
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Analysis of the (1+1) EA for a Dynamically
Changing Objective Function

Stefan Droste

No. CI-113/01

Technical Report ISSN 1433-3325 Juni 2001

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Analysis of the (1+1) EA for a Dynamically
Changing Objective Function

Stefan Droste
LS Informatik 2, Universität Dortmund

44221 Dortmund, Germany

Abstract

Evolutionary algorithms (EAs) are a class of randomized search
heuristics, that are often successfully used for black-box optimization.
Nevertheless, there are only few theoretical results about EAs, which
are furthermore limited to static objective functions, i. e. functions
that do not change over time, despite of the practical relevance of dy-
namic optimization. Here, the runtime of a simple EA, the (1+1) EA,
is theoretically analyzed for a dynamically changing objective func-
tion. The main focus lies on determining the degree of change of the
fitness funcion, where the expected runtime of the (1+1) EA changes
from polynomially to super-polynomially. The proofs presented show
methods how to analyze EAs with dynamically changing objective
functions.

1 Introduction

Evolutionary algorithm (EA) is a synonym for a randomized search heuris-
tic, whose basic principles, like mutation, recombination, and selection, are
borrowed from theories about natural evolution. The main classes of EAs are
genetic algorithms (Goldberg (1989)), evolution strategies (Schwefel (1995)),
and genetic programming (Koza (1992)). All three classes of EAs are used
successfully in practical applications (see Bäck, Fogel, and Michalewicz (1997)
for an overview of EAs and their applications).
EAs can be used even if there is no knowledge about the structure of

the objective function f : A �→ B to be optimized apart from the possibility
to compute f(a) for arbitrary a ∈ A. It is intuitively clear, that additional
knowledge about the objective function is necessary in order to design more

1

efficient EAs. Formally this was proven by the so-called “No-Free-Lunch”-
Theorem (Wolpert and Macready (1997)), stating that on average over all
functions all search algorithms perform the same. Hence, theoretical in-
vestigations have to concentrate on clearly defined rather small classes of
functions.
Because there is no well-laid basis for the theoretical analysis of EAs, we

cannot expect to analyze EAs used in practice, which often use rather in-
volved genetic operators, being tailored on the problem at hand. Instead, the
first theoretical results focus on the analysis of simple mutation-based evo-
lutionary algorithms, where the so-called (1+1) EA has probably gained the
most attention (see Rudolph (1997) or Droste, Jansen, and Wegener (2001),
for instance). Although these results are not directly applicable to practical
EAs, they show how to analyze EAs, which led to more sophisticated meth-
ods making it possible to analyze more and more complicated and “realistic”
EAs (see Jansen and Wegener (1999) or Jansen and Wegener (2001)).
All these theoretical results investigate the case where the objective func-

tion is static, i. e. does not vary over time. Although dynamically changing
objective functions have wide practical applications (see Bryson (1998), in-
vestigations of EAs hereon are limited to experimental work or heuristic ap-
proximative analysis (see Sarma and DeJong (1999), Ronnewinkel and Wilke
(2001), or Weicker and Weicker (1999)). Here we rigorously analyze the run-
time, i. e. the number of individuals that are evaluated until an optimum of
the actual objective function is found, of the (1+1) EA for a dynamically
changing objective function. Although the algorithm and the objective func-
tion are very simple with respect to algorithms and problems in practice, the
paper shows how dynamic objective functions can be theoretically analyzed.
The paper is structured as follows: in the next section we formally de-

fine the (1+1) EA for dynamic objective functions ft : {0, 1}n �→ R and its
runtime. We also introduce our model of a randomized process changing the
objective function: we measure the fitness as the number of matching posi-
tions in the actual individual and an objective bitstring, where one uniformly
chosen bit is changed in the objective bitstring with probability py during
one generation. In Section 3 we show that for py = O(log(n)/n) the expected
runtime of the (1+1) EA is polynomially in n, and in Section 4 that for every
substantially larger probability, i. e. py = ω(log(n)/n), the expected runtime
becomes super-polynomially. The paper ends with some conclusions.

2

2 The (1+1) EA for dynamically changing

objective functions

The (1+1) EA is the most simple EA for maximizing an objective function
f : {0, 1}n �→ R: its population consists of only one individual x ∈ {0, 1}n,
which is uniformly chosen during initialization. In every generation the ac-
tual bitstring is mutated to a bitstring x′ ∈ {0, 1}n by randomly flipping each
bit of x with probability px = 1/n. If the fitness f(x′) of the new bitstring
is at least as large as that of the old bitstring x, the bitstring x′ is chosen
as successor, i. e. x is replaced by x′. In practice, this mutation-selection
process will be repeated until a stopping criterion becomes valid. In theoret-
ical investigations we are interested in the number of generations, until an
optimum is found for the first time, hence we omit any stopping criterion.
We model a dynamically changing objective function as a family (ft :

{0, 1}n → R)t∈N0 of functions, where ft is the actual objective function after
the (1+1) EA has made t ∈ N0 steps. Hence, also the actual individual is
denoted as xt to make the notation clearer. The formal definition of the
(1+1) EA is now as follows:

Algorithm 2.1 (1+1) EA for a dynamically changing objective function
(ft : {0, 1}n �→ R)t∈N0.

1. Set t := 0 and choose xt ∈ {0, 1}n randomly.

2. Set x′ := xt and flip each bit of x′ independently with probability 1/n.

3. If ft(x
′) ≥ ft(xt), set xt+1 := x′, else xt+1 := xt.

4. Set t := t+ 1 and go to step 2.

Hence, after generating x′ by mutating xt the actual objective function
is ft. So it makes sense to use ft instead of the “old” ft−1 to compare x′

and xt, because it is our goal to find an element xt being optimal for the
actual objective function ft at this time. We examine the runtime Tf , where
f denotes the family of objective functions to be optimized:

Definition 2.2 Let f = (ft : {0, 1}n �→ R)t∈N0 be a family of objective
functions. The runtime Tf of the (1+1) EA is defined as

Tf := min{t ∈ N0 | ft(xt) = max{ft(x) |x ∈ {0, 1}n}}.

Hence, the runtime is the first point in time, where the (1+1) EA reaches
an optimum of the actual objective function. Surely, this is just one aspect

3

of the behaviour of the (1+1) EA: another important aspect for dynamically
changing objective functions is the degree to which a found optimum can be
lost, after it has been found.
One of the first functions the (1+1) EA has been analyzed for isOneMax,

where its expected runtime is O(n log(n)) (see (Mühlenbein (1992) for a first
approximate analysis and (Droste, Jansen, and Wegener (1998) for a rigorous
analysis). OneMax returns as its function value the number of ones in
its argument, which can also be interpreted as the number of bits, where
the argument matches an objective bitstring, the all-one bitstring (1, . . . , 1).
Here we look at a dynamic variant called OneMaxt,M , where the objective
bitstring (1, . . . , 1) is changed by a random operator M : {0, 1}n → {0, 1}n

(formally it should be a function M : {0, 1}n × Ω �→ {0, 1}n, where Ω forms
a probability space together with a probability measure P , but we will omit
these details for the sake of brevity):

Definition 2.3 Let the family (OneMaxt,M : {0, 1}n �→ {0, 1})t∈N of func-
tions be defined as

OneMaxt,M(x) := n − H(x, yt), where y0 := (1, . . . , 1) and yt+1 := M(yt).

Here, H(x, y) is the Hamming distance between x and y. Because of
symmetry reasons it makes no difference to initialize y0 with another bitstring
than (1, . . . , 1) with respect to the runtime of the (1+1) EA. There are many
choices for the random operator M changing the objective bitstring yt. We
look at one of the simplest, where M flips exactly one uniformly chosen bit
of the argument with probability py and does not change the argument in
the other case:

Definition 2.4 Let py ∈ [0, 1]. Then the random operator M1 : {0, 1}n �→
{0, 1}n is defined as:

P (M1(y) = y′) =




py

n
, if H(y, y′) = 1,

1− py , if H(y, y′) = 0,
0 , if H(y, y′) > 1.

Hence, the movement rate of the objective bitstring depends on the objec-
tive mutation probability py, but in one step only one bit of yt can flip. Using
this random operator M1, the family of objective functions OneMaxt,M1 for
t ∈ N0 is called OneMaxD for short. In the following section we will show
that for py = O(n/ log(n)) the expected running time of the (1+1) EA with
px = 1/n on OneMaxD is polynomial.

4

3 A polynomial upper bound on the expected

runtime for small objective mutation rates

In this section, we show that for objective mutation probabilities py of size
O(log(n)/n) the (1+1) EA needs polynomial runtime in the expected case.
In order to do this, we model a run of the (1+1) EA by a stochastic process,
replace this process by a “slower” one, and show that even this process needs
only polynomial expected time to reach a state corresponding to the opti-
mum. Because the stochastic process modelling the (1+1) EA will be used
in the next section, too, we introduce it here in more detail.
Let the actual search point at the beginning of the t-th iteration of the

(1+1) EA be xt. To make our formalization easier, we assume that the
objective bitstring is always (1, . . . , 1), i. e. the fitness of a bitstring is equal
to the number of its ones. Therefore, the random operator M1 originally
working on the objective bitstring is “transferred” to the actual search point
xt: with probability py one of its bits is chosen randomly and flipped; with
probability 1 − py nothing is done. Let x′

t be its outcome. Then bit-wise
mutation is applied with probability px per bit on x′

t and results in x′′
t .

The selection in step 3 of the (1+1) EA now implicitly decides between
x′

t and x′′
t : if |x′′

t | ≥ |x′
t|, then xt+1 := x′′

t , otherwise xt+1 := x′
t. Hence,

|xt+1| can be smaller than |xt| but only by one. Now we have a model with
two mutation steps, where the first is always accepted, i. e. influences the
search process. The second, bit-wise mutation is only accepted if it does not
decrease the number of ones with respect to x′

t. Using this somewhat simpler,
equivalent model, we prove a polynomial upper bound for py = O(n/ log(n)):

Theorem 3.1 The expected runtime of the (1+1) EA on OneMaxD with

py ≤ c · log(n)/n (for a constant c > 0) is O(n
c exp(1)
ln(2)

·(1+o(1))+1 · log(n)).

Proof: In order to upper bound the runtime of the (1+1) EA we analyze a
Markov chain on the set {0, . . . , n}, whose time T to reach state n stochas-
tically dominates the runtime TOneMaxD

of the (1+1) EA, i. e. for all t ∈ N0

we have P (T ≥ t) ≥ P (TOneMaxD
≥ t). Then it easily follows that the ex-

pected value of T is at least as large as E(TOneMaxD
). The Markov chain

on {0, . . . , n} looks as follows: the initial state is chosen as i ∈ {0, . . . , n}
with probability

(
n
i

)
/2n. This exactly models the random initialization of the

(1+1) EA. From a state i ∈ {0, . . . , n} the only possible successor states are
i − 1 resp. i+ 1, where the transition probabilities p−i resp. p

+
i are

p−i = py · i

n
resp. p+

i = (1− py) · (n − i) · px · (1− px)
n−1.

5

As p−i is an upper bound for the probability, that the number of ones in xt

decreases by one, and p+
i a lower bound for the probability, that the number

of ones in xt increases by one, the resulting Markov process is “slower” than
the (1+1) EA (here it is essential that the number of ones in the (1+1) EA
can decrease by at most one in a single step). It results from the exact
Markov process of the (1+1) EA by setting all transition probabilities from a
state i to state j ≥ i+2 to zero, whereas those from a state i to a state i+1
resp. to a state i − 1 are not increased resp. not decreased (the “remaining
probabilities” are added to the probability to stay in state i). Hence, one
can easily show by induction over i ∈ {0, . . . , n− 1}, that the time Ti for the
new Markov chain to reach state n starting from i stochastically dominates
the time of the (1+1) EA to come from a string with i ones to the string
with n ones. As the initialization of the (1+1) EA is exactly modelled by the
Markov chain, it is sufficient for us to upper bound the expected time E(Ti)
to reach state n starting from state i for the first time.
If T+

i denotes the number of steps to reach state i + 1 for the first time
when starting in state i, it is well known (see, for instance, (Droste, Jansen,
and Wegener (2000a)), that the following equation holds:

E(T+
i) =

i∑
k=0

1

p+
k

·
i∏

l=k+1

p−l
p+

l

.

Filling in our values for p−i and p+
i , we get that E(T+

i) equals

i∑
k=0

1

(1− py)(n − k)px(1− px)n−1
·

i∏
l=k+1

py
l
n

(1− py)(n − l)px(1− px)n−1

=
i∑

k=0

1

(1− py)(n − k)px(1− px)n−1
·

(py)
i−k · i!

k!·ni−k · (n−i−1)!
(n−k−1)!

(1− py)i−k(px)i−k(1− px)(n−1)(i−k)

=
i∑

k=0

(
i
k

)
(

n−k
i−k

)
(n − i)

·
(

py

n(1− py)px(1− px)n−1

)i−k

· 1

(1− py)px(1− px)n−1

(In order to upper bound this expression we lower bound
(

n−k
i−k

)
by 1:)

≤ 1

(1− py)px(1− px)n−1
· 1

n − i
·

i∑
k=0

(
i

k

)(
py

n(1− py)px(1− px)n−1

)i−k

=
1

(1− py)px(1− px)n−1
· 1

n − i
·
(
1 +

py

n(1− py)px(1− px)n−1

)i

6

Using py ≤ c log(n)/n and px = 1/n, we can upper bound E(T+
i) by

1(
1− c log(n)

n

)
1
n

(
1− 1

n

)n−1
· 1

n − i
·

1 + c log(n)

n

n
(
1− c log(n)

n

)
1
n

(
1− 1

n

)n−1




i

≤ exp(1)
n−c log(n)

n

· n

n − i
·
(
1 +

c · log(n) · exp(1)
n − c log(n)

)i

≤ 2 exp(1) · n

n − i
·
(
1 +

c · log(n) · exp(1)
n − c log(n)

)i

(for n ≥ 2c log(n)).

In order to use the estimation (1 + 1/x)x ≤ exp(1), we transform the last
expression into:

2 exp(1) · n

n − i
·
(
1 +

c · log(n) · exp(1)
n − c log(n)

) n−c log(n)
c log(n) exp(1)

· c log(n) exp(1)
n−c log(n)

·i

≤ 2 exp(1) · n

n − i
· exp

(
c log(n) exp(1)

n − c log(n)
· i
)

≤ 2 exp(1) · n

n − i
· n c exp(1)

ln(2)
· n
n−c log(n) =

2 exp(1)

n − i
· n c exp(1)

ln(2)
·(1+o(1))+1.

Hence, by linearity of the expectation and pessimistically assuming that we
initialize in (0, . . . , 0), we can upper bound E(TOneMaxD

) by

n−1∑
i=0

E(T+
i) ≤ 2 exp(1)·n c exp(1)

ln(2)
(1+o(1))+1·

n∑
i=1

1

i
= O

(
n

c exp(1)
ln(2)

·(1+o(1))+1 · log(n)
)

.

�

4 A super-polynomial lower bound for large

objective mutation rates

After we have shown in the last section, that the expected number of steps
to reach a global optimum of OneMaxD is polynomially bounded for the
(1+1) EA and py = O(log(n)/n), we now want to analyze how the runtime
changes for an essentially larger rate py of change of the objective bitstring.
Hence, let py = ω(log(n)/n). Then we denote py by α(n) · log(n)/n, where
limn→∞ α(n) =∞, i. e. α grows without bounds.
In order to prove a super-polynomial lower bound on the runtime of the

(1+1) EA for OneMaxD, we show that the probability of the (1+1) EA

7

to reach the global optimum in t steps is super-polynomially small, i. e. at
most 1/β(n), where β(n) grows faster than any polynomial. Therefore, it is
super-polynomially unlikely that the optimum is reached after polynomially
steps. Furthermore, we can rule out a constant number of events in the
random process generated by the (1+1) EA, as long as we show that their
probability is super-polynomially small.

Theorem 4.1 The (1+1) EA finds the optimum of OneMaxD with py =
ω(log(n)/n) in p(n) steps with super-polynomially small probability for every
polynom p in n.

Proof: A rough outline of the proof is as follows: we concentrate on the
phase, where the (1+1) EA has found a bitstring with fitness at least n−G,
where G = log(n)α(n)6/10 = o(n). Then we show that the probability of
decreasing the fitness in a mutation is by a non-constant factor higher than
that of increasing it. By showing that a mutation increasing the number
of ones by more than L = α(n)1/10 is super-polynomially unlikely, we can
restrict to mutations increasing the number of ones by at most L. Now, a
sequence of mutations of the (1+1) EA starting with n−G ones and ending in
the optimum has to contain by a constant factor more increasing mutations
than their expected value. Using Chernoff bounds we can show that such a
sequence is super-polynomially unlikely.
Our first assumption on the (1+1) EA is to start with a bitstring having

at most n − G ones. Because G = log(n)α(n)6/10 is o(n), Chernoff bounds
guarantee that the probability of initializing with a bitstring with more than
n − G ones is exponentially small. Furthermore, we assume that in one
mutation at most L = α(n)1/10 zeros flip. The probability of mutating at
least L of the at most G zeros can be upper bounded by(

G

L

)
·
(
1

n

)L

≤
(

G

n

)L

=

(
log(n) · α(n)6/10

n

)L

≤
(
log(n)

n

)4L/10

.

Hence, we can rule out mutations increasing the number of ones by more
than a constant and thereby only make an error with super-polynomially
small probability, if we concentrate on polynomially many steps. Now we
can further assume that every bitstring with less than n−G ones is changed
to an arbitrary bitstring with exactly n−G ones. Because the distance to the
optimum decreases in one mutation by at most L = α(n)1/10 and L = o(G),
the expected time to reach the optimum cannot increase when diminishing
the distance to the optimum to exactly G.
Under this assumption the number of ones of the current bitstring of the

(1+1) EA varies between n−G and n and we are interested in the expected

8

time to reach n ones for the first time. Let It be the actual state, i. e. the
number of ones of xt. In order to reach state n, there have to be points
in time t1 and t2, where It1 is n − G, It ∈ {n − G + 1, . . . , n − 1} for all
t ∈ {t1 + 1, . . . , t2 − 1}, and It2 = n. In the following we want to show
that for every t = t2 − t1 ∈ N it is super-polynomially unlikely that such a
sequence It1, . . . , It2 exists (a similar technique was used in Droste, Jansen,
and Wegener (2000b)).
Therefore, we upper resp. lower bound the probability p+

i resp. p−i that
the number of ones increases resp. decreases, when the actual number of ones
is i. Because the number of ones decreases, if the mutation of the objective
bitstring flips one of the i ones and the bitwise mutation flips no zero, we
have

p−i ≥ py · i

n
·
(
1− 1

n

)n−i

≥ py

exp(1)
· i

n
.

To upper bound p+
i we have to be more careful. A mutation step, where the

number of ones increases, implies one of the three following conditions:

1. The mutation of the objective string does not change a bit and the
bitwise mutation flips at least one of the at most n − i zeros.

2. The mutation of the objective string does change one of the at most
n − i zeros.

3. The mutation of the objective string does change one of the at least i
ones and at least one of the n − i zeros is flipped during the bitwise
mutation (the more restrictive condition of at least two flipping zeros
in the bitwise mutation lowers the following bound on p+

i only by a
constant factor and is therefore omitted for an easier description).

Hence, we can upper bound p+
i by

(1− py) ·
(
1−

(
1− 1

n

)n−i
)
+ py ·

(
n − i

n
+

i

n
·
(
1−

(
1− 1

n

)n−i
))

≤ (1− py) ·
(
1− 1 + n − i

n

)
+ py ·

(
n − i

n
+

i

n
·
(
1− 1 + n − i

n

))

=
n − i

n
+ py · i · (n − i)

n2
=

n − i

n
·
(
1 + py · i

n

)
≤ 2 · n − i

n
.

Using that i is at least n−G = n− log(n)α(n)6/10 and py = α(n) · log(n)/n,
we get

p−i ≥ α(n) log(n)
n

exp(1)
· n − log(n)α(n)6/10

n
and p+

i ≤ 2 · log(n)α(n)
6/10

n
.

9

Because it is sufficient for us that decreasing the number of ones is by a factor
α(n)3/10 more likely than increasing them, we roughly bound p−i and p+

i by

p−i ≥ 1

2 exp(1)
· α(n) log(n)

n
and p+

i ≤ 1

2 exp(1)
· α(n)7/10 log(n)

n

for all n ≥ n0 for a constant n0 ∈ N (where 1/(2 exp(1)) is an arbitrarily
chosen constant smaller than exp(−1)).
Hence, the probability that the next mutation changing the number of

ones (called effective mutation) increases the number of ones is at most

1
2 exp(1)

· α(n)7/10 log(n)
n

(α(n) + α(n)7/10) · 1
2 exp(1)

· log(n)
n

=
α(n)7/10

α(n) + α(n)7/10
≤ α(n)−3/10.

Thereby, we have shown that the expected number of increasing mutations
during t effective mutations is at most t/α(n)3/10. To be able to get a super-
polynomially small bound by Chernoff bounds we show that

1. the expected number of increasing mutations grows significantly faster
than log(n), i. e. t/α(n)3/10 = ω(log(n)) and

2. the number of increasing mutations necessary to reach the optimum is
by a constant factor larger than their expected number.

In order to prove these claims we argue that t, the length of the sequence,
has to be at least G/L = log(n)α(n)1/2, because every increasing mutation
raises the number of ones by at most L = α(n)1/10. Hence, t/α(n)3/10 =
ω(log(n)), i. e. only sequences of some minimum length are candidates as
sequences It1 , . . . , It2 . The necessary number of increasing mutations can be
lower bounded in the following way: if t+ denotes the number of increasing
and t− the number of decreasing mutations during t = t+ + t− effective
mutations, the number of ones can be increased by at most t+ · L − t−. In
order to reach the global optimum this value has to be at least G. This is
equivalent to

t+ · L − t− ≥ G ⇐⇒ t+ ≥ G+ t − t+

L
⇐⇒ t+ ≥ G+ t

L+ 1
.

For n large enough we have α(n)1/10 + 1 ≤ α(n)2/10 and get

G+ t

L+ 1
=
log(n)α(n)6/10 + t

α(n)1/10 + 1
≥ t

α(n)2/10
.

10

This means that in order to reach the global optimum in t steps the number
of increasing mutations has to be by a non-constant factor larger than the
expected number t/α(n)3/10 of increasing mutations. Because there exists an
n1 ∈ N0 such that

∀n ≥ n1 :
1

α(n)2/10
≥ 2

α(n)3/10
,

using Chernoff bounds we can upper bound the probability of a sequence
It1, . . . , It2 of length t with the desired properties by

exp

(
− t

α(n)3/10
· 4
3

)
.

Because t is at least α(n)1/2 log(n), this can be upper bounded by

exp
(−Ω(α(n)2/10 log(n)

)
= n−Ω(α(n)2/10),

All in all, we have shown that in order for the (1+1) EA to find the op-
timum of OneMaxD with py = ω(log(n)/n) in t = poly(n) steps a super-
polynomially unlikely event has to happen. Therefore, the (1+1) EA finds
the optimum of OneMaxD after polynomially many steps only with super-
polynomially small probability which proves the lemma. �

5 Conclusion

Dynamic optimization is an important task in many practical applications,
but theoretical investigations of EAs for dynamically changing objective func-
tions are very rare. Here a simple (1+1) EA is analyzed for a simple objective
function measuring the distance to an objective bitstring. Assuming that
with probability py one uniformly chosen bit of the objective bitstring flips,
we show that the expected runtime of the (1+1) EA is polynomial if py is
O(log(n)/n). For all substantially larger probabilities, i. e. py = ω(log(n)/n),
it is shown that the runtime becomes super-polynomial with high probabil-
ity. Although this limiting mutation probability Θ(log(n)/n) is of its own
interest the main focus lies on the methods used to analyze the (1+1) EA.
These can be the basis for the analysis of the (1+1) EA on other dynamically
changing objective functions. For instance, it is future research to analyze its
behaviour on OneMaxt,M for a random operatorM modifying the objective
bitstring by a bit-wise mutation.

11

References

Bäck, T., D. B. Fogel, and Z. Michalewicz (Eds.) (1997). Handbook of Evo-
lutionary Computation. New York, NY: Institute of Physics Publishing
and Oxford University Press.

A. E. Bryson (1998). Dynamic Optimization. Reading, MA: Addison-Wesley.

S. Droste, T. Jansen, and I. Wegener (1998). A rigorous complexity analysis
of the (1 + 1) evolutionary algorithm for linear functions with boolean
inputs. In Proceedings of the Third IEEE International Conference on
Evolutionary Computation (ICEC 1998), Piscataway, NY, 499–504. IEEE
Press.

S. Droste, T. Jansen, and I. Wegener (2000a). Dynamic parameter control in
simple evolutionary algorithms. In Proceedings of the Sixth Foundations
of Genetic Algorithms Workshop (FOGA 2000). In print.

S. Droste, T. Jansen, and I. Wegener (2000b). A natural and simple function
which is hard for all evolutionary algorithms. In Proceedings of Third
Asia-Pacific Conference on Simulated Evolution and Learning (SEAL
2000), Piscataway, NJ, 2704–2709. IEEE Press.

S. Droste, T. Jansen, and I. Wegener (2001). On the analysis of the (1 + 1)
evolutionary algorithm. Accepted for Theoretical Computer Science.

D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley.

T. Jansen and I. Wegener (1999). On the analysis of evolutionary algorithms
– a proof that crossover really can help. In Proceedings of the Seventh
Annual European Symposium on Algorithms (ESA 1999), Berlin, 184–
193. Springer. Lecture Notes in Computer Science 1643.

T. Jansen and I. Wegener (2001). Real royal road functions – where crossover
provably is essential. Accepted for GECCO 2001.

J. R. Koza (1992). Genetic Programming. Cambridge, MA: MIT Press.

H. Mühlenbein (1992). How genetic algorithms really work: I. mutation and
hillclimbing. In Proceedings of the Second Conference on Parallel Problem
Solving from Nature (PPSN 1992), Berlin, 15–26. Springer.

C. Ronnewinkel and C. Wilke (2001). Dynamic fitness landscapes: Expan-
sions for small mutation rates. Physica A(290), 475–490.

G. Rudolph (1997). Convergence Properties of Evolutionary Algorithms.
Hamburg: Verlag Dr. Kovač.

12

J. Sarma and K. DeJong (1999). The behaviour of spatially distributed evo-
lutionary algorithms in non-stationary environments. In Proceedings of
the First Genetic and Evolutionary Computation Conference (GECCO
1999), San Francisco, CA, 572–578. Morgan Kaufmann.

H.-P. Schwefel (1995). Evolution and Optimum Seeking. New York, NY: John
Wiley & Sons.

K. Weicker and N. Weicker (1999). On evolution strategy optimization in dy-
namic environments. In Proceedings of the 1999 Congress on Evolutionary
Computation (CEC 1999), Piscataway, NJ, 2039–2046. IEEE Press.

D. H. Wolpert and W. G. Macready (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation 1 (1), 67–
82.

13

