
E�ective Linear Genetic Programming

Markus Brameier Wolfgang Banzhaf

Department of Computer Science

University of Dortmund

44221 Dortmund

Germany

email: brameier,banzhaf@LS11.informatik.uni-dortmund.de

Abstract

Di�erent variants of genetic operators are introduced and compared for linear ge-

netic programming including program induction without crossover. Variation strength

of crossover and mutations is controlled based on the genetic code. E�ectivity of ge-

netic operations improves on code level and on �tness level. Thereby algorithms for

creating code e�cient solutions are presented.

1 Introduction

In genetic programming conventionally two genetic operators, e.g. crossover and mutation,
are used for varying program solutions during an evolutionary process. This is valid for
tree-based as well as for linear program representations. While crossover is responsible for
larger variation steps by exchanging subprograms of arbitrary length between individuals,
mutations take e�ect on single atomic units of the program structure. In linear GP sub-
programs denote sequences of instructions that operate on register variables and constants
[1, 3]. In linear programs exchanging a single register can have a signi�cant in
uence on
the program 
ow. This is in contrast to single point mutations in tree-based GP. More-
over, in
uence of tree crossover is smoothed by choosing crossover points with a higher
probability the deeper they are located in the tree hierarchy. In this way, the average size
of the exchanged subtrees is reduced implicitly. We will show in this contribution that
linear crossover with an unrestricted exchange of subprograms is not very recommendable.
An alternative method to smooth the variation strengh of the linear crossover operator is
homologous crossover [5].

Motivated by the observation that variation step sizes become already quite big with
mutations in linear GP we compare di�erent con�gurations of the linear crossover operator
with the exclusive use of macro mutations that are insertions and deletions of single
instructions. Chellapilla [4] has shown for tree-based GP that program induction by using
macro mutations can be competitive with subtree crossover. But he still allows several
genetic operators to be applied at a time. Instead, we recalculate �tness after every
operation in order to gain a clearer understanding and further restrict variation strength.

The linear genetic code of a speci�c program solution can be divided into two classes of
instructions, e�ective and none�ective. While only the e�ective instructions may have an

1



in
uence on the program result the latter class may be designated as \introns". Because
the proportion of none�ective code is usually signi�cantly high many genetic operations
are neutral in terms of a �tness change. In [3] the none�ective code has been removed
before �tness calculation. By doing so, linear GP is accelerated signi�cantly. In this paper
we increase the e�ciency of genetic operations by concentrating them on the e�ective part
of the code. Di�erent variants of e�ective mutation and e�ective crossover operators are
introduced for the linear GP approach.

The major goals of our study are summarized as follows:

� Reduction of variation step sizes in linear genetic programming.

� Increase in the rate of e�ective genetic operations.

� Reduction of neutral operations.

Using two benchmark problems we will demonstrate that both lower variation strength
and more e�ective operations produce better performance in approximation as well as in
generalization. Further, program solutions become smaller in size whereby the e�ect of
program bloat is reduced signi�cantly for linear GP.

2 Basics on Linear GP

Linear genetic programming [1] applies a linear representation of individual programs.
Instead of tree-based GP expressions of a functional programming language (like LISP)
but programs of an imperative language (like C or machine code) are evolved. In the
linear GP system used for our experiments [3] an individual program is represented by a
variable-length sequence of simple C instructions. All instructions operate on one or two
indexed variables (registers) r or constants c from prede�ned sets and assign the result to
a destination register, e.g. ri = rj � c. The operation set used for the experiments here
includes addition, subtraction, multiplication, division and exponentiation.

3 E�ective Linear Programs

In linear genetic programs two types of code can be distinguished. Depending on their po-
sition in the program and the register they manipulate there are e�ective and none�ective
instructions.

De�nition 1 (e�ective instruction): An instruction of a linear genetic program is e�ec-
tive at its position if it in
uences the output(s) of the program for at least one possible
input situation. None�ective instructions, respectively, are without any in
uence on the
calculation of the output(s) for all possible inputs.

The program structure in linear GP allows none�ective code to be identi�ed e�ciently.
Algorithm 1 achieves this in linear runtime O(n), where n is the maximum length of
a program. An extended version of the algorithm has been introduced in [3] to extract
e�ective code from individuals once before �tness is calculated. By saving the execution of

2



the none�ective code during program interpretation the evolutionary process is accelerated
signi�cantly.

Algorithm 1 (Detection of all e�ective instructions in a linear genetic program):

1. Let the set of registers Reff := f r j r is output register g always contain all registers
which have an in
uence on the program output at the current position.
Start from the last instruction and move backwards.

2. Mark the next operation with destination register r 2 R.
If such an instruction is not found, ! 4.

3. Insert the operand register(s) of the newly marked instructions in Reff if not already
contained. ! 2.

4. Stop. All marked instructions are e�ective, i.e. have an in
uence on the program
output at position i.

An excerpt of a linear genetic program is given below in C notation. All instructions
shown with an exclamation mark are e�ective if register r[0] holds the �nal output.

void gp(r)

double r[9];

{

...

r[2] = r[8] * r[5];

! r[2] = ppow(r[0], r[6]);

! r[1] = pdiv(r[1], 2);

! r[4] = ppow(r[5], r[1]);

! r[6] = r[3] - r[2];

r[7] = ppow(r[6], 5);

r[0] = pdiv(r[3], r[4]);

r[1] = r[7] * 1;

! r[2] = ppow(r[4], r[6]);

r[1] = r[2] + r[2];

r[7] = r[2] * 6;

! r[0] = r[8] + 7;

r[4] = pdiv(r[2], 5);

r[7] = r[1] - 8;

! r[7] = r[2] + 2;

r[1] = r[7] - r[7];

! r[5] = pdiv(r[6], r[7]);

r[1] = r[3] * 6;

r[6] = r[1] - r[0];

r[1] = ppow(r[0], r[7]);

! r[0] = r[0] + r[5];

}

In tree-based GP none�ective code is not an inherent part of the program structure. The
proportion of subtrees that do not alter the program output strongly depends on the
composition of function set and terminal set. These subtrees may be either executable or

3



non-executable, e.g. a branch holding a nonsatis�able condition. Because the none�ective
code depends on the semantics of the program its detection is more di�cult and not all
none�ective parts can be found [6].

In linear GP the (structural) none�ective code is independent of the applied instruction
operators and is detected completely by Algorithm 1. In order to restrict the rate of
semantical introns in the e�ective code and, thus, to keep the e�ective length of programs
small instructions can be choosen with a minimum tendency for creating these introns.

4 Variation step sizes in linear GP

On the structural level each position of a linear genetic program can be manipulated with
the same degree of freedom and without changing the rest of the program code. For tree-
based GP, instead, it is more di�cult to delete or insert a group of nodes (or subtree)
at an arbitrary position. Usually complete subtrees have to be removed along with the
operation to satisfy the constraints of the tree structure.

On the semantical level the situation becomes more complicated for linear GP. As al-
ready mentioned in the introduction it is possible that exchanging a single register (index)
in an instruction e�ects data 
ow and �tness heavily. Several instructions that precede
the mutated instruction in the program may become e�ective or none�ective respectively.
Consequently, semantical variation strength is already quite high with single point muta-
tions.

Another characteristic of linear genetic programs complicates the realization of smoother
variation operators, i.e. operators with a smaller variation step size. In program trees
crossover and mutation points can be expected to be the more in
uencial to program
semantics the closer they are to the root of the tree. In a linear GP program, instead,
each position of an instruction may have a similar in
uence on the program behaviour:
A linear genetic program can be transformed into a tree representation by a successive
replacement of variables starting with the last e�ective instruction. It is obvious that
such a tree would grow exponentially with e�ective program length and could become
extremely large. These trees usually contain many identical subtrees close to the leafs.
For that reason the e�ect of an instruction may not only be large at the end of a linear
program (because close to the tree root) but also at the beginning (because multiply
represented in the tree).

Both arguments motivate restrictions of the freedom in variation for standard genetic
operators used in linear GP. Especially the crossover operator exchanges segments of in-
structions between two individuals independently of how much genetic material is altered.
One simple way of reducing the e�ect of linear crossover is a limitation of the segment
length. Another alternative is to use macro mutations instead of crossover to vary pro-
gram length. Both approaches reduce variation step sizes in linear GP on the structural
(code) level and are one topic of this study. This practice relies on the general assump-
tion in genetic programming that smaller structural variations of programs lead to smaller
semantical variations with a high probabilty.

We restrict macro mutations to insertions or deletions of single instructions since they
guarantee a minimum e�ect on program structure. Changing the position of an instruction
(swapping) or the replacement of an instructions, for instance, are more destructive since

4



they include both a deletion and an insertion at the same time. Only after the maximum
program length has been reached insertions are allowed to replace other instructions.

In tree-based GP the e�ect of macro mutations on the program structure is more di�cult
to control and usually includes deletions or insertions of complete (random) subtrees [4].
Smaller variation steps (structural and semantical) are only possible if deeper nodes of a
tree are a�ected.

5 E�ective Genetic Operators

According to the de�nition of e�ective code from Section 3 we de�ne e�ective operations
as follows:

De�nition 2 (e�ective operation): A genetic operation applied to a genetic program is
called e�ective if it modi�es the e�ective code.

Note that even if the e�ective code (see De�nition 1) is altered by an operation the
predictions of the program for a considered set of �tness cases can be the same. An e�ective
operation is merely meant to bring about a structural change of the e�ective program code.
There is not always a change of the program semantics (�tness) guaranteed, too, which
is due to (semantical) intron code [3]. In general, decreasing the number of none�ective
operations is expected to reduce the rate of neutral operations as well:

De�nition 3 (neutral operation): A genetic operation is neutral if it is does not change
the �tness of a program.

Table 1 lists the di�erent types of mutation operators and crossover operators|including
their e�ective opponents|that are investigated and compared in this paper. It is guar-
anteed for each operation that there is a (structural) variation of the program code. Oth-
erwise the operation is repeated. Especially identical replacements of code elements, i.e.
registers, constants or instructions, are explicitly avoided during mutations. Further,
only one genetic operator is applied at a time, i.e. before the next �tness calculation is
performed, to keep evolutionary step sizes of code variation as small as possible. Mi-
cro mutation of constants are smoothed by choosing a di�erent value within a standard
deviation from the current one.

Genetic Operator De�nition

Standard crossover Exchange of arbitrary long sequences of instructions between
two programs.

Limited crossover Exchange of program segments of limited maximum length.
E�ective crossover Crossover between two e�ective programs.
Macro mutation Insertion or deletion of a random instruction.
Micro mutation Exchange of an operand or operator of an instruction.
E�ective mutation An e�ective instructions is selected for mutation.

Table 1: (E�ective) genetic operators for linear GP.

Note that either crossover or macro mutations are applied in the same experiment because
one interest of this work is a comparsion of linear GP with and without using recombi-
nation. Micro mutations, instead, are used in addition to both growth operators. With

5



these two basic approaches of (linear) GP we further compare e�ective variants that apply
corresponding e�ective operators.

There are two possibilities to increase the number of e�ective operations. Either the
proportion of none�ective code is reduced or operations are concentrated on the e�ective
part more intensively. E�ective programs are programs whose none�ective code has been
removed completely (using Algorithm 1). This happens only to all new individuals in
the population directly after being created with the e�ective crossover approach. In [2]
Blickle proposed to remove redundant code parts before tree crossover. His intention
was to control code growth on the one hand and to increase the e�ectivity of crossover
operations on the other hand. The latter was achieved by simply reducing the probability
that a crossover point falls upon a redundant subtree and makes the operation useless for
that program.

Two di�erent approaches are considered for e�ective mutations. One variant uses macro
(and micro) mutations to operate on e�ective instructions exclusively but leaves the non-
e�ective code untouched. This is strongly motivated by the assumption that mutations
on none�ective instructions may be more likely invariant according to the �tness than
modi�cations of the e�ective code. Another variant of e�ective macro mutations allows
(single) none�ective instructions to be deleted from the code. Note that both variants
allow the replacement of none�ective instructions if the maximum program length has
been reached. Otherwise, the size of e�ective code (e�ective length) could not increase
any further. In a third approach all emerging none�ective instructions might be deleted
directly from the population as done with e�ective crossover. But this has been found too
much restrictive for program growth, at least for the parameter con�guration choosen here
(see Section 6). Only with maximum insertion rate (100%), i.e. without explicit deletions,
competitive results are possible then.

The deletion of an instruction in general is uncomplicated. The deletion of a none�ective
instruction does not even require any recalculation of the �tness (like all none�ective
operations). The insertion of an e�ective instruction, instead, requires the application
of Algorithm 2 to construct an instruction that is e�ective for a given program position.
Explicit insertions of none�ective instructions (introns) are avoided, of course.

Algorithm 2 (Insertion of an e�ective instruction at a position i):

1. Determine all e�ective registers at position i by terminating Algorithm 1 after that
position has been reached. Set Reff holds the e�ective registers then.

2. Choose the destination register for the new instruction from Reff .
The choice of the operand register(s) is free.

3. Shift all instructions from position i (inclusively) to the end of program one position
downwards and insert the new instruction at position i.

6 Test Problems and System Con�guration

The performance of the di�erent genetic operators introduced above and their in
uence
on solution complexity has been compared using two benchmark problems. Note that

6



similar results have been found with a couple of other regression problems that are not
documented here.

The �rst problem is represented by a two-dimensional mexican hat function (see Equation
1). Figure 1 shows a three-dimensional plot of the function visualizing the surface that
has to be approximated.

mexicanhat(x; y) =

 
1�

x2

4
�

y2

4

!
� e

�
�

x
2

8
�

y
2

8

�
(1)

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Figure 1: Mexican hat function.

The second test problem, two points, computes the square root of the scalar product of
two three-dimensional vectors p and q (see Equation 2).

twopoints(px; py; pz; qx; qy; qz) =
p
px � qx + py � qy + pz � qz (2)

Tables 2 summarizes complexity attributes of the data samples selected for each problem.
These are input and output dimension, input range as well as number of randomly selected
examples for training set, validation set and test set. It is important for the performance
of linear GP to provide enough registers for calculations, especially if input dimension is
low. Therefore, the number of (calculation) registers|additional to the registers that hold
the input data|is an important parameter. In general, the number of registers decides
on the number of program paths that can be calculated in parallel. If it is not su�cient
there are too many con
icts by overwriting of register information within programs.

General con�gurations of our linear GP system are given in Table 3. The instruction set
that has been selected for approximating both problem functions is not complete, i.e. it
does not include the square root or the exponential function (ex) explicitly, but is su�cient
to develope the optimum solution.

7



Problem Inputs Input range Outputs Samples
Training Validation Testing

mexican hat 2 [�4; 4] 1 400 400 400
two points 6 [0; 10) 1 200 200 200

Table 2: Problem dimensions.

Parameter Setting

Number of generations 1000
Population size 1000
Maximum program size 200 instructions
Initial maximum size 20 instructions
Instruction set f+;�;�; =; xyg
Initial set of integer constants f1,..,9g
Micro mutations 25%
Macro mutations 75%

Deletions 33%
Insertions 66%

Crossover 75%

Table 3: General parameter settings.

In order to guarantee that the rate of new individuals is the same with crossover and
macro mutations, always two tournament winners are recombined or both of the two
parents undergo macro mutation. Tournament selection is applied with the minimum of
two participants per tournament.

Macro mutations include two times more insertions than deletions here. This explicit

growth tendency of the operator has proven advantageous with both problem tasks. In
general, inserting and deleting single instructions with the same probability, instead, may
result in a growth of programs which is too slow for producing good results.

7 Experiments and Results

In this Section the di�erent variants of linear GP that have been introduced in Section
5|application of crossover or macro mutations on one hand and their e�ective equivalents
on the other hand|are compared according to prediction performance, generalization and
code complexity. All experimental results presented are average �gures of 60 test runs.

Tables 4 and 5 document prediction results for the two points and themexican hat problem.
Fitness (training error) is calculated as the sum of square errors between predicted and
desired program outputs. The respective error on the validation set (validation error) is
checked during evolution among the best individuals while the best validating solution is
retained and tested on unknown data at the end of a run (test error).

In our crossover experiments (cross) the maximum length of the exchanged code segments
has been varied through three di�erent orders of magnitude (2, 20 and 200 instructions).
Note, that the actual segment lengths are selected randomly from a range of one to cur-
rent program length if this is smaller than the maximum segment length. Amazingly, the

8



Operator Segment Fitness Validation Testing E�ective Neutral
Length Error Error Registers Operations

cross 200 192.1 276.5 274.7 4.0 218
20 171.0 259.6 268.1 4.3 257
2 100.8 138.0 157.4 4.5 298

e�cross 200 352.5 405.5 422.6 3.8 137
20 324.2 367.0 409.4 4.0 134
2 395.0 454.5 450.1 2.0 150

Operator Calculation Fitness Validation Testing E�ective Neutral
Registers Error Error Registers Operations

mut 0 157.0 261.4 263.9 3.3 396
3 95.5 165.6 195.2 4.5 419
6 94.0 168.8 189.2 5.1 476
12 86.4 147.0 194.6 5.8 554
24 100.0 167.6 201.9 6.8 637

e�mut 0 90.6 127.7 143.0 3.8 73
3 66.3 92.7 95.5 5.2 66
6 53.6 75.0 72.1 6.4 68
12 44.9 70.7 76.7 8.4 95
24 45.3 76.1 78.4 11.6 114

e�mut2 3 76.5 114.0 123.9 5.2 56

Table 4: Prediction quality for the two points problem Bold printed results correspond to
Figures 2 and 3.

smaller the exchanged code parts are the better results become for training and general-
ization. This is a strong hint that the unlimited standard crossover operator (maximum
segment length equals maximum program length 200) is varying genetic programs too
heavily.

If the emerging none�ective code is completely removed directly after every operation as
with the e�ective crossover approach (e�cross), the prediction quality of linear genetic
programs decreases signi�cantly for the two points problem. Variations generated by the
operator on the (e�ective) code are most destructive then. This experiment con�rms that
none�ective code is needed to control the variation strength when using recombination
by crossover. On the one hand, none�ective instructions act as (structural) introns that
protect the e�ective code from being disrupted too heavily. Although because of the
maximum limitation of program length (200 instructions) this implicit control of crossover
step size does not prove su�cient. On the other hand, there is a signi�cant loss of genetic
material when removing the none�ective code. This leads to a premature loss of diversity
and a slower growth of (e�ective) program size|especially at the beginning of a run where
segment lengths are comparatively small (see below). None�ective (intron) code, instead,
preserves code diversity in the population and allows longer and better e�ective code to
emerge with crossover.

With e�ective crossover evolution tries to compensate the absence of none�ective code by
increasing (e�ective) program length|especially for the mexican hat problem (see Figures

9



Operator Segment Fitness Validation Testing E�ective Neutral
Length Error Error Registers Operations

cross 200 15.46 17.68 17.73 2.2 200
20 12.95 15.50 15.44 2.3 238
2 3.44 4.63 4.47 2.7 235

e�cross 200 11.61 13.46 13.34 2.6 102
20 12.63 15.86 15.80 2.7 107
2 17.09 17.86 17.66 2.2 131

Operator Calculation Fitness Validation Testing E�ective Neutral
Registers Error Error Registers Operations

mut 0 12.00 15.72 15.73 1.4 361
2 5.77 9.94 10.25 2.5 408
4 2.64 5.64 5.43 3.4 430
8 1.33 3.84 3.66 4.7 480
16 1.45 2.78 2.46 6.4 549

e�mut 0 4.58 5.72 5.59 1.8 99
2 1.35 1.92 1.69 2.8 75
4 1.08 1.93 1.68 3.8 92
8 0.90 1.63 1.38 5.4 114
16 0.65 1.21 0.99 8.1 143

e�mut2 2 1.59 2.25 2.05 2.72 88

Table 5: Prediction quality for the mexican hat problem Bold printed results correspond
to Figures 4 and 5.

3 and 5). But this intron formation within the e�ective code (semantical introns) does not
always prove a su�cent protection mechanism. With normal crossover these introns are
generally (see Section 3) more di�cult to create and to maintain. Hence their emergence
may be suppressed in the presence of a su�cient amount of none�ective code. In this
way, the size of the none�ective code may reduce the size of the e�ective code, at least if
crossover is used.

In contrast to none�ective crossover, prediction results get worse with smaller segment
lengths. The reason is that the growth of programs (not documented) is too restricted to
compensate for the permanent loss of genetic material caused by the radical deletion of
none�ective code.

Exchanging one or two instructions during crossover only is a very special kind of recom-
bination, all the more if you take into account that in most cases the number of possible
instructions is comparatively small. This motivates the study of macro mutations instead
of crossover that insert or delete a single (random) instruction only. Note that the lin-
ear crossover operator guarantees an exchange, i.e. deletion and insertion, of at least one
instruction.

Tables 4 and 5, lower part, compare �tness and generalization performance when using
mutations exclusively (mut) for di�erent numbers of additional (calculation) registers. For
both benchmark problems macro mutations performed better than standard crossover if
the same number of calculation registers is provided|three registers with two points and

10



two registers with mexican hat. Moreover, results with mutation have been found to
lie within the same order of magnitude as \crossover" con�guations with very restricted
segment lengths. As a conclusion, crossover should be de�nitely restricted in in
uence.
One simple but e�cient way is the reduction of segment lengths.

It may be added that the number of neutral operations (from 1000 genetic operations per
generation) reduces when applying genetic operators that concentrate on the e�ective code.
Obviously, avoiding none�ective operations leads to more operations that are relevant
to �tness. Since, in general, neutral operations are more likely with mutations than
with crossover this e�ect is more signi�cant with e�ective mutations than with e�ective
crossover. With e�ective mutations (e�mut) the number of neutral operations reduces
signi�cantly compared to mutations that are not restricted to the e�ective code. Though
larger code parts are varied by crossover there can still be more neutral operations with
e�ective crossover than with e�ective mutations. The reason is simply that the exchanged
crossover segments are not necessarily e�ective in other programs as well. With mutations
instead this may be guaranteed explicitly (see Section 5).

The clearest improvement in results is achieved in our experiments through e�ective mu-
tations (e�mut). Prediction performance with e�ective mutations still improves or, at
most, level out with a very high amount of calculation registers compared to the number
of input registers. Interestingly, this e�ect has been observed with normal mutations, too,
for the mexican hat problem. But results may get worser here again beyond an optimum
number of registers as found with the two points problem. The main reason is that e�ec-
tive insertions (see Section 5) are much more independent from the input dimension since
registers are selected e�ectively here.

The average number of e�ective registers that are used at a particular program position
correlates with the number of program paths that are calculated in parallel in a linear
GP program. It depends not only on the problem but directly on the number of registers
provided. Especially for e�ective mutations this number increases according to the number
of calculation registers (see Table 4).

The variant of e�ective mutations applied in our e�mut experiments allows deletions of
none�ective instructions (see Section 5). By doing so, the rate of none�ective code reduces
to less than one percent. For comparison reason we added an experiment with e�ective
mutations (e�mut2) which are restricted to e�ective instructions only. Although nonef-
fective code is not touched by this variant it maintains a much lower rate of none�ective
code than standard macro mutations (mut, see Figures 3 and 5). In case of e�mut the
none�ective code may function as a small protection mechanism that controls the in
uence
of user-de�ned deletion rate (33% here). This might explain the (slightly) lower predic-
tion performance of e�mut2 solutions (see Tables above). Just as the little di�erence of
e�mut and e�mut2 solutions in e�ective size this could result from negative side-e�ects by
reactivation of none�ective (intron) code as well.

Figures 3 and 5 document that e�ective lengths are around 50% smaller if solutions are
developed with e�ective mutations (e�mut) than with normal macro mutations (mut).
This might originate from the problem that it is more di�cult for evolution to preserve
shorter e�ective code if operators tend to produce a lot of none�ective instructions. Since
only e�ective code is executed in our linear GP system processing time is accelerated
signi�cantly by using e�ective mutations. Regarding the respective prediction results from
Tables 4 and 5 the smaller e�ective solutions show much better performance in training

11



0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

Le
ng

th

Generation

cross
effcross

mut
effmut

effmut3

Figure 2: Development of program lengths with two points problem. Average taken over
60 runs. Error bars indicate standard error.

0

50

100

150

200

0 200 400 600 800 1000

E
ffe

ct
iv

e 
Le

ng
th

Generation

cross
mut

effmut
effmut3

Figure 3: Development of e�ective lengths with two points problem. For e�cross e�ective
length equals absolute length (see Figure 2).

12



0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

Le
ng

th

Generation

cross
effcross

mut
effmut

effmut3

Figure 4: Development of program lengths with mexican hat problem. Average taken over
60 runs. Error bars indicate standard error.

0

50

100

150

200

0 200 400 600 800 1000

E
ffe

ct
iv

e 
Le

ng
th

Generation

cross
mut

effmut
effmut3

Figure 5: Development of e�ective lengths with mexican hat problem. For e�cross e�ective
length equals absolute length (see Figure 4).

13



and generalization here.

Finally, we compare the development of e�ective length with the absolute lengths in Fig-
ures 2 and 4. With unlimited standard crossover the absolute length approaches the
maximum size limit of 200 instructions within the �rst 300 generations. With none�ective
macro mutations this e�ect is extentuated by reaching the maximum later. Obviously,
program growth is slower with mutations. Because none�ective code does not in
uence
�tness directly there is no selection pressure on this part of a program. If crossover is
applied the protection function of the none�ective code becomes an additional drive of
program growth. Obviously, this so called bloat e�ect is caused by an explosive increase
of the none�ective code part in linear GP. This has been found for the growth of tree
programs as well [6].

E�ective operations in general reduce the rate of none�ective code and, thus, the bloat
e�ect signi�cantly. This is true for e�ective mutations even without allowing deletions
of none�ective instructions (e�mut2). In this way, e�ective macro mutations o�er an
implicit control of code growth for linear genetic programming. In contrast to crossover
e�ective macro mutations do not require none�ective code necessarily for inducing e�cient
solutions, neither for controlling variation strength nor for preserving code diversity.

Besides a slower increase in program length �gures for mutations are smoother than length
�gures for crossover. Both observations re
ect that variation step sizes are smaller on the
code level when using mutations.

8 Conclusion

Several possibilities to decrease variation steps of linear genetic operators have been in-
troduced and have proven to be successful in improving �tness and generalization qual-
ity. Program induction by using macro mutations exclusively has not only turned out to
be competitive with linear crossover but developed signi�cantly better solutions for two
benchmark problems. Moreover, e�ective macro mutations o�er a successful control of
code growth in linear genetic programming while evolving more compact solutions.

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG), collabora-
tive research center SFB 531, project B2.

References

[1] W. Banzhaf, P. Nordin, R. Keller and F. Francone, Genetic Programming | An

Introduction. On the automatic Evolution of Computer Programs and its Application.

dpunkt/Morgan Kaufmann, Heidelberg/San Francisco, 1998.

[2] T. Blickle, Evolving Compact Solutions in Genetic Programming: A Case Study. In H-
M Voigt, W. Ebeling, I. Rechenberg, H-P Schwefel, editors, Parallel Problem Solving
from Nature - PPSN IV, pp. 564{573, LNCS 1141, Springer, Berlin, Germany, 1996.

14



[3] M. Brameier and W. Banzhaf, A Comparison of Linear Genetic Programming and

Neural Networks in Medical Data Mining. IEEE Transactions on Evolutionary Com-

putation, in press.

[4] K. Chellapilla, Evolving Computer Programs Without Subtree Crossover. IEEE Trans-

actions on Evolutionary Computation, vol. 1, no. 3, 1997.

[5] P. Nordin, W. Banzhaf and F. Francone, E�cient Evolution of Machine Code for

CISC Architectures using Blocks and Homologous Crossover. Advances in Genetic

Programming III, pp. 275{299, MIT Press, Cambridge, MA, 1999

[6] T. Soule, J. A. Foster, and J. Dickinson, Code growth in genetic programming. In
John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pp. 215{223, MIT
Press, Cambridge, MA, 1996.

15


