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Abstract

The aim of evolutionary surface reconstruc-
tion is to find mathematical descriptions of
surfaces of physical objects. These objects
are represented only by discrete sampling
points. The reconstructions have to render
the original shape of the objects as realis-
tic as possible. Therefore, complex discrete
approximation problems must be solved. In
order to process surface reconstructions in
CAD systems, the descriptions have to ren-
der the construction logic of the scanned ob-
ject. Here, Nonuniform Rational B-Splines
(NURBS) and Constructive Solid Geometry
(CSG) are combined in one hybrid recon-
struction system that fits each surface type
automatically using one homogenous data
structure.

1 INTRODUCTION

Discrete approximation and pattern recognition are
fundamental problems in mathematics and computer
science. Mechanical engineering, medical science and
object design have an urgent need for realistic and
computer adequate descriptions of surfaces of real
physical objects. In order to reproduce the shape of
an object in a computer the object surfaces are sam-
pled using either optical or contact scanning technics.
Depending on the scanning system, thousands ranging
to millions of discrete points with either regular or
irregular distributions are generated. The task of
surface reconstruction is to identify the properties of
the original surface from the discrete sampling points
and to generate a mathematical surface description
that can be used for further processing in CAD
systems.

In CAD, two typical modeling techniques can be
distinguished. On one hand, Nonuniform Rational
B-Splines [PT97] are commonly used to describe
free-formed surfaces. On the other hand, complex
technical structures can be composed using elemen-
tary geometries (e.g. spheres, boxes, cylinders, etc.).
This structure is called Constructive Solid Geometry.
Both models have their own specific advantages
and disadvantages regarding their constructional
and computational effort. However, CAD systems
are often designed to support (mainly) only one
construction technique. Technical demands as well
as the natural appearance of real objects make it
necessary to combine both approaches in one hybrid
surface model. See Figure 1.

Figure 1: Turbine Blade

Both, discrete surface approximation and pattern
recognition can be interpreted as optimization prob-
lems. Evolutionary algorithms belong to a class
of probabilistic optimization strategies that already
proved to be robust and able to find surprisingly good
solutions even applied to complex multimodal, high di-
mensional and multiobjective problems [SNL0O]. Evo-
lution Strategies (ES) [Sch95, Bic96] performed well
in NURBS surface approximations [WMO00b, WMO00a].
Genetic Programming (GP) [K0z92] has been success-



fully applied to design optimization [Ben99] and sur-
face reconstruction [KMBW99, Meh01].

In this article, the classic approach to use separate
data structures and specialized optimization strategies
is replaced by one evolutionary hybrid surface recon-
struction algorithm that deals with NURBS as well as
CSG structures.

2 DATA STRUCTURE

2.1 CONSTRUCTIVE SOLID GEOMETRY

Mechanical machine components are typically com-
posed using basic components such as boxes, spheres,
cylinders, etc. Guo, Menon showed, that it is possi-
ble to build arbitrarily complex bodies using elemen-
tary elements and half spaces [GM96]. Every complex
construction can be composed using simpler CSG ob-
jects that interact geometrically depending on the bi-
nary relations join (U), intersect (N) and subtract (—).
Typically, a binary tree forms the basic data stucture
used in CSG-CAD-systems. The primitive geometries
(quadrics, boxes, tori, NURBS-solids, etc.) are used
to form the terminal nodes of the binary tree. Cor-
respondingly, the binary relations are used as inner
nodes of the CSG tree. Due to its recursive structure,
a CSG tree can be interpreted as a word from a con-
text free language. Standard interfaces like STEP or
IGES make use of this property. Figure 2 illustrates
the composition of the CSG structure displayed at the

top of the graph.
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Figure 2: Composition of a CSG Structure

Note, that for each CSG object, there is an infinite
number of representing CSG trees, which means the
CSG object representation is not unique. Following
the demands of a designer, a surface reconstruction al-
gorithm has to find the most simple constructive setup,

i.e. the CSG tree with a minimum number of elements
that resembles the digitized objects as realistic and ex-
act as possible. Due to the fact that only objects have
to be reconstructed that once have been constructed
using a finite set of elements, it is always possible to
find a (not unique) finite reconstruction. Thus, the
search space is finite but with a priori unknown di-
mension. The reconstruction algorithm has to find the
CSG construction that fits best into a given point set.
Thus, an approximation problem and a combinatoric
problem has to be solved in parallel. The search space
consists of a combination of real value vectors (posi-
tion and orientation of each CSG element in R*) and
a variable dimensional graph structure (CSG tree).

2.2 FITNESS FUNCTION

Concerning its structure a CSG tree is well suited
to represent the genome of an individual. The fit-
ness function is confronted with the problem to map
the genome to its phenotypic representation and to
compare this representation with the given sampling
points. Since the reconstructions are restricted to ob-
jects without undercuts, the fitness function can be
simplified to a comparison of each scanning point with
its projection on the CSG object parallel to the z-axis.
Therefore, it is necessary to implement a function that
calculates an intersection between a ray and the CSG
object.
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Figure 3: Calculating Intersections of a Ray and a
CSG Object

Figure 3 shows two CSG elements (terminals) and a
ray. The intersections of the ray with each terminal de-
fines the intervals I; and I>. In order to model the sur-
face of the resulting CSG structure, the corresponding
point A can be calculated from the intersection of the



two intervals depending on the corresponding boolean
operation in the CSG tree [FvDFHI0]. In the example
A equals A; or As or A3 if terminal 1 and terminal 2
are joined, intersected or subtracted.

In order to evaluate the quality of a reconstruction, a
comparison between the digitized points and the cor-
responding points on the CSG object surface has to be
performed. The following criteria are used to form the
multiobjective fitness function:

A describes the distance between each sampling point
and its corresponding point A on the surface of
the individual.

ABN (angle between normals) represents the devia-
tion of the normal vectors at each sampling point
position from the corresponding vectors position
on the surface of the CSG object. This value is
calculated by the dot product of the two vectors.
The total ABN result is normalized to an interval
of 1 (best fit) and 0.

CT (curvature type) is a criterion that helps the al-
gorithm to find the optimal terminal types to con-
struct a CSG object. This function compares the
curvature type of each point with the correspond-
ing one on the individual’s surface. The curva-
ture type — like the values of the normal vectors
— have been stored in the preprocessed sampling
data. Thus, the evaluation time can be reduced
drastically. CT yields 1 for an optimal match and
0 otherwise.
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Figure 4: A and ABN Criteria

There is also a fitness criterion that does not refer to
the points on the CSG object but to the individual s
structure itself. This is the number of nodes N in

the CSG tree. A good reconstruction excels not only
by minimal A, ABN and CT values but also by its
simplicity. Thus the number of elements of a genome
as to be introduced into the fitness function. These
four criteria can be weighted individually for each re-
construction to get results which focus at the desired
quality of the reconstruction. The formula for calcu-
lating the fitness F), of the individual at the point p is
as such:

N

F, =wa +wapn ABN + wep CT — —
C

1
1+A
The parameters w, are the weights of the criteria and
c is a constant, which controls the influence of the
number of nodes inserted into the individual. If the
value of ¢ is high, the influence of the number of nodes
will be small, thus, an individual may be constructed
from many terminals. The overall fitness is the average
over all F,. The lower bound of the fitness is —%
indicating the worst case while wa +wapny +wer — %
indicates an optimal reconstruction.

2.3 NONUNIFORM RATIONAL
B-SPLINES

Due to technical or design purposes many objects
show smooth surfaces. E.g. car bodies, houseassets
and even turbine blades are typically designed using
NURBS. NURBS surfaces are elementary construction
elements in many CAD systems [PT97]. NURBS can
model smooth surfaces as well as edges or peaks. Their
mathematical structure allows intuitive manual mod-
ifications. NURBS are a very powerful tool in CAD
and, thus, this mathematical model has become a
quasi-standard representation in CAD systems. Inter-
national data exchange interfaces like STEP or IGES
support these rational B-Spline formats.

NURBS are a superset, of Bézier polynomials and non-
rational B-splines. They are efficient regarding space
and time complexity and numerically stable. NURBS
surfaces are parametric tensor products that map the
vector (u,v)”T € R? to (x,y,2)T € R*. NURBS sur-
faces of order (p, q) are composed of the following com-
ponents:

e the control point net with n x m vertices
P={P,;cRi=1,..,nj=1,.,m},

e the knot vector U and V', where

— T
U= (0,...,0,Up+1,...,Ur_p_l,l,...,l) 5
———
p+1 p+1
_ T
V=(0,...,0,0441,. Vs g-1,1,...,1)7,
——
g+1 g+1

and r =n+p+1and s = m+qg+ 1. The



u; and v; have an ascending or descending order,
respectively.

e the weight vector
W={w;; €R"i=1,..,n,j=1,.,m}.

The parametric surface function is defined over the
domain (u,v) € [0,1] x [0,1] and expressed by

S(u,v) = Z::O ;":0 Nip(u)Nj,q(v)wi ;jPs;
’ o 2o Nep(W)N; g (v)wi

N;p(u) : R — R are the ith basis functions of order
p for the parameter u € R computed on a knot vec-
tor (ug, ..., un,)". The basis functions N; ,(u) can be
defined recursively by

1 ifu<u<Lug
Nio(u) = { 0 otherwise

Nip(u) = (u=wi) Ni,p—1(u) + (witpr1=w)Niy1,p—1(u)
nLp - Uitp—Ui Uidp1—Uitl

and evaluated efficiently by the Cox - de Boor algo-
rithm for example. The parameters of the control net
vertices, knot vectors and the weight vectors can be
joined to one vector ¢ = (P, T, W) of the space R”
with dimension v = 4nm + (n +p+m + q).

2.4 CSG-NURBS-HYBRID

For the reconstruction of realistic workpieces the ap-
plication of regular geometric objects is often not suffi-
cient. Design parts are often composed of both sculp-
tured surfaces and regular geometries. To find a rem-
edy, NURBS patches have to be integrated into the
CSG model. Figure 5 shows a CSG object consisting
of some boxes, cylinders and a NURBS patch. Due

Figure 5: CSG Model with a NURBS Component

to the fact that the fitness function only computes
the distance between a digitized point and a CSG ob-
ject along a parallel to the z-axis, it is possible to use
NURBS patches as terminals in the CSG model. It is
assumed that the NURBS patch represent a surface of
a solid which is infinite in the negative direction of the
z-axis. Thus, the primary functionality a NURBS ter-
minal has to provide is to compute an intersection of a
ray which has a direction parallel to the z-axis. This is
done by a binary search for the (u,v) koordinates ac-
coding to the actual sampling point. To avoid multiple
evaluation of the surface function, the algorithm stores
intermediate data which is updated only if made nec-
essary by a genetic operator. The second intersection
(for CSG it is necessary to have an even number of
intersections) which is expected for volumetric objects
is set to a default value which lies below the minimum
z-value of the digitized points. This ensures the cor-
rectness of the intersection routine of the CSG data
structure. See Figure. 6.

The evolutionary mutation operator of the terminals
works on the control points, the location and the tilt
angles of the NURBS patches. The insertion of new
control points and the variation of the degree of the
NURBS are not implemented yet.

intersections

NURBS-surface A /-

assumed lower bound

Figure 6: Intersection of a Ray and a CSG-NURBS-
Hybrid

2.5 GENETIC OPERATORS

In an object oriented view for an individual it is nec-
essary to provide operators which perform mutations
and recombinations. Therefore several operators have
been implemented which vary the attributes of the ter-



minal elements and the inner nodes of the CSG tree.

2.5.1 Variation Operators

e Terminal

The terminal operator mutates the attributes of
each terminal of the CGS tree with a predefined
probability. The mutation values, which are spe-
cific for each individual, are self-adapted following
an evolution strategy scheme [Sch95]. These at-
tributes define the location, the size and the tilt
angles of each CSG object. The effect of this op-
erator is an average slight variation of each indi-
vidual. It is mainly used in the late phase of a
reconstruction to adjust the correctly structured
CSG object to the digitized points.

e Relation
This operator changes the boolean relations which
are assigned to the inner nodes of the CSG tree. It
does not, change the structure of the tree itself but
has a big effect on the phenotypic representation
of the individual.

e Delete
In order to remove redundant or incorrect data
from an individual, this operator prunes randomly
selected subtrees from the CSG tree.

e Insert
In order to improve the shape of an individual and
to make it more complex this operator randomly
inserts terminals into the CSG tree.

e Replace

In some cases the system fits a terminal into a
subset of sampling points which represents a ter-
minal of another type (e.g. a box instead of a
sphere). For this reason there is an operator which
can change the type of a terminal into another to
make sure that the system does not stay in a local
extremum of the fitness function.

2.5.2 Recombination Operator

Two individuals are recombined by randomly exchang-
ing subtrees of the genome. This way it is possible to
combine parts of two CSG trees to form a new one
which fits better into the digitized points.

3 MAIN ALGORITHM

The main algorithm uses features of both ES and GP.
The selection follows either a (u, A)- or a (u + A)-
ES scheme. Furthermore, the step size adaptation is
adopted from an ES [Sch95]. The variation of the CSG

tree structure is realized by application of a classic GP
scheme [Ko0z92]. This allows the reconstruction of ob-
jects with an from the outset unknown complexity.

It has been found useful to work on multiple popula-
tions and to recombine individuals from different pop-
ulations always after some generations. So every pop-
ulation can work out some details of the object to be
reconstructed. After a certain number of generations
(this number is highly dependent on the complexity of
the workpiece) these partial solutions are exchanged
between the populations by recombination to form new
individuals which often provide new and advantageous
features.

4 RESULTS

4.1 CSG RECONSTRUCTIONS

The object shown in Figure 7 has been selected to
illustrate the evolutionary reconstruction process. It
consists of two interleaving crosses. The physical ob-
ject has been digitized using a tactile scanner. The
corresponding point set was reduced and resampled
using 2D-point selection schemes and optimized tri-
angulations [WMO00a]. The resampled points showed
a regular and equally spaced structure which is more
adequate for curvature analyses than the unstructured
and dense original sampling points. A deterministic
algorithm analyzed each coordinate of the point set
and extended the data by the curvature value and nor-
mal vectors of the corresponding surface points. This
yields a seven dimensional vector matrix which is used
to evaluate the quality of the evolved CSG solutions.
The sequence in Figure 7 shows the three typical
phases of a reconstruction. The algorithm starts with
few randomly selected primitives. Each solution is
evaluated by the multiobjective fitness function de-
scribed above. In the beginning elements which ap-
proximately fit into the point set form seed points for
more complex structures. During the next generations
the GP algorithms increases the number of CSG ele-
ments per individual rapidly. This yields large but
weakly structured CSG objects. These aggregations
contain subsolutions which already roughly approxi-
mate parts of the original object structure. In the
following phase these substructures are filtered from
the stream of individuals. This decreases the number
of elements and increases the fitness value of the solu-
tions.

During the third phase the algorithm aligns the sub-
structures with the structural shape of the object.
During this period the distance and the orientation
of the elements are adjusted while the number of ele-
ments is kept constant. The GP/ES-hybrid optimizes



Figure 7: Reconstruction of Two Interleaving Crosses.

Photo of the Original Object (Top) and the Recon-
struction (Below).

LK

the real vector parameters of the CSG elements using
its ES power. The single step size of each CSG object
is adjusted automatically following the self-adaptation
scheme of an evolution strategy. The reconstruction
sequence in Figure 8 illustrates the fact that the algo-
rithm is also able to reconstruct shapes which can only
be designed efficiently by subtraction. In this exam-
ple a sphere has to be cut out of the middle of a solid
square. The algorithm finds both elements, their ori-
entation and their geometric relation. Note, that the
algorithm also finds the optimal tree structure by evo-
lutionary shifting the binary operators to their correct
places in the CSG tree.

4.2 NURBS RECONSTRUCTION

In order to illustrate the application of the NURBS-
feature of the algorithm, a part of a forging mold of

Figure 8: Reconstruction of a Cube with a Cut Out
Sphere.

a turbine blade was digitized and reconstructed. The
NURBS terminals used 4 by 15 control points and had
degree of 3. The starting individual was a plane sur-
face and the number of the underlying sample points
was 8 by 24. The result of this reconstruction has
a maximum deviation of 0.06 mm and an average of
0.005 mm. Furthermore, the algorithm used a popu-
lation of 500 individuals over 6000 generations. The
runtime of about 24 hours (on an average Pentium
PC) is due to the complexity of the high-dimensioned
search space. I. e. each of the 60 control vertices of
the NURBS-patch can move in three directions, which
results in 90 parameters which have to be optimized
by the system. Figure 9 shows a sequence taken from
one run. The best individuals of the population of
generation 30, 1000, 3000 and 6000 are displayed.

Figure 9: Reconstruction Sequence of a Sculptured
Surface



5 CONCLUSION

Surface reconstruction from scanned point data is an
urgent problem in the field of die and mold making.
Because of its complexity (NP-hardness), surface re-
construction and shape recognition may not be re-
alized by efficient deterministic algorithms. In cases
like this, evolutionary algorithms have been proved to
be very useful. Therefore, evolutionary surface recon-
struction was used. The implemented algorithm uses
ES and GP features in a parallel hybrid scheme.
During the reconstruction process two typical evolu-
tionary phases can be distinguished. First the ES/GP-
hybrid determines the necessary number and the type
of the geometric objects, then the positions of these ob-
jects are optimized. In order to have a system which
suits to real-world production purposes, it was nec-
essary to integrate sculptured surfaces into the CSG
data structure. Here, NURBS excelled for this pur-
pose. Using a multiobjective fitness function and a
parallel evolution scheme it was possible to reconstruct
parts of a turbine blade.

The parallel evolutionary model uses an island model
with sparse communication between the populations.
This scheme performed better than panmictic models.
The further work will include the heavy paralleliza-
tion and the development of new and improved mu-
tation operators. This will be done using neural net-
works to detect relationships between objects. Fur-
thermore, neural networks can be used to preprocess
the sampling points in order to find additional at-
tributes which can be used by the algorithm.
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