice. In the field of evolutionary computation the situation usually is the other way
round.
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