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Abstract

Modeling the particle 
ow mechanisms in orthogonal cutting of turn-
ing processes is a vital task in mechanical engineering. This paper presents
a new approach that di�ers from techniques like �nite element analyzes
(FEA) or molecular dynamics (MD). Using symbolic regression, a genetic
programming system evolves mathematical formulae that describe the tra-
jectories of single particles of steel recorded during the turning process by
a high-speed camera.

1 INTRODUCTION

Modelling the chip-building process in metal cutting has been in the centre of
interest for a long time. The chip geometry, the material movement and the
thermal processes which take place at the centre of cutting (the so called "con-
tact zone") are decisive for manufacturing quality, reduction of machining times
and tool wear. Most existing approaches incorporate FE- or MD-methods as
well as analytical techniques based on cutting force models. Some of them can
be found in [Ina97, SB93, SITU94, XBZ98]. The ideas presented in this pa-
per di�er from those. No external knowledge is provided besides the images of
the process taken by a high-speed camera. The principle of the system works
similar to a human observer [War74] but of course, a computer can deal much
better with the large amount of information provided by the process images.
In order to "simulate" a human observer, as he is searching for the process-
describing formulae, Genetic Programming is utilized. This method has proven
to be helpful to search for solutions within a search space, especially when deal-
ing with �nding formulae matching some given discrete requirements, a task
which is known as "symbolic regression". The evolved formulae are expected
to reveal geometrical aspects of the cutting process. They will be used as a
basis for advanced simulation tools, as well as for analytical investigations in
the �eld of metal cutting. Before they are applicable, they have to be validated
through correspondence with existing formulae or with observed properties of
the cutting process. Furthermore, the system may produce some unexpected
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results, which do not correspond to any known properties of the process. If such
phenomena occur, new knowledge about the process has been generated. This
knowledge may be helpful to support the development of new simulation tools,
which are able to increase the productivity of the process as well as its reliability.

The task of describing the particle 
ow mechanisms in orthogonal cutting leads
to the problem of describing the particle trajectories of the crystalline particles
in the metallic workpiece. This implies the problem of �nding the mathematical
functions which underly these trajectories.

These functions may be illustrated by relations of this type:

~f(t) =

�
fx(t)
fy(t)

�
resp: f(x; y) = 0

To succeed in this objective, some problems have to be solved. The �rst task is
to obtain the trajectories of the particles in the crystalline structure of the metal
workpiece. Until now the studies are based on movies which were recorded by
Warnecke [War74] in the 1970's. A concept for the experimental setup, shown
in �gure 1, has been developed:
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Figure 1: Experimental Setup of Camera and Turning Machine

A "Boehringer M-670" turning lathe will be used. The cutting process will
be �lmed by a high speed camera "Weinberger SpeedCam+", which allows to
take 4000 images per second. The size of the display window is 0.44 mm by 0.33
mm. In Figure 2 the trajectory of a single particle has been sketched on to the
frame of the digitized �lm.

In order to extract the particle trajectories, the programm "WINAnalyze" de-
veloped by Mikromak will be used. This program generates ASCII trace �les
that allow to analyze the trajectories of the particles in the GP-kernel. The po-
sitions of the particles are interpreted as values of a parametric function which
is generated using symbolic regression and genetic programming.

2 MAIN ALGORITHM

The evolution starts with a randomly generated set of functions (initial popu-
lation). The genetic operations are applied to this �rst generation of functions
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Figure 2: Single Frame Taken from the Film Sequence

and a succeeding generation is produced. The �tness of an individual is mea-
sured directly by evaluating the evolved formulae. Technically the formulae are
compiled as a C-program and linked dynamically to the main GP-program, so
evaluation can take place in a fast and generic way. It is also possible to utilize
an interpreter, what may be more 
exible in some cases (e.g. for debugging
tasks), but slows down evaluation. The basic structure of the program follows
the classic GP-scheme [Koz92]. The data structure and the genetic operators
will be described next.

2.1 DATA STRUCTURES

In analogy to the in�x notation of mathematical functions a tree based repre-
sentation forms the genotype. A sample individual is shown in Figure 3.

The primary goal of getting the mathematical representations of two-dimensional
curves leads to the phenotypic representation of an individual as graph of a para-
metric function.

This di�erence between genotypic and phenotypic representation and the need
for genetic operators in which small changes in the genotype shall result in small
changes in the phenotype yields two problems. First a set of genetic operators
which allows to do these small changes on the genotype must be used. Second
a �tness function which correctly evaluates the �tness of one individual has to
be de�ned.

2.2 FITNESS FUNCTION

The naive way of applying a �tness function is to compare the function values
of the individual with corresponding points of the trajectory. If all points of
the trajectory lie on the function plot this individual will represent a perfect
solution to the problem. The �tness values will be represented by a weighted
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Figure 3: Sample structure of a single individual

point to value distance scheme. See Figure 4. In order to improve the e�ciency
of the naive approach, some variations have been realized.
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Figure 4: The Point to Value Distance Scheme

The evaluation of the distance of the sampling points to the evaluated function
has been simpli�ed to point-to-point distances instead of the mathematically
correct orthogonal distances. This simpli�cation is su�cient if the density of
the sampling points is high enough.

Due to the fact that many solutions of the GP-algorithm show shapes that
are similar to the correct solution but di�er only in orientation and size, a de-
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terministic step is inserted between mutation and the �tness calculation of the
individual.

t=0 t=0 t=0 t=0

Figure 5: Translation of an Individual

The translation vector ~a is determined by setting the starting point of the in-
dividual at the position of the �rst point of the trajectory. See Figure 5. The
translation is performed by adding ~a to each point of the genetically generated
function.

In a second step the individual will be scaled to the size of the trajectory curve.
The scaling values are determined by setting the maxima of the individual to
the same value as the maxima of the trajectory points. See Figure 6.
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Figure 6: Scaling of an Individual
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2.3 GENETIC OPERATORS

The basic algorithmic structure of the GP algorithm follows the description of
Koza [Koz92]. Due to the fact that the algorithm has to evolve parametric
functions, two symbolic representations have to be generated in parallel.

Figure 7: Sample of the Variation Scheme

Figure 7 illustrates the variation scheme of the algorithm consisting of recombi-
nation (crossover) and mutation. A tournament selection operator de�nes two
groups (dark gray and light gray) of individuals that compete with each other.
A letter is assigned to each individual. Every survivor of a tournament replaces
the inferior individual. A survivor of a tournament is the individual which has
a higher �tness value compared to its competitor. In Figure 7 K and G are the
winners that replace B and E. The survivors undergo recombination realized by
crossover. Each resulting individual K� and G� is varied by mutation yielding
K�� and G��.

The probability to choose a constant during mutation, the maximum size of
an individual or the probability to change a function or a terminal and the
number of changes is de�ned in a parameter �le.

3 RESULTS

3.1 TEST FUNCTION

In the �rst example the following simple function had to be reconstructed:

~f(t) =

�
fx(t)
fy(t)

�
=

 
cos(t)
t+t2

sin(t)
6t

!

In this case a known function was reconstructed in order to illustrate the power
of the symbolic regression algorithm. The shape of the graph of ~f(t) resembles a
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chip. For simulation purpose this function was sampled yielding discrete points
which represent points which could have been sampled from a �lm sequence.
The size of the population was 200 and 400 generations were evolved. After this
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Figure 8: Approximation of the Test Function, after 200, 300 and 400 Genera-
tions

test run the evolved formula was,

fx(t) =
cos(t)

t � (t+ 1 :02618)� cos( 1:272908745
(t+1:21945)�(t+3:81393) )

fy(t) =
sin(t)

t

After rescaling with the factor 1 23 the target function has been approximated
with a negligible error. See Figure 8.

3.2 REAL WORLD DATA

Next the algorithm is used on the data extracted from the �lm data of the
turning process. The size of the �lmed window is 0.44 mm by 0.33 mm, so the
trajectory which is to be reconstructed stretches from 0.01 mm to 0.08 mm and
from 0.06 mm to 0.16 mm.
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Terminal Set t , K 2 f 1:0; 5:0g
Func. Set + - * / sin() cos()
Selection tournament

# individuals 250
# programs 2 programs per individual

Table 1: Parameter Table for real world test data

Table 1 shows the parameters for this test run. The result after 500 genera-
tions is shown in Figure 9.
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Figure 9: Approximation of real-world data after 500 Generations

The �gure illustrates the tendency of the algorithm to equalize the trajecto-
ries. The approximations can be improved locally by increasing the number of
sampling points. This way the reconstructions are forced to follow also small
bendings of the particle 
ow.

4 CONCLUSION

This paper presents a method to reconstruct and analyze unknown mathemat-
ical correlations. In this case one particle trajectory of material movement in
the turning process has been reconstructed.

This reconstruction uses symbolic regression and genetic programming. First
tests show the general applicability of this approach. Complex two dimensional
functions can be reconstructed by assembling terminal functions.

8



In order to develop a physical model of the turning process, there are additional
considerations to be done. For example adding parameters, like the cutting
speed or the tool angle to the reconstruction process. Furthermore, restrictions
had to be developed to constrain the length of the reconstructed individuals.

The proposed tracking of particles by GP is the �rst step towards an overall
system, which will include another CI-method, namely a CA (Cellular Automa-
ton). This automaton will be provided with the rules evolved by the GP part of
the system. The authors intend to use the modeling properties of CAs (simple
local interactions can model complex global behavior) together with the GP-
evolution of formulae to develop a complete model of the geometric properties of
the chip-building process in orthogonal cutting which can be a basis for systems
as described in the introduction section.
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